

Available at www**.Elsevier**Mathematics.com powered by **science ddirect**.

Discrete Mathematics 275 (2004) 355-362

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

A note on finite semifields and certain *p*-groups of class 2

N.R. Rocco^{*,1}, J.S. Rocha²

Department of Mathematics, University of Brasília, 70.910-900 Brasília, DF, Brazil

Received 6 March 2002; received in revised form 8 April 2003; accepted 28 April 2003

Abstract

In this paper the authors discuss a relationship between finite semifields of characteristic p and certain finite p-groups of nilpotence class 2. © 2003 Elsevier B.V. All rights reserved.

MSC: primary: 17A35; 12K10; 20B25; secondary: 51A35

Keywords: Finite semifields; Isotopy; Finite p-groups; Projective planes

1. Introduction

A finite *semifield* is a finite algebraic system S containing at least two elements 0 and 1; S is endowed with two binary operations, addition and multiplication, written in the usual notation, and satisfying the following axioms:

A1 (S, +) is a group with identity 0.

A2 If a and b are elements of S and ab = 0 then a = 0 or b = 0.

A3 If a, b and c are any elements of S then a(b+c) = ab + ac and (a+b)c = ac + bc. A4 The element 1 satisfies the relationship a1 = 1a = a, for all a in S.

In this note the term semifield will mean finite semifield. The above axioms imply that (S, +) is an abelian group and that, for every non-zero *a* and every *b* in *S*, the equations ax = b and ya = b are uniquely solvable for *x* and *y*. The additive group

0012-365X/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2003.04.002

^{*} Corresponding author.

E-mail address: norai@unb.br (N.R. Rocco).

¹ Partially supported by FAPDF/Brazil.

² The author acknowledges a master's scholarship from CAPES/Brazil.

(S, +) is actually an elementary abelian *p*-group for some prime *p*. This prime *p* is called the characteristic of the semifield *S*. It results that *S* has a vector space structure over the prime field F = GF(p) and, consequently, *S* has p^n elements, where *n* is the dimension of *S* over *F* (see [4] for details).

A semifield is much like a field, except that the underlying multiplicative structure is required to be merely a loop instead of a group. The term *semifield* seems to be coined by Knuth [4]. Every finite field is an associative semifield; the term *proper semifield* will mean a semifield in which the multiplication is not associative. In the literature, semifields are also called division rings and division algebras; in fact some authors do not require that a division ring has a unity element (see also [2,3]).

Following the terminology in [4], we use the term *pre-semifield* to designate a system S satisfying axioms A1, A2 and A3 but not necessarily axiom A4 of a semifield, i.e., a pre-semifield need not have a multiplicative identity.

Besides their intrinsic algebraic interest, proper semifields are also useful in finite geometries since they coordenatize non-Desarguesian projective planes.

If π is a projective plane coordenatized by a semifield *S* of order p^n , then the translations and generalized shears of π constitute a *p*-subgroup \mathcal{H} , of order p^{3n} , of the collineation group of π . This subgroup \mathcal{H} has nilpotence class 2 and contains subgroups *A* and *B* of orders p^n , with the property that no non-trivial elements $a \in A$ and $b \in B$ commute (the reader is referred to [4, Theorem 3.4.4] and for instance [3, Chapters 4–8] for further details). Thus, \mathcal{H} is a particular solution of the following generalization of Problem 10.1 of the Kourovka notebook [5]:

(P) Let p be a prime number. Describe all groups of order p^{3n} of nilpotence class 2 containing subgroups X and Y such that $|X| = |Y| = p^n$ and no non-trivial elements $x \in X$ and $y \in Y$ commute.

One of our purpose in this note is to discuss the possible solutions to problem (\mathcal{P}) . A main result may be stated as the

Theorem. Let $(S, +, \cdot)$ be a pre-semifield and G the set of all triples (a, b, c) of elements of S with an operation * defined by

$$(a, b, c) * (d, e, f) := (a + d, b + e, c + f + b \cdot d).$$
(1)

Then (G,*) is a group which is a solution to (\mathcal{P}) . Conversely, if a group G is a solution to (\mathcal{P}) then there exists a pre-semifield S such that G can be described as above.

