Note

A note on finite semifields and certain p-groups of class 2

N.R. Rocco ${ }^{*, 1}$, J.S. Rocha ${ }^{2}$
Department of Mathematics, University of Brasilia, 70.910-900 Brasilia, DF, Brazil

Received 6 March 2002; received in revised form 8 April 2003; accepted 28 April 2003

Abstract

In this paper the authors discuss a relationship between finite semifields of characteristic p and certain finite p-groups of nilpotence class 2 . (c) 2003 Elsevier B.V. All rights reserved.

MSC: primary: 17A35; 12K10; 20B25; secondary: 51A35
Keywords: Finite semifields; Isotopy; Finite p-groups; Projective planes

1. Introduction

A finite semifield is a finite algebraic system S containing at least two elements 0 and $1 ; S$ is endowed with two binary operations, addition and multiplication, written in the usual notation, and satisfying the following axioms:

A1 $(S,+)$ is a group with identity 0 .
A2 If a and b are elements of S and $a b=0$ then $a=0$ or $b=0$.
A3 If a, b and c are any elements of S then $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$.
A4 The element 1 satisfies the relationship $a 1=1 a=a$, for all a in S.
In this note the term semifield will mean finite semifield. The above axioms imply that $(S,+)$ is an abelian group and that, for every non-zero a and every b in S, the equations $a x=b$ and $y a=b$ are uniquely solvable for x and y. The additive group

[^0]$(S,+)$ is actually an elementary abelian p-group for some prime p. This prime p is called the characteristic of the semifield S. It results that S has a vector space structure over the prime field $F=G F(p)$ and, consequently, S has p^{n} elements, where n is the dimension of S over F (see [4] for details).

A semifield is much like a field, except that the underlying multiplicative structure is required to be merely a loop instead of a group. The term semifield seems to be coined by Knuth [4]. Every finite field is an associative semifield; the term proper semifield will mean a semifield in which the multiplication is not associative. In the literature, semifields are also called division rings and division algebras; in fact some authors do not require that a division ring has a unity element (see also [2,3]).

Following the terminology in [4], we use the term pre-semifield to designate a system S satisfying axioms A1, A2 and A3 but not necessarily axiom A4 of a semifield, i.e., a pre-semifield need not have a multiplicative identity.

Besides their intrinsic algebraic interest, proper semifields are also useful in finite geometries since they coordenatize non-Desarguesian projective planes.

If π is a projective plane coordenatized by a semifield S of order p^{n}, then the translations and generalized shears of π constitute a p-subgroup \mathscr{H}, of order $p^{3 n}$, of the collineation group of π. This subgroup \mathscr{H} has nilpotence class 2 and contains subgroups A and B of orders p^{n}, with the property that no non-trivial elements $a \in A$ and $b \in B$ commute (the reader is referred to [4, Theorem 3.4.4] and for instance [3, Chapters 4-8] for further details). Thus, \mathscr{H} is a particular solution of the following generalization of Problem 10.1 of the Kourovka notebook [5]:
($\mathscr{P})$ Let p be a prime number. Describe all groups of order $p^{3 n}$ of nilpotence class 2 containing subgroups X and Y such that $|X|=|Y|=p^{n}$ and no non-trivial elements $x \in X$ and $y \in Y$ commute.

One of our purpose in this note is to discuss the possible solutions to problem (\mathscr{P}). A main result may be stated as the

Theorem. Let $(S,+, \cdot)$ be a pre-semifield and G the set of all triples (a, b, c) of elements of S with an operation $*$ defined by

$$
\begin{equation*}
(a, b, c) *(d, e, f):=(a+d, b+e, c+f+b \cdot d) \tag{1}
\end{equation*}
$$

Then $(G, *)$ is a group which is a solution to ($\mathscr{P})$. Conversely, if a group G is a solution to ($\mathscr{P})$ then there exists a pre-semifield S such that G can be described as above.

