
Formalization of Component Substitutability

Meriem Belguidoum1 and Fabien Dagnat2

Computer Science Department
ENST Bretagne, Technopole Brest-Iroise

Brest, France

Abstract

Component-Based Software Engineering (CBSE) is increasingly used to develop large scale software.
In this context, a complex software is composed of many software components which are developed
independently and which are considered as black boxes. Furthermore, they are assembled and
often dependent from each other. In this setting, component upgrading is a key issue, since it
enables software components to evolve. To support component upgrading, we have to deal with
component dependencies which need to be expressed precisely. In this paper, we consider that
component upgrade requires managing substitutability between the new and the old components.
The substitutability check is based on dependency and context descriptions. It involves maintaining
the availability of previously used services, while making sure that the effect of the new provided
services do not disrupt the system and the context invariants are still preserved. We present here
a formal definition and a verification algorithm for safe component substitutability.

Keywords: Component software, Safety, Substitutability, Upgrading.

1 Introduction

Component based software has gained recognition as the key technology for
building high quality and large software. In this setting, sharing collections
of components has become common practice for component oriented appli-
cations. These components are independently produced and developed by
different providers and reused as black boxes making it necessary to identify
component dependencies to guarantee interoperability.

1 Email: meriem.belguidoum@enst-bretagne.fr
2 Email: fabien.dagnat@enst-bretagne.fr

Electronic Notes in Theoretical Computer Science 215 (2008) 75–92

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.06.022
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82422981?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:meriem.belguidoum@enst-bretagne.fr
mailto:fabien.dagnat@enst-bretagne.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

According to Szyperski’s definition [11], a component is a unit of compo-
sition with contractually specified interfaces and explicit dependencies. An
interface describes the provided and the required services of a component.
Software consists of the assembly of components in an architecture, by bind-
ing a required interface of one component to an offered interface of another
component.

In this context, upgrading a component is difficult because this component
may be used by several software applications. More generally, replacing a
component Cold with a component Cnew in a system S requires that it does
not disrupt S. This property is often described as substitutability [5].

Several techniques exist to ensure substitutability between components,
see for example [12,13]. All these approaches are built upon the substitution
principle of Liskov introduced in [1] in the context of object oriented pro-
gramming. They use the interface type to define a subtyping relation between
components and then authorize Cnew to replace Cold only if Cnew is a subtype
of Cold. Various forms of those types exist, starting with the classical interface
type [10] and enhancing them with behavioral description such as automata
for example [6]. Some related research [12,13] show that the resulting condi-
tion of pure subtyping ensures safety of the replacement but is too restrictive.
Recent work [5] has shown the limits of this approach and proposes a less
restrictive notion of substitutability depending on the context. In this setting,
Cnew may safely replace Cold in certain systems. In fact, all interfaces not used
in the context are ignored when ensuring the subtyping.

To extend our previous work on the formalization of safe component instal-
lation and deinstallation [2], we tried to define contextual substitutability to
build a safe replacement operation following the previously cited approaches.
But it appeared that the resulting rule needs to be enhanced to reach safety.
While in other work the new services provided by Cnew do not have to meet any
requirement, in our setting they may conflict with the context requirements.

Generally, replacing a component Cold by a new one Cnew has an effect on
the context and to maintain safety, we have to check that effect will not break
system invariants. In previously mentioned work, the only effect taken into ac-
count is the services that Cnew provides. Therefore, ensuring substitutability
consist in ensuring compatibility of Cnew provided services with the compo-
nent requirements that were previously using Cold services. This compatibility
can have different contract levels (syntactical, behavioral, synchronisation and
quality of service) as described in [4]. This paper advocate adding the ver-
ification of component upgrading effects (upgrade) on the target system. In
the deployment, it appears that upgrade effect must not disturb the target
system. For this, we propose a substitution principle ensuring that (1) the

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9276

new component still provides all the services used in the context (as usual)
and that (2) new provided services do not conflict with this context (effect
verification). The formalization of this substitutability enables us to provide
a safe and flexible replacement operation for our deployment system.

The paper is organized as follows. Section 2 introduces our dependencies
description and illustrates it with the example of a mail server in Linux GNU.
In Section 3, we present our substitutability approach with a progressive re-
finement of substitutability definitions. Section 5 describes the substitutability
checking algorithm. Section 4 illustrates some substitutability examples. Sec-
tion 6 discusses related work. Finally, Section 7 concludes and discusses future
work.

2 Dependency description

In this section, we present the precise definition of the relation between a re-
quired and a provided service, either of the same component or of two different
components. Such a relation is called a dependency.