It is natural to ask what happens with pre-semifields $(S_1, +, \cdot)$ and $(S_2, +, \circ)$ corresponding to isomorphic groups G_1 and G_2 , as in the Theorem above. To answer this question it is convenient to recall the concept of isotopy. Given pre-semifields $(S_1, +, \cdot)$ and $(S_2, +, \circ)$, an *isotopy* from S_2 to S_1 is any triple of non-singular linear maps (A, B, C) from S_2 to S_1 such that $(x \circ y)C = (xA) \cdot (yB)$, for all $x, y \in S_2$. In this case we say that S_1 and S_2 are isotopic.

A discussion concerning the above question is in the final part of this note, where we find a necessary and sufficient condition in order that an isomorphism between the considered groups produces an isotopy between the corresponding pre-semifields (Theorem 4). Then we prove the

Proposition A. If S_1 and S_2 are isotopic pre-semifields corresponding to the groups G_1 and G_2 respectively, then G_1 and G_2 are isomorphic.

The converse of Proposition A is not true in general. However we can assert, in particular, the

Proposition B. Let G be a group corresponding to a proper semifield and let the group G_1 correspond to a field. Then G and G_1 cannot be isomorphic.

This paper extends part of the master's dissertation [7], written under the supervision of the first author, which was mainly based on Knuth [4]. The authors are grateful to the referees for their helpful comments.

2. The main results

We use the following standard notation (see, for instance, [6]). For elements x, y, z in a group G, the conjugate of x by y is $x^y = y^{-1}xy$; the commutator of x and y is $[x, y] = x^{-1}x^y$. The following commutator identities may be useful:

$$[xy,z] = [x,z]^{y}[y,z], \quad [x,yz] = [x,z][x,y]^{z}.$$
(2)

If X and Y are two subsets of G, then the subgroup of G generated by the union $X \cup Y$ is denoted by $\langle X, Y \rangle$ and the commutator of X and Y is the subgroup [X, Y] of G, generated by all commutators [x, y] with $x \in X$ and $y \in Y$. In particular, the derived subgroup of G is G' = [G, G]. The normal closure of X in G is the subgroup $\langle X \rangle^G$, generated by all conjugates x^g with $x \in X$ and $g \in G$; the order of G is written |G|. We say that G has nilpotence class 2 (class 2 for short) if G is non-abelian and $[G', G] = \{1\}$, i.e., the derived subgroup G' is contained in the center Z(G) of G. Consequently, in a group of class 2 the commutator identities (2) become bilinearity relations:

$$[xy,z] = [x,z][y,z]$$
 and $[x,yz] = [x,y][x,z].$ (3)

It is worth mentioning that if an arbitrary group H is generated by two subgroups X and Y, then the commutator [X, Y] is a normal subgroup of H.

On looking over those relations holding in the subgroup \mathscr{H} generated by all translations and generalized shears of a projective plane coordenatized by a semifield (see [4, Section 3.4]) we observe that such subgroup provide us with a particular solution to (\mathscr{P}) (as stated in the Introduction). We rephrase this first part of our Theorem as

Theorem 1. Let $(S, +, \cdot)$ be a pre-semifield and G the set of all triples (a, b, c), where $a, b, c \in S$, with operation * given by (1). Then (G, *) is a group solution to (\mathcal{P}) .

Proof. Clearly (G, *) is a group; the element (0, 0, 0) is the identity of G and, for any elements $a, b \in S \setminus \{0\}$, we have

$$[(a,0,0),(0,b,0)] = (0,0,-b \cdot a) \neq (0,0,0)$$

and

$$[(0, b, 0), (a, 0, 0)] = (0, 0, b \cdot a) \neq (0, 0, 0).$$

The center of G consists of all elements of the form (0,0,c), with $c \in S$. This can be verified by the following equivalences:

$$(a, b, c) * (d, e, f) = (d, e, f) * (a, b, c), \quad \forall a, b, c \in S$$

$$\Leftrightarrow (a + d, b + e, c + f + b \cdot d) = (d + a, e + b, f + c + e \cdot a), \quad \forall a, b, c \in S$$

$$\Leftrightarrow b \cdot d = e \cdot a, \quad \forall a, b \in S$$

$$\Leftrightarrow d = 0 \text{ and } e = 0.$$

In addition, (a, 0, 0) * (0, b, 0) * (0, 0, c) = (a, b, 0) * (0, 0, c) = (a, b, c). Thus, on setting $X := \{(a, 0, 0) | a \in S\}$ and $Y := \{(0, b, 0) | b \in S\}$, we see that X and Y are subgroups of G such that $G = \langle X, Y \rangle$, Z(G) = G' = [X, Y], and no non-trivial elements $x \in X$ and $y \in Y$ commute. \Box

As for the converse we state the

Theorem 2. Let the group G be a solution to (\mathcal{P}) . Then there exists a pre-semifield S such that G can be written as the set of all triples (a,b,c), with a, b and c in S, and the group operation is realized as the operation * given by (1).

