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Abstract

In this paper the authors discuss a relationship between  nite semi elds of characteristic p
and certain  nite p-groups of nilpotence class 2.
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1. Introduction

A  nite semi&eld is a  nite algebraic system S containing at least two elements 0
and 1; S is endowed with two binary operations, addition and multiplication, written
in the usual notation, and satisfying the following axioms:

A1 (S;+) is a group with identity 0.
A2 If a and b are elements of S and ab= 0 then a= 0 or b= 0.
A3 If a; b and c are any elements of S then a(b+ c)= ab+ ac and (a+ b)c= ac+ bc.
A4 The element 1 satis es the relationship a1 = 1a= a, for all a in S.

In this note the term semi eld will mean  nite semi eld. The above axioms imply
that (S;+) is an abelian group and that, for every non-zero a and every b in S, the
equations ax = b and ya = b are uniquely solvable for x and y. The additive group
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(S;+) is actually an elementary abelian p-group for some prime p. This prime p is
called the characteristic of the semi eld S. It results that S has a vector space structure
over the prime  eld F =GF(p) and, consequently, S has pn elements, where n is the
dimension of S over F (see [4] for details).
A semi eld is much like a  eld, except that the underlying multiplicative structure

is required to be merely a loop instead of a group. The term semi&eld seems to be
coined by Knuth [4]. Every  nite  eld is an associative semi eld; the term proper
semi&eld will mean a semi eld in which the multiplication is not associative. In the
literature, semi elds are also called division rings and division algebras; in fact some
authors do not require that a division ring has a unity element (see also [2,3]).
Following the terminology in [4], we use the term pre-semi&eld to designate a system

S satisfying axioms A1, A2 and A3 but not necessarily axiom A4 of a semi eld, i.e.,
a pre-semi eld need not have a multiplicative identity.
Besides their intrinsic algebraic interest, proper semi elds are also useful in  nite

geometries since they coordenatize non-Desarguesian projective planes.
If � is a projective plane coordenatized by a semi eld S of order pn, then the

translations and generalized shears of � constitute a p-subgroup H, of order p3n, of
the collineation group of �. This subgroup H has nilpotence class 2 and contains
subgroups A and B of orders pn, with the property that no non-trivial elements a∈A
and b∈B commute (the reader is referred to [4, Theorem 3.4.4] and for instance [3,
Chapters 4–8] for further details). Thus, H is a particular solution of the following
generalization of Problem 10.1 of the Kourovka notebook [5]:

(P) Let p be a prime number. Describe all groups of order p3n of nilpotence class
2 containing subgroups X and Y such that |X | = |Y | = pn and no non-trivial
elements x∈X and y∈Y commute.

One of our purpose in this note is to discuss the possible solutions to problem (P). A
main result may be stated as the

Theorem. Let (S;+; ·) be a pre-semi&eld and G the set of all triples (a; b; c) of
elements of S with an operation ∗ de&ned by

(a; b; c) ∗ (d; e; f) := (a+ d; b+ e; c + f + b · d): (1)

Then (G; ∗) is a group which is a solution to (P). Conversely, if a group G is a
solution to (P) then there exists a pre-semi&eld S such that G can be described as
above.

It is natural to ask what happens with pre-semi elds (S1;+; ·) and (S2;+; ◦) cor-
responding to isomorphic groups G1 and G2, as in the Theorem above. To answer
this question it is convenient to recall the concept of isotopy. Given pre-semi elds
(S1;+; ·) and (S2;+; ◦), an isotopy from S2 to S1 is any triple of non-singular linear
maps (A; B; C) from S2 to S1 such that (x ◦ y)C = (xA) · (yB), for all x; y∈ S2. In this
case we say that S1 and S2 are isotopic.
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A discussion concerning the above question is in the  nal part of this note, where
we  nd a necessary and suHcient condition in order that an isomorphism between
the considered groups produces an isotopy between the corresponding pre-semi elds
(Theorem 4). Then we prove the

Proposition A. If S1 and S2 are isotopic pre-semi&elds corresponding to the groups
G1 and G2 respectively, then G1 and G2 are isomorphic.