POSTFIX

FDS ≥ 1380

¬Sendmail

lib1

amavis AntiVirus

MTA

FETCHMAIL

FDS ≥ 852

lib2

MTA

popclient

PROCMAIL

popclient

lib3

FDS ≥ 248

spam AntiSpam

MDA

THUNDERBIRD

FDS ≥ 1508

lib4

MDA

spell-Dict corrector

MUA

ORGANIZER

MUA

libOrg

manager

MTA MDA MUA AntiVirus AntiSpam corrector manager

Fig. 1. A mail server assembly

Fig . 1 illustrates a simplified architecture of a mail server on a Linux
system. It is composed of five components: POSTFIX, an SMTP server playing
the role of a Mail Transport Agent (MTA), FETCHMAIL that recovers mails from
a distant server like Pop or IMAP using a mail transport protocol, PROCMAIL, a
Mail Deliver Agent (MDA) that manages received mail and enables, for example,
mail to be filtered. THUNDERBIRD, a mail manager for reading and composing
mail called a Mail User Agent (MUA). Finally, ORGANIZER is an inbox organizer,
which allows mailing lists, web pages and users e-mails to be managed. Each

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–92 77

component is represented in Fig. 1 by a rectangle with the required interfaces
(half circles and square brackets on the left side) and the provided interfaces
(black circles on the right side). Requirements in the left hand side of a
component, may be of two kinds: (1) software requirements (i.e., services
provided by other components), for example libraries (half-circles: lib1) or
(2) system requirements expressed by comparison of variables with values
represented by square brackets, for example requiring a certain amount of free
disk space (FDS ≥ 1380Ko).

In this example 3 , the two forms of dependencies, respectively intra-
dependencies and inter-dependencies, are represented respectively by lines
inside components and links between components (like PROCMAIL and
THUNDERBIRD, PROCMAIL provides MDA and THUNDERBIRD requires it). There
are three main kinds of dependencies, either mandatory, optional or negative:

• a mandatory dependency (represented by a solid line) is a firm requirement.
If it is not fulfilled, installation is not possible. For example, POSTFIX needs
a terminal with a specific libraries (lib1), an amount of free disk space
(FDS ≥ 1380ko).

• an optional dependency (represented by a dashed line) specifies that the
component may provide optional services. Such services may not be pro-
vided (if their requirements are not fulfilled) without preventing the instal-
lation. For example, POSTFIX may provide a service for scanning messages
against viruses if the service amavis is available. Otherwise POSTFIX can
be installed and provides the MTA service, but the service AntiV irus is not
provided.

• a negative dependency (expressed by a negation) specifies a conflict forbid-
ding installation. The conflict may be due to a service or a component. For
example, as presented in Fig. 1, POSTFIX cannot be installed if the compo-
nent SENDMAIL (another component providing MTA) is already installed in
the target system.

Intra-dependencies are defined by the producer of the component and used
to perform installation. Inter-dependencies result from installation and are
used to perform deinstallation and replacement. The two notions are briefly
presented below, more details on these concepts are given in [2].

2.1 Intra-dependencies

The intra-dependency description language uses the concepts of dependency
and predicate defined by the following grammar where s represents the name

3 To simplify the figure, only some interesting dependencies are represented.

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9278

Optional dependency (O)

Mandatory dependency (M)

POSTFIX PROCMAIL

THUNDERBIRD.MUA

C4.lib4

THUNDERBIRD

FETCHMAIL

C5.libOrg

ORGANIZER.manager

ORGANIZER

POSTFIX.AntiVirusAMAVIS.amavis PROCMAIL.AntiSpam

SPELL.spell−Dict

FETCHMAIL.popclient
THUNDERBIRD.corrector

C3.lib3C2.lib2

C1.lib1 POSTFIX.MTA

SPAM.spam

PROCMAIL.MDA

Fig. 2. Dependency graph of the mail server of Fig. 1

of a service and c the name of a component:

D ::= P ⇒ s | D • D | D # D | ?D P ::= true | P ∧ P | P ∨ P | R

R ::= [v O val] | ¬ s | ¬ c | c.s | s O ::=> | ≥ | < | ≤ | = | �=

The precise semantics of these operators is described in detail in [2]. In-
tuitively, a dependency may be the conjunction • or the disjunction � of two
dependencies, an optional dependency ? or a simple dependency P ⇒ s spec-
ifying the requirements P of the service s. If these requirements are fulfilled
the service s is available. The requirements are expressed in a first order
predicate language with five conditions (R) expressing a comparison of an
environment variable with a value ([v O val]), a conflict with a service (¬ s),
with a component (¬ c), the requirement of a service provided by a precise
component (c.s) or any component (s). Examples of such predicates appear
in Fig. 1 on the required interfaces represented in the left-hand side of a com-
ponent. For exemple the dependency description of the component POSTFIX

is : ([FDS ≥ 1380] ∧ (sendmail) ∧ lib ⇒ MTA)•?(Amavis ⇒ AV)