Proof. We refer to the statement of (\mathcal{P}) as in the Introduction, and let *H* denote the subgroup of *G* generated by *X* and *Y*, which satisfy the following non-commutativity relation:

$$\forall x \in X \setminus \{1\}, \quad \forall y \in Y \setminus \{1\}, \quad [x, y] \neq 1.$$
(4)

By the normality of [X, Y] in H we have $\langle X \rangle^H = X \cdot [X, Y]$ and $\langle Y \rangle^H = Y \cdot [X, Y]$. Consequently,

$$H = XY[X, Y] = Y\langle X \rangle^{H}.$$
(5)

It follows straightforward from (4) that

$$X \cap Y = \{1\}\tag{6}$$

and, as $[G,G] \leq Z(G)$, we obtain $[G,G] \cap X = \{1\} = [G,G] \cap Y$. In particular,

$$[X, Y] \cap X = \{1\} = [X, Y] \cap Y \tag{7}$$

and $[X,X] = [X,X] \cap X = \{1\} = [Y,Y] \cap Y = [Y,Y]$. Therefore, X and Y are abelian groups. We claim that

$$Y \cap \langle X \rangle^H = \{1\} = X \cap \langle Y \rangle^H.$$
(8)

358

Indeed, if $y \in Y \cap \langle X \rangle^H (=Y \cap X[X,Y])$ then $y = x[x_1, y_1] \cdots [x_k, y_k]$ for some $k \in \mathbb{N}$, $x_1, \ldots, x_k \in X$ and $y_1, \ldots, y_k \in Y$, where by (6) and (7) $x \neq 1$ and $\prod_{i=1}^k [x_i, y_i] \neq 1$. Hence, by using (2) and (3),

$$1 = [y, y] = [x[x_1, y_1] \cdots [x_k, y_k], y]$$

= $[x, y]^{[x_1, y_1] \cdots [x_k, y_k]} [[x_1, y_1] \cdots [x_k, y_k], y]$
= $[x, y],$

which contradicts (4). This proves the first half of our claim (8). The other part follows by symmetry. Now let $x \neq 1$ be any fixed element of X and $\varphi: Y \to [x, Y], y \mapsto [x, y]$. Then φ is injective. In effect, for $y_1, y_2 \in Y$, the equality $[x, y_1] = [x, y_2]$ is equivalent to $[x, y_1 y_2^{-1}] = 1$, since G has class 2. Once again (4) says that $y_1 = y_2$. Thus $|[X, Y]| \ge p^n$ and, by (5)–(8), it follows that

$$p^{3n} \ge |H| = |X| \cdot |Y| \cdot |[X,Y]| \ge p^{3n}.$$

Therefore, H = G and $|[X, Y]| = p^n$. Furthermore, the above analysis shows that $\langle Y \rangle^G = Y[X, Y]$ is a direct product of the subgroups Y and [X, Y] and $G = X \cdot (Y[X, Y])$, a semidirect product of X and $\langle Y \rangle^G$. Hence, any element of G has a unique expression as a product xyz, where $x \in X$, $y \in Y$ and $z \in [X, Y]$, and the product of any two such elements is performed as

$$(xyz)(abc) = x(ya)bzc = x(ay[y, a])bzc = (xa)(yb)([y, a]zc).$$
(9)

In addition, we see that Z(G) = [X, Y]. In fact, suppose that for any $x \in X, y \in Y$ and $z \in [X, Y]$, we have (xyz)(abc) = (abc)(xyz), for all $abc \in G$ with $a \in X, b \in Y$ and $c \in [X, Y]$. Then by (9) and (3), and the fact that $[X, Y] \subseteq G' \subseteq Z(G)$, we obtain [x, a][y, a][x, b][y, b] = 1, for all $a \in X, b \in Y$ or, since X and Y are abelian groups, [y, a][x, b] = 1, for all $a \in X, b \in Y$. Consequently, a = 1 and b = 1, by (4).