It is natural to ask what happens with pre-semifields $\left(S_{1},+, \cdot\right)$ and $\left(S_{2},+, \circ\right)$ corresponding to isomorphic groups G_{1} and G_{2}, as in the Theorem above. To answer this question it is convenient to recall the concept of isotopy. Given pre-semifields ($S_{1},+, \cdot$) and ($S_{2},+, \circ$), an isotopy from S_{2} to S_{1} is any triple of non-singular linear maps (A, B, C) from S_{2} to S_{1} such that $(x \circ y) C=(x A) \cdot(y B)$, for all $x, y \in S_{2}$. In this case we say that S_{1} and S_{2} are isotopic.

A discussion concerning the above question is in the final part of this note, where we find a necessary and sufficient condition in order that an isomorphism between the considered groups produces an isotopy between the corresponding pre-semifields (Theorem 4). Then we prove the

Proposition A. If S_{1} and S_{2} are isotopic pre-semifields corresponding to the groups G_{1} and G_{2} respectively, then G_{1} and G_{2} are isomorphic.

The converse of Proposition A is not true in general. However we can assert, in particular, the

Proposition B. Let G be a group corresponding to a proper semifield and let the group G_{1} correspond to a field. Then G and G_{1} cannot be isomorphic.

This paper extends part of the master's dissertation [7], written under the supervision of the first author, which was mainly based on Knuth [4]. The authors are grateful to the referees for their helpful comments.

2. The main results

We use the following standard notation (see, for instance, [6]). For elements x, y, z in a group G, the conjugate of x by y is $x^{y}=y^{-1} x y$; the commutator of x and y is $[x, y]=x^{-1} x^{y}$. The following commutator identities may be useful:

$$
\begin{equation*}
[x y, z]=[x, z]^{y}[y, z], \quad[x, y z]=[x, z][x, y]^{z} . \tag{2}
\end{equation*}
$$

If X and Y are two subsets of G, then the subgroup of G generated by the union $X \cup Y$ is denoted by $\langle X, Y\rangle$ and the commutator of X and Y is the subgroup $[X, Y]$ of G, generated by all commutators $[x, y]$ with $x \in X$ and $y \in Y$. In particular, the derived subgroup of G is $G^{\prime}=[G, G]$. The normal closure of X in G is the subgroup $\langle X\rangle^{G}$, generated by all conjugates x^{g} with $x \in X$ and $g \in G$; the order of G is written $|G|$. We say that G has nilpotence class 2 (class 2 for short) if G is non-abelian and $\left[G^{\prime}, G\right]=\{1\}$, i.e., the derived subgroup G^{\prime} is contained in the center $Z(G)$ of G. Consequently, in a group of class 2 the commutator identities (2) become bilinearity relations:

$$
\begin{equation*}
[x y, z]=[x, z][y, z] \quad \text { and } \quad[x, y z]=[x, y][x, z] . \tag{3}
\end{equation*}
$$

It is worth mentioning that if an arbitrary group H is generated by two subgroups X and Y, then the commutator $[X, Y]$ is a normal subgroup of H.

On looking over those relations holding in the subgroup \mathscr{H} generated by all translations and generalized shears of a projective plane coordenatized by a semifield (see [4, Section 3.4]) we observe that such subgroup provide us with a particular solution to (\mathscr{P}) (as stated in the Introduction). We rephrase this first part of our Theorem as

Theorem 1. Let $(S,+, \cdot)$ be a pre-semifield and G the set of all triples (a, b, c), where $a, b, c \in S$, with operation $*$ given by (1). Then $(G, *)$ is a group solution to (\mathscr{P}).

Proof. Clearly $(G, *)$ is a group; the element $(0,0,0)$ is the identity of G and, for any elements $a, b \in S \backslash\{0\}$, we have

$$
[(a, 0,0),(0, b, 0)]=(0,0,-b \cdot a) \neq(0,0,0)
$$

and

$$
[(0, b, 0),(a, 0,0)]=(0,0, b \cdot a) \neq(0,0,0)
$$

The center of G consists of all elements of the form $(0,0, c)$, with $c \in S$. This can be verified by the following equivalences:

$$
\begin{aligned}
& (a, b, c) *(d, e, f)=(d, e, f) *(a, b, c), \quad \forall a, b, c \in S \\
& \quad \Leftrightarrow(a+d, b+e, c+f+b \cdot d)=(d+a, e+b, f+c+e \cdot a), \quad \forall a, b, c \in S \\
& \quad \Leftrightarrow b \cdot d=e \cdot a, \quad \forall a, b \in S \\
& \quad \Leftrightarrow d=0 \text { and } e=0
\end{aligned}
$$