2.2 Inter-dependencies

When a component is installed in a system S, each of its requirements is
fulfilled by binding it to any existing component of S satisfying the require-
ment. This binding is what we call an inter-dependency. It is the result of
installation and is required to ensure safe deinstallation and replacement. We
have chosen to represent inter-dependencies by a dependency graph (see [2] for
more details). A node of a dependency graph is an available service s with its

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–92 79

provider (c.s) and an edge is a pair of nodes n1 �−→ n2 meaning that n2 requires
n1. Each edge is labeled (above the arrow) by the kind of dependency, either
mandatory M or optional O. Fig. 2 presents the dependency graph of the mail
server of Fig. 1. We can see that some solid (resp. dashed) lines inside compo-
nents in the Fig. 1 (intra-dependencies) are reflected in Fig. 2 by solid (resp.
dashed) edges. For example, POSTFIX depends on lib1 which is provided by
a component C1, so the used service is C1.lib1. This dependency is a manda-
tory one (solid edge in Fig. 2 C1.lib �−→ POSTFIX.MTA). POSTFIX has also an
optional dependency, it can provide an Anti virus (POSTFIX.AntiV irus) if a
service amavis provided by a component (for example AMAVIS) is available.
This dependency is represented in the graph by a dashed edge. The sys-
tem requirements (like FDS ≥ 1380) and negative dependencies (SENDMAIL)
are not represented in the graph. The inter-dependencies between compo-
nents in Fig. 1 are represented in the graph as mandatory edges between
services, for example the service popclient provided by FETCHMAIL is linked
with service popclient required by PROCMAIL, the corresponding edge in Fig. 2
is FETCHMAIL.popclient �−→ PROCMAIL.MDA.

3 What is substitutability?

In this section, we present and analyze progressively the substitutability prob-
lem, we propose definitions and rules to check the correctness and safety of
substitutability. In general, two forms of compatibility between components
can be defined: vertical compatibility and horizontal compatibility. The verti-
cal compatibility is called substitutability, it expresses the requirements that
allow the replacement of one component by another (Cold by Cnew in Fig. 3).
The horizontal compatibility expresses connexion between a provided service
of a component and a required service of another component (Cold used by
Cclient in Fig. 3). When substituting the component Cold for the component
Cnew, we have to ensure that the component Cclient can use the services pro-
vided by Cnew as it used previously those provided by Cold and the new pro-
vided services do not conflict with Cclient and all other client components.

3.1 Substitutability definitions

Following the current trend, we define two kinds of substitutability, one ad-
dressing substitutability in a particular context and the other independent of
the context. The definitions of strict and contextual substitutability are given
below and are inspired by those of Brada in [5].

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9280

Cold

is Cold compatible with Cclient?

P1

P2

P3
S1

S2

Cclient

P1

P2

S3

P
′
1

P
′
2

S4

P
′
3

S
′
1

S
′
2

Cnew

is Cnew substitutable for Cold?

Fig. 3. Vertical and horizontal compatibility

Definition 3.1 (Strict substitutability)
A component Cold is strictly substitutable for a component Cnew, if the latter
can replace Cold in all contexts.

Definition 3.2 (Contextual substitutability)
A component Cold is substitutable in a context Ctx for a component Cnew if
the latter can replace Cold in the context Ctx.

Contextual substitutability is related to the context which represents the
resources and the architecture of the target system. Ideally, it could be the
union of the dependencies of all components (part of the system). The result-
ing description of the context would be a huge logical term. Its manipulation
when deciding whether to authorize a deployment operation would be difficult
and expensive (in calculation). Thus, we have chosen instead a safe approxi-
mation of the context description. The context definition is presented in [2].
It is summarized as follows:

Definition 3.3 (Context)
The Context is composed of (1) an environment E storing the values of environ-
ment variables (OS, disk space, etc.), (2) a set C of four-tuples (c,Ps,Fs,Fc)
storing for each installed component c its provided services Ps, forbidden ser-
vices Fs and forbidden components Fc

4 and (3) a dependency graph G storing

4 The required services of a component are stored in the dependency graph not in the
component tuple.

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–92 81

the dependencies (the required and the provided services of each component
and the relation between them).