Now by Cauchy's theorem and relations (3) we have $[x^p, y] = ([x, y])^p = [x, y^p] = 1$, for all $x \in X$ and $y \in G$. This together with (4) says that X, Y and Z(G) = [X, Y] have exponent p. Thus X, Y and Z(G) are elementary abelian p-groups. As these three groups have the same order p^n , they are all isomorphic:

$$X \cong Y \cong Z(G) \cong \underbrace{\mathbb{Z}_p \oplus \cdots \oplus \mathbb{Z}_p}_{n \text{ factors}}.$$

Let S denote the additive group

$$\underbrace{\mathbb{Z}_p\oplus\cdots\oplus\mathbb{Z}_p}_p$$

n factors

Then there exist isomorphisms τ , σ and θ , such that

$$X = S^{\tau}, \quad Y = S^{\sigma} \quad \text{and} \quad Z(G) = S^{\theta}.$$

In addition, as [Y,X] = Z(G), it follows that $[S^{\sigma},S^{\tau}] = S^{\theta}$. Thus by using additive notation we see that $(a+b)^{\tau} = a^{\tau}b^{\tau}$, $(a+b)^{\sigma} = a^{\sigma}b^{\sigma}$ and $(a+b)^{\theta} = a^{\theta}b^{\theta}$, for all $a, b \in S$. Moreover, we can define a multiplication \bigstar on *S* by the rule

$$(a \star b)^{\theta} = [a^{\sigma}, b^{\tau}]. \tag{10}$$

The bilinearity of commutators provided by the nilpotence class 2 of G is now more evident in additive notation:

$$(a+c) \star b = a \star b + c \star b$$
 and $b \star (a+c) = b \star a + b \star c$, $\forall a, b, c \in S$,

and the non-commutativity condition (4) implies that $a \star b = 0$ if and only if a = 0 or b = 0. Consequently, $(S, +, \star)$ is a pre-semifield and on putting $x_i = a_i^{\tau}$, $y_i = b_i^{\sigma}$ and $z_i = c_i^{\theta}$, i = 1, 2, we obtain from (9)

$$(x_1y_1z_1)(x_2y_2z_2) = (x_1x_2)(y_1y_2)([y_1,x_2]z_1z_2)$$
$$= (a_1 + a_2)^{\mathrm{T}}(b_1 + b_2)^{\sigma}(c_1 + c_2 + b_1 * a_2)^{\theta}.$$

The uniqueness of expression of the elements of G and the fact that σ , τ and θ are isomorphisms say that the above is not but (1). This finishes the proof. \Box

The following result may be useful in order to restrict our attention to semifields only.

Lemma 3 (Knuth [4, Theorem 4.5.4]). Let $(S, +, \circ)$ be a pre-semifield and let $u \in S \setminus \{0\}$. If we define a new multiplication \cdot by the rule $(a \circ u) \cdot (u \circ b) = a \circ b$, then we obtain a semifield $(S, +, \cdot)$ isotopic to $(S, +, \circ)$ with unit $u \circ u$.

Now, let G and G_1 be groups constructed from pre-semifields $(S, +, \cdot)$ and $(S_1, +, \circ)$ respectively, as in Theorem 1. We shall find a relationship between S and S_1 in the assumption that we are given an isomorphism $\psi: G \to G_1$.

To this end, let us fix the subgroups X and Y of G, as in the proof of Theorem 1. Thus we can write the possible images of ψ on the elements of X and Y in the following manner:

$$(a,0,0)^{\psi} = (a^{\sigma_1}, a^{\sigma_2}, a^{\sigma_3}) \quad \text{and} \quad (0,a,0)^{\psi} = (a^{\beta_1}, a^{\beta_2}, a^{\beta_3}), \tag{11}$$

where σ_1 , σ_2 , σ_3 , β_1 , β_2 and β_3 are maps from *S* into S_1 and *a* is an arbitrary element of *S*. Since the center of *G* is mapped onto the center of G_1 under the action of ψ , there exists a non-singular linear map $\phi: S \to S_1$ such that

$$(0,0,a)^{\psi} = (0,0,a^{\phi}), \tag{12}$$

for all $a \in S$. From this we obtain the image of any element of G as follows:

$$(a,b,c)^{\psi} = [(a,0,0) * (0,b,0) * (0,0,c)]^{\psi}$$

= $(a^{\sigma_1}, a^{\sigma_2}, a^{\sigma_3}) * (b^{\beta_1}, b^{\beta_2}, b^{\beta_3}) * (0,0,c^{\phi})$
= $(a^{\sigma_1} + b^{\beta_1}, a^{\sigma_2} + b^{\beta_2}, a^{\sigma_3} + b^{\beta_3} + c^{\phi} + a^{\sigma_2} \circ b^{\beta_1}).$ (13)