In addition, $(a, 0,0) *(0, b, 0) *(0,0, c)=(a, b, 0) *(0,0, c)=(a, b, c)$. Thus, on setting $X:=\{(a, 0,0) \mid a \in S\}$ and $Y:=\{(0, b, 0) \mid b \in S\}$, we see that X and Y are subgroups of G such that $G=\langle X, Y\rangle, Z(G)=G^{\prime}=[X, Y]$, and no non-trivial elements $x \in X$ and $y \in Y$ commute.

As for the converse we state the
Theorem 2. Let the group G be a solution to ($\mathscr{P})$. Then there exists a pre-semifield S such that G can be written as the set of all triples (a, b, c), with a, b and c in S, and the group operation is realized as the operation $*$ given by (1).

Proof. We refer to the statement of (\mathscr{P}) as in the Introduction, and let H denote the subgroup of G generated by X and Y, which satisfy the following non-commutativity relation:

$$
\begin{equation*}
\forall x \in X \backslash\{1\}, \quad \forall y \in Y \backslash\{1\}, \quad[x, y] \neq 1 \tag{4}
\end{equation*}
$$

By the normality of $[X, Y]$ in H we have $\langle X\rangle^{H}=X \cdot[X, Y]$ and $\langle Y\rangle^{H}=Y \cdot[X, Y]$. Consequently,

$$
\begin{equation*}
H=X Y[X, Y]=Y\langle X\rangle^{H} \tag{5}
\end{equation*}
$$

It follows straightforward from (4) that

$$
\begin{equation*}
X \cap Y=\{1\} \tag{6}
\end{equation*}
$$

and, as $[G, G] \leqslant Z(G)$, we obtain $[G, G] \cap X=\{1\}=[G, G] \cap Y$. In particular,

$$
\begin{equation*}
[X, Y] \cap X=\{1\}=[X, Y] \cap Y \tag{7}
\end{equation*}
$$

and $[X, X]=[X, X] \cap X=\{1\}=[Y, Y] \cap Y=[Y, Y]$. Therefore, X and Y are abelian groups. We claim that

$$
\begin{equation*}
Y \cap\langle X\rangle^{H}=\{1\}=X \cap\langle Y\rangle^{H} . \tag{8}
\end{equation*}
$$

Indeed, if $y \in Y \cap\langle X\rangle^{H}(=Y \cap X[X, Y])$ then $y=x\left[x_{1}, y_{1}\right] \cdots\left[x_{k}, y_{k}\right]$ for some $k \in \mathbb{N}$, $x_{1}, \ldots, x_{k} \in X$ and $y_{1}, \ldots, y_{k} \in Y$, where by (6) and (7) $x \neq 1$ and $\prod_{i=1}^{k}\left[x_{i}, y_{i}\right] \neq 1$. Hence, by using (2) and (3),

$$
\begin{aligned}
1=[y, y] & =\left[x\left[x_{1}, y_{1}\right] \cdots\left[x_{k}, y_{k}\right], y\right] \\
& =[x, y]^{\left[x_{1}, y_{1}\right] \cdots\left[x_{k}, y_{k}\right]}\left[\left[x_{1}, y_{1}\right] \cdots\left[x_{k}, y_{k}\right], y\right] \\
& =[x, y],
\end{aligned}
$$

which contradicts (4). This proves the first half of our claim (8). The other part follows by symmetry. Now let $x \neq 1$ be any fixed element of X and $\varphi: Y \rightarrow[x, Y], y \mapsto[x, y]$. Then φ is injective. In effect, for $y_{1}, y_{2} \in Y$, the equality $\left[x, y_{1}\right]=\left[x, y_{2}\right]$ is equivalent to $\left[x, y_{1} y_{2}^{-1}\right]=1$, since G has class 2. Once again (4) says that $y_{1}=y_{2}$. Thus $|[X, Y]| \geqslant p^{n}$ and, by (5)-(8), it follows that