The converse of Proposition A is not true in general. However we can assert, in
particular, the

Proposition B. Let G be a group corresponding to a proper semi&eld and let the
group G1 correspond to a &eld. Then G and G1 cannot be isomorphic.

This paper extends part of the master’s dissertation [7], written under the supervision
of the  rst author, which was mainly based on Knuth [4]. The authors are grateful to
the referees for their helpful comments.

2. The main results

We use the following standard notation (see, for instance, [6]). For elements x; y; z
in a group G, the conjugate of x by y is xy = y−1xy; the commutator of x and y is
[x; y] = x−1xy. The following commutator identities may be useful:

[xy; z] = [x; z]y[y; z]; [x; yz] = [x; z][x; y]z : (2)

If X and Y are two subsets of G; then the subgroup of G generated by the union
X ∪ Y is denoted by 〈X; Y 〉 and the commutator of X and Y is the subgroup [X; Y ] of
G; generated by all commutators [x; y] with x∈X and y∈Y: In particular, the derived
subgroup of G is G′ = [G;G]: The normal closure of X in G is the subgroup 〈X 〉G;
generated by all conjugates xg with x∈X and g∈G; the order of G is written |G|.
We say that G has nilpotence class 2 (class 2 for short) if G is non-abelian and
[G′; G] = {1}, i.e., the derived subgroup G′ is contained in the center Z(G) of G.
Consequently, in a group of class 2 the commutator identities (2) become bilinearity
relations:

[xy; z] = [x; z][y; z] and [x; yz] = [x; y][x; z]: (3)

It is worth mentioning that if an arbitrary group H is generated by two subgroups X
and Y; then the commutator [X; Y ] is a normal subgroup of H .
On looking over those relations holding in the subgroup H generated by all trans-

lations and generalized shears of a projective plane coordenatized by a semi eld (see
[4, Section 3.4]) we observe that such subgroup provide us with a particular solution
to (P) (as stated in the Introduction). We rephrase this  rst part of our Theorem as

Theorem 1. Let (S;+; ·) be a pre-semi&eld and G the set of all triples (a; b; c); where
a; b; c∈ S; with operation ∗ given by (1). Then (G; ∗) is a group solution to (P).
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Proof. Clearly (G; ∗) is a group; the element (0; 0; 0) is the identity of G and, for any
elements a; b∈ S \ {0}, we have

[(a; 0; 0); (0; b; 0)] = (0; 0;−b · a) = (0; 0; 0)

and

[(0; b; 0); (a; 0; 0)] = (0; 0; b · a) = (0; 0; 0):

The center of G consists of all elements of the form (0; 0; c); with c∈ S. This can be
veri ed by the following equivalences:

(a; b; c) ∗ (d; e; f) = (d; e; f) ∗ (a; b; c); ∀a; b; c∈ S

⇔ (a+ d; b+ e; c + f + b · d) = (d+ a; e + b; f + c + e · a); ∀a; b; c∈ S

⇔ b · d= e · a; ∀a; b∈ S

⇔ d= 0 and e = 0:

In addition, (a; 0; 0) ∗ (0; b; 0) ∗ (0; 0; c) = (a; b; 0) ∗ (0; 0; c) = (a; b; c): Thus, on setting
X := {(a; 0; 0) | a∈ S} and Y := {(0; b; 0) | b∈ S}; we see that X and Y are subgroups
of G such that G= 〈X; Y 〉; Z(G) =G′ = [X; Y ]; and no non-trivial elements x∈X and
y∈Y commute.

As for the converse we state the

Theorem 2. Let the group G be a solution to (P): Then there exists a pre-semi&eld
S such that G can be written as the set of all triples (a; b; c); with a; b and c in S,
and the group operation is realized as the operation ∗ given by (1).