By the homomorphic properties of ψ we obtain the following identities:

- (i) $(a+b)^{\sigma_1} = a^{\sigma_1} + b^{\sigma_1}$, (ii) $(a+b)^{\sigma_2} = a^{\sigma_2} + b^{\sigma_2}$,
- (iii) $(a+b)^{\beta_1} = a^{\beta_1} + b^{\beta_1}$,

360

(iv) $(a+b)^{\beta_2} = a^{\beta_2} + b^{\beta_2},$ (v) $a^{\sigma_2} \circ b^{\sigma_1} = b^{\sigma_2} \circ a^{\sigma_1},$ (vi) $a^{\beta_2} \circ b^{\beta_1} = b^{\beta_2} \circ a^{\beta_1},$ (vii) $(a+b)^{\sigma_3} = a^{\sigma_3} + b^{\sigma_3} + b^{\sigma_2} \circ a^{\sigma_1},$ (viii) $(a+b)^{\beta_3} = a^{\beta_3} + b^{\beta_3} + b^{\beta_2} \circ a^{\beta_1},$ (ix) $(b \cdot a)^{\phi} = b^{\beta_2} \circ a^{\sigma_1} - a^{\sigma_2} \circ b^{\beta_1}.$

The above identities give us a lot of information. The first four of them say that σ_1 , σ_2 , β_1 and β_2 are linear maps. In fact, $\sigma_1, \sigma_2, \beta_1, \beta_2$ are non-singular or the zero map. To see this we assume for instance that σ_1 vanishes for some $x \neq 0$ of *S*. By identity (v) we would have $b^{\sigma_2} \circ x^{\sigma_1} = x^{\sigma_2} \circ b^{\sigma_1} = 0$ for all $b \in S$, thus implying that $x^{\sigma_2} = 0$ or $b^{\sigma_1} = 0$ for all $b \in S$. However, since ψ is an isomorphism,

$$1 = (X \cap Z(G))^{\psi} = X^{\psi} \cap Z(G_1)$$
(14)

and hence we cannot have $x^{\sigma_2} = 0$. Therefore, in the present situation, σ_1 is the zero map and σ_2 is non-singular. The same is true for β_1 and β_2 .

On the other hand, suppose there exist maps $\phi, \sigma_1, \sigma_2, \sigma_3, \beta_1, \beta_2, \beta_3$ from S to S_1 satisfying identities (i)–(ix), where ϕ is linear and non-singular and $\sigma_1, \sigma_2, \beta_1$ and β_2 are null or non-singular. If we define ψ by (13), then we see that ψ is a homomorphism from G to G_1 . Moreover, ψ is injective. In effect, let

$$(a,b,c)^{\psi} = (a^{\sigma_1} + b^{\beta_1}, a^{\sigma_2} + b^{\beta_2}, a^{\sigma_3} + b^{\beta_3} + c^{\phi} + a^{\sigma_2} \circ b^{\beta_1}) = (0,0,0).$$
(15)

Then $a^{\sigma_1} = -b^{\beta_1}$ and $a^{\sigma_2} = -b^{\beta_2}$, which by substitution in (15) imply that $(0, 0, b \cdot a)^{\psi} = (0, 0, (b \cdot a)^{\phi}) = (0, 0, 0)$. Since by hypothesis ϕ is non-singular, we get $b \cdot a = 0$ and thus a = 0 or b = 0; consequently, a = b = 0 by (15), which in turn forces c = 0, too. Therefore, ψ is an isomorphism.

We resume the above discussion in the

Theorem 4. A necessary and sufficient condition for the existence of an isomorphism ψ between the groups G and G₁ constructed from the pre-semifields S and S₁, respectively, is that there exist maps ϕ , σ_1 , σ_2 , σ_3 , β_1 , β_2 , β_3 from S to S₁ satisfying the identities (i)–(ix), where ϕ is linear and non-singular and σ_1 , σ_2 , β_1 and β_2 are null or non-singular, such that the image of any element of G by ψ is given by (13).