$$
p^{3 n} \geqslant|H|=|X| \cdot|Y| \cdot|[X, Y]| \geqslant p^{3 n} .
$$

Therefore, $H=G$ and $|[X, Y]|=p^{n}$. Furthermore, the above analysis shows that $\langle Y\rangle^{G}=$ $Y[X, Y]$ is a direct product of the subgroups Y and $[X, Y]$ and $G=X \cdot(Y[X, Y])$, a semidirect product of X and $\langle Y\rangle^{G}$. Hence, any element of G has a unique expression as a product $x y z$, where $x \in X, y \in Y$ and $z \in[X, Y]$, and the product of any two such elements is performed as

$$
\begin{equation*}
(x y z)(a b c)=x(y a) b z c=x(a y[y, a]) b z c=(x a)(y b)([y, a] z c) . \tag{9}
\end{equation*}
$$

In addition, we see that $Z(G)=[X, Y]$. In fact, suppose that for any $x \in X, y \in Y$ and $z \in[X, Y]$, we have $(x y z)(a b c)=(a b c)(x y z)$, for all $a b c \in G$ with $a \in X, b \in Y$ and $c \in[X, Y]$. Then by (9) and (3), and the fact that $[X, Y] \subseteq G^{\prime} \subseteq Z(G)$, we obtain $[x, a][y, a][x, b][y, b]=1$, for all $a \in X, b \in Y$ or, since X and Y are abelian groups, $[y, a][x, b]=1$, for all $a \in X, b \in Y$. Consequently, $a=1$ and $b=1$, by (4).

Now by Cauchy's theorem and relations (3) we have $\left[x^{p}, y\right]=([x, y])^{p}=\left[x, y^{p}\right]=1$, for all $x \in X$ and $y \in G$. This together with (4) says that X, Y and $Z(G)=[X, Y]$ have exponent p. Thus X, Y and $Z(G)$ are elementary abelian p-groups. As these three groups have the same order p^{n}, they are all isomorphic:

$$
X \cong Y \cong Z(G) \cong \underbrace{\mathbb{Z}_{p} \oplus \cdots \oplus \mathbb{Z}_{p}}_{n \text { factors }}
$$

Let S denote the additive group

$$
\underbrace{\mathbb{Z}_{p} \oplus \cdots \oplus \mathbb{Z}_{p}}_{n \text { factors }}
$$

Then there exist isomorphisms τ, σ and θ, such that

$$
X=S^{\tau}, \quad Y=S^{\sigma} \quad \text { and } \quad Z(G)=S^{\theta} .
$$

In addition, as $[Y, X]=Z(G)$, it follows that $\left[S^{\sigma}, S^{\tau}\right]=S^{\theta}$. Thus by using additive notation we see that $(a+b)^{\tau}=a^{\tau} b^{\tau},(a+b)^{\sigma}=a^{\sigma} b^{\sigma}$ and $(a+b)^{\theta}=a^{\theta} b^{\theta}$, for all $a, b \in S$. Moreover, we can define a multiplication \star on S by the rule

$$
\begin{equation*}
(a \star b)^{\theta}=\left[a^{\sigma}, b^{\tau}\right] \tag{10}
\end{equation*}
$$

The bilinearity of commutators provided by the nilpotence class 2 of G is now more evident in additive notation:

$$
(a+c) \star b=a \star b+c \star b \text { and } b \star(a+c)=b \star a+b \star c, \quad \forall a, b, c \in S,
$$

and the non-commutativity condition (4) implies that $a \star b=0$ if and only if $a=0$ or $b=0$. Consequently, $(S,+, \star)$ is a pre-semifield and on putting $x_{i}=a_{i}^{\tau}, y_{i}=b_{i}^{\sigma}$ and $z_{i}=c_{i}^{\theta}, i=1,2$, we obtain from (9)

$$
\begin{aligned}
\left(x_{1} y_{1} z_{1}\right)\left(x_{2} y_{2} z_{2}\right) & =\left(x_{1} x_{2}\right)\left(y_{1} y_{2}\right)\left(\left[y_{1}, x_{2}\right] z_{1} z_{2}\right) \\
& =\left(a_{1}+a_{2}\right)^{\tau}\left(b_{1}+b_{2}\right)^{\sigma}\left(c_{1}+c_{2}+b_{1} * a_{2}\right)^{\theta} .
\end{aligned}
$$

The uniqueness of expression of the elements of G and the fact that σ, τ and θ are isomorphisms say that the above is not but (1). This finishes the proof.