3.2 Component substitutability

To decide whether a component Cnew can substitute a component Cold, it is
necessary to compare what they provide and what they require. Indeed, the
provided (or required) services of Cnew can be the same or different from those
of Cold. We therefore have to study all the possibilities. Fig. 4 depicts the
different possible relations between the old and the new set of provided (resp.
required) services:

• case 1: the set of provided (resp. required) services of Cnew is included in
the set of provided (resp. required) services of Cold;

• case 2: the set of provided (resp. required) services of Cnew and Cold are
equal;

• case 3: the set of provided (resp. required) services of Cold is included in
the set of provided (resp. required) services of Cnew;

• case 4: the two sets are different from each other and can have some services
in common.

new newoldold

newold
new

old

case 1 case 2 case 3 case 4

Fig. 4. Comparison according to the old and the new service sets

There are four cases for provided services combining with four cases for
required services leading to sixteen possibilities. To illustrate these cases,
we suppose that the component Cold provides the services PS1 and PS2 and
requires the services RS1 and RS2. Table 1 represents the different forms
that the component Cnew may have, depending on its provided and required
services. Each cell of the table corresponds to numerous possible components
and is here represented by one possible component for illustrative purposes
only.

In fact, the sixteen possible cases can be refined to table 2 below, containing
eight possibilities combining only three conditions:

• ensure new requirements (NR) of Cnew. For example, in line 1, is RS3

satisfied?

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9282

�
�

�
�

�
�

�
�

�
��

Requires
Provides

more same fewer different

more

RS1

RS2

RS3

PS1

PS2

PS3

RS1

RS2

RS3

PS1

PS2

RS1

RS2

RS3

PS1 RS1

RS2

RS3

PS1

PS4

same

RS1

RS2

RS3

PS1

PS2

PS3

RS1

RS2

PS1

PS2

RS1

RS2

RS3

PS1 RS1

RS2

RS3

PS1

PS4

fewer

RS1

RS2

RS3

PS1

PS2

PS3

RS1

RS2

RS3

PS1

PS2

RS1

RS2

RS3

PS1 RS1

RS2

RS3

PS1

PS4

different

RS1

RS4

PS1

PS2

PS3

RS1

RS4

PS1

PS2

RS1

RS4

PS1 RS1

RS4

PS1

PS4

Table 1
Substitutability possibilities

• ensure no conflicts (NC) between the new services of Cnew and the system.
For example, in column 1, is PS3 in conflict with the system?

• ensure that all previously provided services which are not provided by Cnew

are not necessary for the system (NON). For example, in column 3, is PS2

(previously provided by Cold and not provided by Cnew) necessarily used?

�
�

�
�

�
�

�
�

�
�

��

Requires

Provides
more same fewer different

same / fewer NC NON NC+NON

different / more NR+NC NR NR+NON NR+NC+NON

Table 2
Substitutability conditions

This table shows the different substitutability conditions on the context.
The only cell corresponding to strict substitutability is the empty one. The
condition is then that Cnew requires the same thing or less than Cold and
provides the same services. The seven other cells represent contextual substi-
tutability. Necessary and sufficient conditions (NSC) for strict and contextual
substitutability are defined as follows:

NSC 1 (Strict substitutability) A component Cold is strictly substitutable
for a component Cnew iff they provide the same services and Cnew has the same
or fewer requirements than Cold.

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–92 83

NSC 2 (Contextual substitutability) A component Cold is substitutable
for a component Cnew in a context Ctx iff:

• all the new requirements of Cnew are satisfied in Ctx (NR).

• none of the new provided services is in conflict with Ctx (NC).

• none of the services provided by Cold not provided by Cnew is used necessarily
within Ctx (NON).

Compared to existing substitutability approaches, the condition (NC) is orig-
inal because it enables to take into account various form of component effects
on the context (potential conflicts that can occur due to the new compo-
nent) and maintaining the safety of the system. In an extension of our system
not presented here, we have the specification of non-functional properties. Re-
placing a component by another may have an impact on the system properties
and therefore may be forbidden. An example of a such substitution is further
discussed in Section 6.

3.3 Ensuring substitutability in our context

To ensure substitutability in our system, it is necessary to :

• determine which case is examined,

• evaluate the corresponding conditions among NR, NC and NON.

Using our dependency descriptions presented in section 2 it is easier to
calculate and compare provided services than required ones. In our approach,
we do not consider requirements because the conditions are described in pred-
icate logic and it is rather complex to compare requirements for each provided
service. Therefore, we check substitutability according to provided services
only as follows:

(i) NR and NC: to check the new requirements (NR) and prevent new con-
flicts (NC), we reassess the installability condition of the new component
Cnew. This condition ensures, on the one hand, that all the component
requirements are fulfilled (NR) and, on the other hand, that the pro-
vided services are not in conflict with context (NC). Therefore, the NR
and NC conditions correspond to ensuring installability as presented in
[2]: (Ctx
 Cnew : Dnew).