Proof. We refer to the statement of (P) as in the Introduction, and let H denote the
subgroup of G generated by X and Y; which satisfy the following non-commutativity
relation:

∀x∈X \ {1}; ∀y∈Y \ {1}; [x; y] = 1: (4)

By the normality of [X; Y ] in H we have 〈X 〉H = X · [X; Y ] and 〈Y 〉H = Y · [X; Y ]:
Consequently,

H = XY [X; Y ] = Y 〈X 〉H : (5)

It follows straightforward from (4) that

X ∩ Y = {1} (6)

and, as [G;G]6Z(G); we obtain [G;G] ∩ X = {1}= [G;G] ∩ Y . In particular,

[X; Y ] ∩ X = {1}= [X; Y ] ∩ Y (7)

and [X; X ] = [X; X ] ∩ X = {1} = [Y; Y ] ∩ Y = [Y; Y ]. Therefore, X and Y are abelian
groups. We claim that

Y ∩ 〈X 〉H = {1}= X ∩ 〈Y 〉H : (8)
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Indeed, if y∈Y ∩ 〈X 〉H (=Y ∩ X [X; Y ]) then y = x[x1; y1] · · · [xk ; yk ] for some k ∈N;
x1; : : : ; xk ∈X and y1; : : : ; yk ∈Y , where by (6) and (7) x = 1 and

∏k
i=1 [xi; yi] = 1.

Hence, by using (2) and (3),

1 = [y; y] = [x[x1; y1] · · · [xk ; yk ]; y]

= [x; y][x1 ;y1]···[xk ;yk ][[x1; y1] · · · [xk ; yk ]; y]

= [x; y];

which contradicts (4). This proves the  rst half of our claim (8). The other part follows
by symmetry. Now let x = 1 be any  xed element of X and ’ :Y → [x; Y ]; y �→ [x; y]:
Then ’ is injective. In eLect, for y1; y2 ∈Y; the equality [x; y1]=[x; y2] is equivalent to
[x; y1y−1

2 ]=1, since G has class 2: Once again (4) says that y1=y2: Thus |[X; Y ]|¿pn

and, by (5)–(8), it follows that

p3n¿ |H |= |X | · |Y | · |[X; Y ]|¿p3n:

Therefore, H =G and |[X; Y ]|=pn. Furthermore, the above analysis shows that 〈Y 〉G=
Y [X; Y ] is a direct product of the subgroups Y and [X; Y ] and G = X · (Y [X; Y ]); a
semidirect product of X and 〈Y 〉G. Hence, any element of G has a unique expression
as a product xyz; where x∈X; y∈Y and z ∈ [X; Y ], and the product of any two such
elements is performed as

(xyz)(abc) = x(ya)bzc = x(ay[y; a])bzc = (xa)(yb)([y; a]zc): (9)

In addition, we see that Z(G) = [X; Y ]. In fact, suppose that for any x∈X; y∈Y and
z ∈ [X; Y ]; we have (xyz)(abc) = (abc)(xyz); for all abc∈G with a∈X; b∈Y and
c∈ [X; Y ]. Then by (9) and (3), and the fact that [X; Y ] ⊆ G′ ⊆ Z(G), we obtain
[x; a][y; a][x; b][y; b] = 1, for all a∈X; b∈Y or, since X and Y are abelian groups,
[y; a][x; b] = 1, for all a∈X; b∈Y . Consequently, a= 1 and b= 1; by (4).
Now by Cauchy’s theorem and relations (3) we have [xp; y]= ([x; y])p=[x; yp]=1;

for all x∈X and y∈G: This together with (4) says that X; Y and Z(G)= [X; Y ] have
exponent p: Thus X; Y and Z(G) are elementary abelian p-groups. As these three
groups have the same order pn, they are all isomorphic:

X ∼=Y ∼=Z(G)∼=Zp⊕· · ·⊕Zp︸ ︷︷ ︸
n factors

:

Let S denote the additive group

Zp ⊕ · · · ⊕ Zp︸ ︷︷ ︸
n factors

:

Then there exist isomorphisms �; � and �; such that

X = S�; Y = S� and Z(G) = S�:

In addition, as [Y; X ] = Z(G); it follows that [S�; S�] = S�: Thus by using additive
notation we see that (a+b)�=a�b�, (a+b)�=a�b� and (a+b)�=a�b�; for all a; b∈ S.
Moreover, we can de ne a multiplication ? on S by the rule

(a ? b)� = [a�; b�]: (10)
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The bilinearity of commutators provided by the nilpotence class 2 of G is now more
evident in additive notation:

(a+ c)? b= a ? b+ c ? b and b ? (a+ c) = b ? a+ b ? c; ∀a; b; c∈ S;

and the non-commutativity condition (4) implies that a? b=0 if and only if a=0 or
b = 0: Consequently, (S;+; ?) is a pre-semi eld and on putting xi = a�

i ; yi = b�
i and

zi = c�i , i = 1; 2, we obtain from (9)

(x1y1z1)(x2y2z2) = (x1x2)(y1y2)([y1; x2]z1z2)

= (a1 + a2)�(b1 + b2)�(c1 + c2 + b1 ∗ a2)�:

The uniqueness of expression of the elements of G and the fact that �, � and � are
isomorphisms say that the above is not but (1). This  nishes the proof.

The following result may be useful in order to restrict our attention to semi elds
only.

Lemma 3 (Knuth [4, Theorem 4.5.4]). Let (S;+; ◦) be a pre-semi&eld and let
u∈ S \ {0}. If we de&ne a new multiplication · by the rule (a ◦ u) · (u ◦ b)= a ◦ b, then
we obtain a semi&eld (S;+; ·) isotopic to (S;+; ◦) with unit u ◦ u.

Now, let G and G1 be groups constructed from pre-semi elds (S;+; ·) and (S1;+; ◦)
respectively, as in Theorem 1. We shall  nd a relationship between S and S1 in the
assumption that we are given an isomorphism  :G → G1.
To this end, let us  x the subgroups X and Y of G, as in the proof of Theorem

1. Thus we can write the possible images of  on the elements of X and Y in the
following manner:

(a; 0; 0) = (a�1 ; a�2 ; a�3 ) and (0; a; 0) = (a#1 ; a#2 ; a#3 ); (11)

where �1; �2; �3; #1; #2 and #3 are maps from S into S1 and a is an arbitrary element
of S. Since the center of G is mapped onto the center of G1 under the action of  ;
there exists a non-singular linear map $ : S → S1 such that

(0; 0; a) = (0; 0; a$); (12)

for all a∈ S: From this we obtain the image of any element of G as follows:

(a; b; c) = [(a; 0; 0) ∗ (0; b; 0) ∗ (0; 0; c)] 

= (a�1 ; a�2 ; a�3 ) ∗ (b#1 ; b#2 ; b#3 ) ∗ (0; 0; c$)
= (a�1 + b#1 ; a�2 + b#2 ; a�3 + b#3 + c$ + a�2 ◦ b#1 ): (13)

By the homomorphic properties of  we obtain the following identities:

(i) (a+ b)�1 = a�1 + b�1 ,
(ii) (a+ b)�2 = a�2 + b�2 ,
(iii) (a+ b)#1 = a#1 + b#1 ,
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(iv) (a+ b)#2 = a#2 + b#2 ,
(v) a�2 ◦ b�1 = b�2 ◦ a�1 ,
(vi) a#2 ◦ b#1 = b#2 ◦ a#1 ,
(vii) (a+ b)�3 = a�3 + b�3 + b�2 ◦ a�1 ,
(viii) (a+ b)#3 = a#3 + b#3 + b#2 ◦ a#1 ,
(ix) (b · a)$ = b#2 ◦ a�1 − a�2 ◦ b#1 .