The following result may be useful in order to restrict our attention to semifields only.

Lemma 3 (Knuth [4, Theorem 4.5.4]). Let ($S,+, \circ$) be a pre-semifield and let $u \in S \backslash\{0\}$. If we define a new multiplication . by the rule $(a \circ u) \cdot(u \circ b)=a \circ b$, then we obtain a semifield $(S,+, \cdot)$ isotopic to $(S,+, \circ)$ with unit $u \circ u$.

Now, let G and G_{1} be groups constructed from pre-semifields $(S,+, \cdot)$ and $\left(S_{1},+, \circ\right)$ respectively, as in Theorem 1. We shall find a relationship between S and S_{1} in the assumption that we are given an isomorphism $\psi: G \rightarrow G_{1}$.

To this end, let us fix the subgroups X and Y of G, as in the proof of Theorem 1. Thus we can write the possible images of ψ on the elements of X and Y in the following manner:

$$
\begin{equation*}
(a, 0,0)^{\psi}=\left(a^{\sigma_{1}}, a^{\sigma_{2}}, a^{\sigma_{3}}\right) \quad \text { and } \quad(0, a, 0)^{\psi}=\left(a^{\beta_{1}}, a^{\beta_{2}}, a^{\beta_{3}}\right), \tag{11}
\end{equation*}
$$

where $\sigma_{1}, \sigma_{2}, \sigma_{3}, \beta_{1}, \beta_{2}$ and β_{3} are maps from S into S_{1} and a is an arbitrary element of S. Since the center of G is mapped onto the center of G_{1} under the action of ψ, there exists a non-singular linear map $\phi: S \rightarrow S_{1}$ such that

$$
\begin{equation*}
(0,0, a)^{\psi}=\left(0,0, a^{\phi}\right), \tag{12}
\end{equation*}
$$

for all $a \in S$. From this we obtain the image of any element of G as follows:

$$
\begin{align*}
(a, b, c)^{\psi} & =[(a, 0,0) *(0, b, 0) *(0,0, c)]^{\psi} \\
& =\left(a^{\sigma_{1}}, a^{\sigma_{2}}, a^{\sigma_{3}}\right) *\left(b^{\beta_{1}}, b^{\beta_{2}}, b^{\beta_{3}}\right) *\left(0,0, c^{\phi}\right) \\
& =\left(a^{\sigma_{1}}+b^{\beta_{1}}, a^{\sigma_{2}}+b^{\beta_{2}}, a^{\sigma_{3}}+b^{\beta_{3}}+c^{\phi}+a^{\sigma_{2}} \circ b^{\beta_{1}}\right) . \tag{13}
\end{align*}
$$

By the homomorphic properties of ψ we obtain the following identities:
(i) $(a+b)^{\sigma_{1}}=a^{\sigma_{1}}+b^{\sigma_{1}}$,
(ii) $(a+b)^{\sigma_{2}}=a^{\sigma_{2}}+b^{\sigma_{2}}$,
(iii) $(a+b)^{\beta_{1}}=a^{\beta_{1}}+b^{\beta_{1}}$,
(iv) $(a+b)^{\beta_{2}}=a^{\beta_{2}}+b^{\beta_{2}}$,
(v) $a^{\sigma_{2}} \circ b^{\sigma_{1}}=b^{\sigma_{2}} \circ a^{\sigma_{1}}$,
(vi) $a^{\beta_{2}} \circ b^{\beta_{1}}=b^{\beta_{2}} \circ a^{\beta_{1}}$,
(vii) $(a+b)^{\sigma_{3}}=a^{\sigma_{3}}+b^{\sigma_{3}}+b^{\sigma_{2}} \circ a^{\sigma_{1}}$,
(viii) $(a+b)^{\beta_{3}}=a^{\beta_{3}}+b^{\beta_{3}}+b^{\beta_{2}} \circ a^{\beta_{1}}$,
(ix) $(b \cdot a)^{\phi}=b^{\beta_{2}} \circ a^{\sigma_{1}}-a^{\sigma_{2}} \circ b^{\beta_{1}}$.