(ii) NON: this condition is based on the calculation of provided services from
the right-hand member of the dependencies. So, for each provided service
of Cold which is not provided by Cnew we have to check that it has no
mandatory dependency (i.e., it is a leaf in the dependency graph) or it
is only used (directly or indirectly) by optional services (in the graph,

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9284

all paths coming from it must be optional, see definition 3.4). In fact, it
corresponds to the deinstallation requirements of [2].

Definition 3.4 (Mandatory dependencies (MD)) The set of mandatory
dependencies (MD) of a service s provided by a component c (c.s) in a de-
pendency graph (G) is the set of nodes which use necessarily this service. It
is defined as :
MD(G, c.s) =

⋃
{{c′.s′} ∪ MD(G, c′.s′) | c.s

M
�−→ c′.s′ ∈ G}

The condition NON can be expressed as follows:⋃
{(MD(G, Cold.s) | s ∈ (Cold.Ps \ Cnew.Ps)} = ∅

We summarize the different substitution conditions for the four cases il-
lustrated in Fig. 4 and table 2 as follows:

• providing more (case 3): Cnew is installable (NR+NC);

• providing the same (case 2): Cnew is installable (NR);

• providing less (case 1): Cnew is installable (NR) and services from Cold.Ps \
Cnew.Ps are not used necessarily (NON);

• different (case 4): Cnew is installable (NR+NC) and services from Cold.Ps \
Cnew.Ps not used necessarily (NON).

4 How substitutability is checked?

The substitutability handled in our system is only a contextual one. We
have to calculate the context denoted Ctx without Cold (Ctx \ Cold), i.e.,
simulate the effect of removing from the context the component Cold with
its four-tuple (Cold,Ps,Fs,Fc). Then, we have to check the installability of
Cnew in the resulting context (Ctx\Cold). The formal definition of contextual
substitutability is presented below:

Theorem 4.1 Contextual substitutability

A component Cold is substitutable for a component Cnew in a context Ctx if:

• Cnew is installable in Ctx \ Cold;

• all provided services of Cold which are not provided by Cnew

(Cold.Ps \ Cnew.Ps) must not be used necessarily in the context (NON
condition):⋃
{(MD(G, Cold.s) | s ∈ (Cold.Ps \ Cnew.Ps)} = ∅

Substitutability is checked as depicted in the diagram of Fig. 5. First, the
new context Ctx′ is calculated without the old component Cold. So, Ctx′ is

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–92 85

Calculation of Ctx′ = Ctx \ cold

Cnew installable in Ctx′?

Calculation of Cnew .Ps Cold.Ps

Cold not substitutable

Cold.Ps \ Cnew.Ps = ∅

Cold is substitutable

NON

yes no

yes no

yes

no

Fig. 5. Substitutability phases

Ctx without the set of all provided services of Cold and without its forbid-
den services and forbidden components. Then, we check whether the new
component can be installed using installability rules in the new context, i.e.,
all Cnew requirements are fulfilled in Ctx′ and its provided services does not
conflict with Ctx′ (the rules are described in [2]). Once the installation of the
new component is possible in the new context, we calculate the effect of its
installation in the context from its dependency description using installation
rules described in [2], i.e., its provided services, forbidden services, forbidden
component and the new dependency graph (it is illustrated in the diagram of
the Fig. 5 by the calculation of Cnew.Ps).

Since the set of provided services depends on the availability of services
in the context, we need to use installation rules to calculate it. The two
main phases of substitutability are the installability and the calculation of
provided services (installation) which depend on the context description and
the component dependency description (D1 • D2, D1�D2, or ?D). The calcu-
lation of provided services is not obvious without evaluating the dependency
description in the context. Even if the component is installable the provided
services depend on fulfilled dependency conditions in the context. Therefore,
we present the calculation of provided services depending on the dependency
descriptions (D1 • D2, D1�D2, or ?D):

• For D1 • D2, D1 and D2 must be verified in Ctx′, and the set of provided
services is the union of the provided services of D1 and those of D2. For ex-
ample, considering the following description: ((C1.S1 ⇒ S2)•(S3∧ [FDS ≥
10]) ⇒ S4), the installability conditions are :

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9286

· S1 belongs to the set of provided services of C1 and S2 is not forbidden in
the context and

· S3 belongs to the set of available services of the context, the condition
[FDS ≥ 10] is verified and S4 is not forbidden in the context.