The above identities give us a lot of information. The  rst four of them say that
�1; �2; #1 and #2 are linear maps. In fact, �1; �2; #1; #2 are non-singular or the zero
map. To see this we assume for instance that �1 vanishes for some x = 0 of S. By
identity (v) we would have b�2 ◦ x�1 = x�2 ◦ b�1 = 0 for all b∈ S, thus implying that
x�2 = 0 or b�1 = 0 for all b∈ S: However, since  is an isomorphism,

1 = (X ∩ Z(G)) = X  ∩ Z(G1) (14)

and hence we cannot have x�2 = 0: Therefore, in the present situation, �1 is the zero
map and �2 is non-singular. The same is true for #1 and #2.
On the other hand, suppose there exist maps $; �1; �2; �3; #1; #2; #3 from S to S1

satisfying identities (i)–(ix), where $ is linear and non-singular and �1; �2; #1 and #2
are null or non-singular. If we de ne  by (13), then we see that  is a homomorphism
from G to G1. Moreover,  is injective. In eLect, let

(a; b; c) = (a�1 + b#1 ; a�2 + b#2 ; a�3 + b#3 + c$ + a�2 ◦ b#1 ) = (0; 0; 0): (15)

Then a�1 =−b#1 and a�2 =−b#2 , which by substitution in (15) imply that (0; 0; b ·a) =
(0; 0; (b · a)$) = (0; 0; 0). Since by hypothesis $ is non-singular, we get b · a = 0 and
thus a= 0 or b= 0; consequently, a= b= 0 by (15), which in turn forces c= 0; too.
Therefore,  is an isomorphism.
We resume the above discussion in the

Theorem 4. A necessary and su<cient condition for the existence of an isomor-
phism  between the groups G and G1 constructed from the pre-semi&elds S and S1,
respectively, is that there exist maps $; �1; �2; �3; #1; #2; #3 from S to S1 satisfying the
identities (i)–(ix), where $ is linear and non-singular and �1; �2; #1 and #2 are null
or non-singular, such that the image of any element of G by  is given by (13).

Proof of Proposition A. Clearly, if two semi elds (S;+; ·) and (S1;+; ◦) are isotopic
then the groups G and G1 constructed from them are isomorphic, since we can choose
maps $; �1; �2; �3; #1; #2; #3 from S to S1 in such a way that (#2; �1; $) is an isotopy
from S to S1 and �2; �3; #1 and #3 are all zero.

Remark 5. By the above analysis we see that an isomorphism between the groups G
and G1 can be found even if the corresponding pre-semi elds (S;+; ·) and (S1;+; ◦)
are anti-isotopic, i.e., if there exists a triple of non-singular linear maps (A; B; C) such
that (x · y)C = (yA) ◦ (xB): This observation shows that the converse of Proposition A
is not true in general.
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Before embarking in the proof of Proposition B we quote the following lemma which
is a consequence of the well-known theorem of Albert [1], that two  nite semi elds
coordenatize isomorphic planes if and only if they are isotopic (see also [3, Theorem
8.11]).

Lemma 6. A proper semi&eld cannot be isotopic to a &eld.

Proof of Proposition B. Let G be a group constructed from a proper semi eld (S;+; ◦)
and let the group G1 be constructed from a  eld (S1;+; ·). Suppose, on the contrary,
that G and G1 are isomorphic and consider the maps $; �1; �2; �3; #1; #2 and #3,
as in Theorem 4. In particular, we have the following possibilities for identity (ix):

1. (b ◦ a)$ = b#2 · a�1 − a�2 · b#1 ,
2. (b ◦ a)$ = b#2 · a�1 ,
3. (b ◦ a)$ =−a�2 · b#1 =−b#1 · a�2 .

By Lemma 6, cases (b) and (c) are not possible. So we need to consider case (a)
only. By the properties of $; �1; �2; #1 and #2, and using identities (v) and (vi), we
deduce that there exist k1; k2 ∈ S1 \ {0}, such that

a�2

a�1
=

b�2

b�1
= k1 e

a#2

a#1
=

b#2

b#1
= k2; for all a; b∈ S \ {0}: (16)

Hence,

(b ◦ a)$ = b#2 · a�1 − a�2 · b#1

= (k2 · b#1 ) · a�1 − (k1 · a�1 ) · b#1

= k2 · (b#1 · a�1 )− k1 · (b#1 · a�1 )

= [(k2 − k1) · b#1 ] · a�1 :

But this also contradicts Lemma 6, proving our result.
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