The above identities give us a lot of information. The first four of them say that $\sigma_{1}, \sigma_{2}, \beta_{1}$ and β_{2} are linear maps. In fact, $\sigma_{1}, \sigma_{2}, \beta_{1}, \beta_{2}$ are non-singular or the zero map. To see this we assume for instance that σ_{1} vanishes for some $x \neq 0$ of S. By identity (v) we would have $b^{\sigma_{2}} \circ x^{\sigma_{1}}=x^{\sigma_{2}} \circ b^{\sigma_{1}}=0$ for all $b \in S$, thus implying that $x^{\sigma_{2}}=0$ or $b^{\sigma_{1}}=0$ for all $b \in S$. However, since ψ is an isomorphism,

$$
\begin{equation*}
1=(X \cap Z(G))^{\psi}=X^{\psi} \cap Z\left(G_{1}\right) \tag{14}
\end{equation*}
$$

and hence we cannot have $x^{\sigma_{2}}=0$. Therefore, in the present situation, σ_{1} is the zero map and σ_{2} is non-singular. The same is true for β_{1} and β_{2}.

On the other hand, suppose there exist maps $\phi, \sigma_{1}, \sigma_{2}, \sigma_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ from S to S_{1} satisfying identities (i)-(ix), where ϕ is linear and non-singular and $\sigma_{1}, \sigma_{2}, \beta_{1}$ and β_{2} are null or non-singular. If we define ψ by (13), then we see that ψ is a homomorphism from G to G_{1}. Moreover, ψ is injective. In effect, let

$$
\begin{equation*}
(a, b, c)^{\psi}=\left(a^{\sigma_{1}}+b^{\beta_{1}}, a^{\sigma_{2}}+b^{\beta_{2}}, a^{\sigma_{3}}+b^{\beta_{3}}+c^{\phi}+a^{\sigma_{2}} \circ b^{\beta_{1}}\right)=(0,0,0) \tag{15}
\end{equation*}
$$

Then $a^{\sigma_{1}}=-b^{\beta_{1}}$ and $a^{\sigma_{2}}=-b^{\beta_{2}}$, which by substitution in (15) imply that $(0,0, b \cdot a)^{\psi}=$ $\left(0,0,(b \cdot a)^{\phi}\right)=(0,0,0)$. Since by hypothesis ϕ is non-singular, we get $b \cdot a=0$ and thus $a=0$ or $b=0$; consequently, $a=b=0$ by (15), which in turn forces $c=0$, too. Therefore, ψ is an isomorphism.

We resume the above discussion in the
Theorem 4. A necessary and sufficient condition for the existence of an isomorphism ψ between the groups G and G_{1} constructed from the pre-semifields S and S_{1}, respectively, is that there exist maps $\phi, \sigma_{1}, \sigma_{2}, \sigma_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ from S to S_{1} satisfying the identities (i)-(ix), where ϕ is linear and non-singular and $\sigma_{1}, \sigma_{2}, \beta_{1}$ and β_{2} are null or non-singular, such that the image of any element of G by ψ is given by (13).

Proof of Proposition A. Clearly, if two semifields $(S,+, \cdot)$ and $\left(S_{1},+, \circ\right)$ are isotopic then the groups G and G_{1} constructed from them are isomorphic, since we can choose maps $\phi, \sigma_{1}, \sigma_{2}, \sigma_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ from S to S_{1} in such a way that ($\beta_{2}, \sigma_{1}, \phi$) is an isotopy from S to S_{1} and $\sigma_{2}, \sigma_{3}, \beta_{1}$ and β_{3} are all zero.

Remark 5. By the above analysis we see that an isomorphism between the groups G and G_{1} can be found even if the corresponding pre-semifields $(S,+, \cdot)$ and $\left(S_{1},+, \circ\right)$ are anti-isotopic, i.e., if there exists a triple of non-singular linear maps (A, B, C) such that $(x \cdot y) C=(y A) \circ(x B)$. This observation shows that the converse of Proposition A is not true in general.