Thus, the provided services are C.Ps = {S2, S4} or ∅

• D1�D2 is verified if D1 is verified in Ctx or D2 is verified in Ctx. For exam-
ple, for: ((C1.S1 ⇒ Stext)�(S3 ∧ [FDS ≥ 10]) ⇒ Sgraph), the installability
conditions are :
· S1 belongs to the set of provided services of C1 and Stext is not forbidden

in the context else
· S3 belongs to the set of available services of the context, the condition

[FDS ≥ 10] is verified and Sgraph is not forbidden in the context.
The set of provided services is C.Ps = {Stext} else {Sgraph} else ∅

• ?D is always installable, for example: ?(C1.S1 ⇒ S2), the set of provided
services is C.Ps = {S2} if S1 ∈ C1.Ps and S2 is not forbidden else ∅

Next, we compare the provided services of Cold with those of Cnew. Cold

is substitutable in two cases: either the set of previously provided services
which are no longer provided by Cnew is empty or each of these services are
not necessarily used by other components in the context.

5 Example

Let us illustrate component substitutability by examining two substitutabil-
ity scenarios. First, the new component provides fewer services. Second, the
new component provides more services. The first case may happen for opti-
mizing purposes by replacing one component by another which requires fewer
resources and provides fewer services. For example, we replace THUNDERBIRD

by SYLPHEED. We suppose that the service THUNDERBIRD.corrector (a spell
checker) is the only service which is not provided by SYLPHEED. The system
must ensure the condition NON i.e., this service is not used by another com-
ponent. According to the dependency graph of the mail server represented in
Fig. 2 of section 2, the service THUNDERBIRD.corrector is a leaf in the graph.
Thus, THUNDERBIRD.corrector is not used by another component and NON
condition is ensured. The component THUNDERBIRD can be substituted by
SYLPHEED which provides fewer services if SYLPHEED is installable, i.e., its re-
quired services are available in the context. The required services here are the
libraries (C6.lib6) which means the libraries lib6 provided by any component,
for example C6 (see Fig. 6).

The second example addresses the substitution of a component providing

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–92 87

Optional dependency (O)

Mandatory dependency (M)

POSTFIX PROCMAIL

AMAVIS.amavis

C3.lib3

FETCHMAIL

ORGANIZER

C2.lib2

ORGANIZER.manager

C5.libOrg

SYLPHEED.MUA

C6.lib6

SYLPHEED

FETCHMAIL.popclient

POSTFIX.AntiVirus

POSTFIX.MTAC1.lib1

PROCMAIL.AntiSpamSPAM.spam

PROCMAIL.MDA

Fig. 6. Substitution of THUNDERBIRD by SYLPHEED

more services. For instance, replacing THUNDERBIRD with the mail user agent
of SEAMONKEY which has numerous enhancements, for example: a Chat service.
(see Fig. 7).

POSTFIX

FDS ≥ 1380

¬Sendmail

lib1

amavis AntiVirus

MTA

FETCHMAIL

FDS ≥ 852

lib2

MTA

popclient

PROCMAIL

popclient

lib3

FDS ≥ 248

spam AntiSpam

MDA

SEAMONKEY

FDS ≥ 2508

MDA ∧ lib7

ircclient Chat

spell-Dict corrector

MUA

ORGANIZER

MUA

libOrg

manager

MTA MDA MUA AntiVirus AntiSpam corrector manager

Fig. 7. The mail server with SEAMONKEY

Checking substitutability corresponds to ensuring the requirements of
SEAMONKEY (C7.lib7, IRC.ircclient, SPELL.spell − Dict, etc.) which are dif-
ferent from those of THUNDERBIRD and ensuring that the additional provided
services do not disrupt the context. The related dependency graph is presented
in Fig. 8.

Now, let’s illustrate our main contribution, the two substitution examples
of THUNDERBIRD presented above may not be possible even if conditions on
provided services are fulfilled (Cold.Ps \ Cnew.Ps = ∅ and NON). Indeed,

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9288

Optional dependency (O)

Mandatory dependency (M)

POSTFIX PROCMAIL

C3.lib3

FETCHMAIL

C5.libOrg

ORGANIZER.manager

ORGANIZER

C2.lib2 C7.lib7

SEAMONKEY.chat

SEAMONKEYPROCMAIL.AntiSpamPOSTFIX.AntiVirusAMAVIS.amavis

POSTFIX.MTAC1.lib1

IRC.ircclient

SPAM.spam

SEAMONKEY.MUA

SEAMONKEY.correctorSPELL.spell−Dict

FETCHMAIL.popclient PROCMAIL.MDA

Fig. 8. Substitution of THUNDERBIRD by SEAMONKEY

according to the diagram of Fig. 5, we have to verify firstly the installability
conditions of SEAMONKEY and SYLPHEED. One of the most important part in
the installability condition is the verification of the effect of the component
in the context. If we suppose that the service chat is forbidden in the context,
then the condition of the installability of SEAMONKEY is not verified. Therefore
the substitution is not possible before comparing provided services of each
component.