Proof of Proposition A. Clearly, if two semifields $(S, +, \cdot)$ and $(S_1, +, \circ)$ are isotopic then the groups G and G_1 constructed from them are isomorphic, since we can choose maps $\phi, \sigma_1, \sigma_2, \sigma_3, \beta_1, \beta_2, \beta_3$ from S to S_1 in such a way that $(\beta_2, \sigma_1, \phi)$ is an isotopy from S to S_1 and σ_2 , σ_3 , β_1 and β_3 are all zero. \Box

Remark 5. By the above analysis we see that an isomorphism between the groups G and G_1 can be found even if the corresponding pre-semifields $(S, +, \cdot)$ and $(S_1, +, \circ)$ are *anti-isotopic*, i.e., if there exists a triple of non-singular linear maps (A, B, C) such that $(x \cdot y)C = (yA) \circ (xB)$. This observation shows that the converse of Proposition A is not true in general.

Before embarking in the proof of Proposition B we quote the following lemma which is a consequence of the well-known theorem of Albert [1], that two finite semifields coordenatize isomorphic planes if and only if they are isotopic (see also [3, Theorem 8.11]).

Lemma 6. A proper semifield cannot be isotopic to a field.

Proof of Proposition B. Let *G* be a group constructed from a proper semifield $(S, +, \circ)$ and let the group G_1 be constructed from a field $(S_1, +, \cdot)$. Suppose, on the contrary, that *G* and G_1 are isomorphic and consider the maps ϕ , σ_1 , σ_2 , σ_3 , β_1 , β_2 and β_3 , as in Theorem 4. In particular, we have the following possibilities for identity (ix):

1. $(b \circ a)^{\phi} = b^{\beta_2} \cdot a^{\sigma_1} - a^{\sigma_2} \cdot b^{\beta_1},$ 2. $(b \circ a)^{\phi} = b^{\beta_2} \cdot a^{\sigma_1},$ 3. $(b \circ a)^{\phi} = -a^{\sigma_2} \cdot b^{\beta_1} = -b^{\beta_1} \cdot a^{\sigma_2}.$

By Lemma 6, cases (b) and (c) are not possible. So we need to consider case (a) only. By the properties of ϕ , σ_1 , σ_2 , β_1 and β_2 , and using identities (v) and (vi), we deduce that there exist $k_1, k_2 \in S_1 \setminus \{0\}$, such that

$$\frac{a^{\sigma_2}}{a^{\sigma_1}} = \frac{b^{\sigma_2}}{b^{\sigma_1}} = k_1 \quad \text{e} \quad \frac{a^{\beta_2}}{a^{\beta_1}} = \frac{b^{\beta_2}}{b^{\beta_1}} = k_2, \quad \text{for all } a, b \in S \setminus \{0\}.$$
(16)

Hence,

$$(b \circ a)^{\phi} = b^{\beta_2} \cdot a^{\sigma_1} - a^{\sigma_2} \cdot b^{\beta_1}$$

= $(k_2 \cdot b^{\beta_1}) \cdot a^{\sigma_1} - (k_1 \cdot a^{\sigma_1}) \cdot b^{\beta_1}$
= $k_2 \cdot (b^{\beta_1} \cdot a^{\sigma_1}) - k_1 \cdot (b^{\beta_1} \cdot a^{\sigma_1})$
= $[(k_2 - k_1) \cdot b^{\beta_1}] \cdot a^{\sigma_1}.$

But this also contradicts Lemma 6, proving our result. \Box

References

- A.A. Albert, Finite division algebras and finite planes, Proceedings of the Symposium in Applied Mathematics, Vol. 10, American Mathematical Society, Providence, RI, 1960, pp. 53–70.
- [2] M. Cordero, G.P. Wene, A survey of finite semifields, Discrete Math. 208/209 (1999) 125-137.
- [3] D.R. Hughes, F.C. Piper, Projective Planes, Springer, New York, 1982.
- [4] D.E. Knuth, Finite semifields and projective planes, J. Algebra 2 (1965) 182-217.
- [5] V.D. Mazurov, E.I. Khukhro, Unsolved Problems in Group Theory—The Kourovka Notebook, Institute of Mathematics, SO RAN, Novosibirski, Russia, 1995.
- [6] D.J.S. Robinson, A Course in the Theory of Groups, Springer, New York, 1982.
- [7] J.S. Rocha, Hipercubos não-singulares e aplicações ao estudo de semicorpos finitos, Master's Dissertation, University of Brasília, Brasília-DF, Brazil, 2001 (in Portuguese).