Before embarking in the proof of Proposition B we quote the following lemma which is a consequence of the well-known theorem of Albert [1], that two finite semifields coordenatize isomorphic planes if and only if they are isotopic (see also [3, Theorem 8.11]).

Lemma 6. A proper semifield cannot be isotopic to a field.
Proof of Proposition B. Let G be a group constructed from a proper semifield ($S,+, \circ$) and let the group G_{1} be constructed from a field ($\left.S_{1},+, \cdot\right)$. Suppose, on the contrary, that G and G_{1} are isomorphic and consider the maps $\phi, \sigma_{1}, \sigma_{2}, \sigma_{3}, \beta_{1}, \beta_{2}$ and β_{3}, as in Theorem 4. In particular, we have the following possibilities for identity (ix):

1. $(b \circ a)^{\phi}=b^{\beta_{2}} \cdot a^{\sigma_{1}}-a^{\sigma_{2}} \cdot b^{\beta_{1}}$,
2. $(b \circ a)^{\phi}=b^{\beta_{2}} \cdot a^{\sigma_{1}}$,
3. $(b \circ a)^{\phi}=-a^{\sigma_{2}} \cdot b^{\beta_{1}}=-b^{\beta_{1}} \cdot a^{\sigma_{2}}$.

By Lemma 6, cases (b) and (c) are not possible. So we need to consider case (a) only. By the properties of $\phi, \sigma_{1}, \sigma_{2}, \beta_{1}$ and β_{2}, and using identities (v) and (vi), we deduce that there exist $k_{1}, k_{2} \in S_{1} \backslash\{0\}$, such that

$$
\begin{equation*}
\frac{a^{\sigma_{2}}}{a^{\sigma_{1}}}=\frac{b^{\sigma_{2}}}{b^{\sigma_{1}}}=k_{1} \quad \text { e } \quad \frac{a^{\beta_{2}}}{a^{\beta_{1}}}=\frac{b^{\beta_{2}}}{b^{\beta_{1}}}=k_{2}, \quad \text { for all } a, b \in S \backslash\{0\} . \tag{16}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
(b \circ a)^{\phi} & =b^{\beta_{2}} \cdot a^{\sigma_{1}}-a^{\sigma_{2}} \cdot b^{\beta_{1}} \\
& =\left(k_{2} \cdot b^{\beta_{1}}\right) \cdot a^{\sigma_{1}}-\left(k_{1} \cdot a^{\sigma_{1}}\right) \cdot b^{\beta_{1}} \\
& =k_{2} \cdot\left(b^{\beta_{1}} \cdot a^{\sigma_{1}}\right)-k_{1} \cdot\left(b^{\beta_{1}} \cdot a^{\sigma_{1}}\right) \\
& =\left[\left(k_{2}-k_{1}\right) \cdot b^{\beta_{1}}\right] \cdot a^{\sigma_{1}} .
\end{aligned}
$$

But this also contradicts Lemma 6, proving our result.

References

[1] A.A. Albert, Finite division algebras and finite planes, Proceedings of the Symposium in Applied Mathematics, Vol. 10, American Mathematical Society, Providence, RI, 1960, pp. 53-70.
[2] M. Cordero, G.P. Wene, A survey of finite semifields, Discrete Math. 208/209 (1999) 125-137.
[3] D.R. Hughes, F.C. Piper, Projective Planes, Springer, New York, 1982.
[4] D.E. Knuth, Finite semifields and projective planes, J. Algebra 2 (1965) 182-217.
[5] V.D. Mazurov, E.I. Khukhro, Unsolved Problems in Group Theory-The Kourovka Notebook, Institute of Mathematics, SO RAN, Novosibirski, Russia, 1995.
[6] D.J.S. Robinson, A Course in the Theory of Groups, Springer, New York, 1982.
[7] J.S. Rocha, Hipercubos não-singulares e aplicações ao estudo de semicorpos finitos, Master's Dissertation, University of Brasília, Brasília-DF, Brazil, 2001 (in Portuguese).

[^0]: * Corresponding author.

 E-mail address: norai@unb.br (N.R. Rocco).
 ${ }^{1}$ Partially supported by FAPDF/Brazil.
 ${ }^{2}$ The author acknowledges a master's scholarship from CAPES/Brazil.