Finally, we can have invariants in the context that we need to preserve. For
example, we may have to preserve the security level of a system by forbidding
the installation of any service that can decrease the security level of the system
(like the service ftp for example). Let’s suppose a component Cnew which
provides the service ftp and someone want to replace component Cold by
Cnew. The fact that the service ftp decreases the security level will forbid the
replacement of Cold by Cnew even if it provides all necessary services and does
not require too much.

6 Related work

The issue of component substitutability has already been addressed in liter-
ature. We mention here only those which are the closest to our work and
summarize the most common approaches dealing with the substitutability
problem.

In oriented object programming, the substitution principle of Liskov is a
particular definition of subtype which was introduced in [1]. This concept of
subtype is founded on the concept of substitutability, i.e., if S is a subtype of T
then we can substitute objects of the type S for objects of the type T without
deteriorating the desirable properties of a program. However, although the

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–92 89

concept of subtype is approved in [10], the rules based on typing are rather
restrictive. We therefore choose a more flexible approach that allows us to
make choices according to the system and user requirements.

Substitutability is presented in [9] as a relation between the types of the
old and the new components. This approach is based on a contract defini-
tion which is a consequence of the definition of the component type [8,7].
Substitutability is based on the definition of the compatibility between the
component and all the elements with which it interacts. Compatibility is de-
fined in terms of syntactic, semantic, and pragmatic contracts for operations,
interfaces, ports and components. Thus, a component A is substitutable for
another component B if its compatibility with other components is preserved
after the substitution and the new required properties are checked. Our work
follows the same principle but it is done on the interface signature only.

The concept of substitutability in [5] is defined for black box components.
The principle is to check that the substitution of the component preserves
the consistency of the preliminary configuration. The concepts of context of
deployment, strict substitutability and contextual substitutability are defined.
The representations of component specifications and the deployment context
are based on the ENT model (Export, Needs, Ties). The definition of strict
substitution is different from ours because it considers that the new compo-
nent must provide at least the same thing and requires at most the same thing
as the old component (generalization of the needs and specialization of the re-
quirements). In the case of “strict” substitutability there is no check for new
required interfaces since those are not supposed to exist and they are ”for-
bidden” by the strict subtyping case. Nevertheless, new provided interfaces
are allowed and therefore checked. However, in our work, the verification is
done for the new requirements as well as for the new provided services without
using subtyping rules. We think that the strict substitutability is not really
interesting because the component needed functionalities depend on the envi-
ronment in which it is used and it does not verify the effects on the context
and its invariants.

Despite enhancements in substitutability specification at signature, seman-
tics and protocol levels, we believe that these works do not take into account
the effect of the component. Indeed, they do not verify potential conflicts
that can occur after substitution, due to new services. Therefore, in our ap-
proach we impose more constraints on the new provided services and ensure
that they do not conflict with the existing context and its invariants are pre-
served. For example, when we want to substitute a component which provides
http with another providing http and ftp services and the system forbid
non-secure services like ftp, such a substitution cannot occur. Furthermore,

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9290

taking into account the potential effect of the new component on the system
can be generalized. It is applied not only to conflicts but also to other kinds
of effect. For example, the substitutability verification of non-functional prop-
erties needs such a mechanisms as the new component may conflicts with the
system invariants. Another example of use is the resource consumption. The
new component despite being functionally equivalent may not work because
it consumes too much resources for the system. For this reason, we have to
control the effect of the new component on the context.

7 Conclusion and Future work

In this work, we have presented a formalization of component substitutability.
Our formalization is based on dependencies and context descriptions which are
also used for installation and deinstallation phases in [2]. It aims at providing
a safe and flexible component upgrade. The key concept is the comparison
between dependency descriptions of the new and the old component. The
comparison concerns provided services and does not take into account required
services. We have defined the strict and the contextual substitutability and we
have concentrated only on contextual one. We have presented an analysis of
different substitutability cases and summarized them into three key conditions.
These conditions involve checking the installability rule of the new component
(verifying requirement and ensuring that provided services will not conflict
with the context of the system) and checking the effect of deinstallation of
the old component using the dependency graph. A prototype implementing
our proposal has been developed in Ocaml. Our objective is to ensure the
safety of substitutability without being restrictive by authorizing all cases of
substitutability. For example, replacing a component which has a lot of unused
services with another which has fewer provided services (only those which are
useful) is possible. This substitutability can also depends on a system policy
or property models as described in [3]. We focus on ensuring the safety of
the system, i.e., verifying the requirements, the effect of the substitution and
preserving context invariants, component and service properties.

Now, we aim to parametrize the substitutability check by policies and
properties (for example, if the policy tries to optimize resources we cannot
replace a component by another one which requires a lot of resources). Fur-
thermore, we are working on a dependency description extension to express
properties on services and components. As future work we aim at extending
our system to overcome its two main limitations, which are:

• to substitute a component assembly, we have to calculate the dependency
of a composite component using the dependencies of its sub-component.

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–92 91

• in our current approach, components and services are identified by their
names. This identity must be extended to include interface type and prop-
erty information. This means changing from name equivalence to a form
of subtyping when determining dependencies between services. In such an
approach, we could reuse behavioral substitutability such as [6] for example.

References

[1] B. Liskov and J. Wing. Behavioral subtyping using invariants and constraints. MU CS-99-156,
School of Computer Science, Carnegie Mellon University, july 1999.

[2] M. Belguidoum and F. Dagnat. Dependency management in software component deployment.
In FACS’06-International Workshop on Formal Aspects of Component Software, Prague, Czech
Republic, September 2006. ENTCS.

[3] M. Belguidoum and F. Dagnat. Dependability in software component deployment. In DepCoS-
RELCOMEX, pages 223–230, Szklarska Poreba, Poland, June 2007. IEEE Computer Society.

[4] A. Beugnard, J. Jézéquel, N. Plouzeau, and D. Watkins. Making components contract aware.
Lecture Notes in Computer Science, 32(7):38–45, July 1999.

[5] P. Brada. Specification-Based Component Substitutability and Revision Identification. PhD
thesis, Charles University, Prague, August 2003.

[6] I. Cerna, P. Varekova, and B. Zimmerova. Component substituability via equivalencies of
component-interaction automata. In FACS’06-International Workshop on Formal Aspects of
Component Software, Prague, Czech Republic, September 2006. ENTCS.

[7] P. Champagnoux, Laurence Duchien, D. Enselme, and G. Florin. Cooperative abstract data
type : A stack exemple. In T. Hruska and M. Hashimoto, editors, IEEE 4th Joint Conference
on Knowledge-Based Software Engineering (JCKBSE 2000), pages 183–190, Brno, Czech
Republic, sep 2000. IOP Press.

[8] P. Champagnoux, Laurence Duchien, D. Enselme, and G. Florin. Typage pour des composants
coopératifs. In Colloque International sur les NOuvelles TEchnologies de la REpartition,
NOTERE 2000, Paris, France, nov 2000. Revue EJNDP RERIR, Revue Eléctronique sur les
Réseaux et l2̆019Informatique Répartie.

[9] F. Legond-Aubry, D. Enselme, and Gerard Florin. Assembling contracts for components. In
Formal Methods for Open Object-Based Distributed Systems (FMOODS-DAIS), Lecture Notes
in Computer Science, pages 35–43, Paris, France, November 2003. Springer-Verlag.

[10] J. Costa Seco and L. Caires. A basic model of typed components. In ECOOP ’00: Proceedings
of the 14th European Conference on Object-Oriented Programming, pages 108–128, London,
UK, 2000. Springer-Verlag.

[11] C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-Wesley,
1998.

[12] A. Vallecillo, J. Hernandez, and J. Troya. Component interoperability. Technical Report ITI-
2000-37, Departmento de Lenguajes y Ciencias de la Computacion, University of Malaga, 2000.
Available at http://www.lcc.uma.es/ãv/Publicaciones/00/Interoperability.pdf.

[13] Amy Moormann Zaremski and Jeannette M. Wing. Specification matching of software
components. ACM Transactions on Software Engineering and Methodology, 6(4):333–369,
1997.

M. Belguidoum, F. Dagnat / Electronic Notes in Theoretical Computer Science 215 (2008) 75–9292

	Introduction
	Dependency description
	Intra-dependencies
	Inter-dependencies

	What is substitutability?
	Substitutability definitions
	Component substitutability
	Ensuring substitutability in our context

	How substitutability is checked?
	Example
	Related work
	Conclusion and Future work
	References

