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 The Cyclic Groups with the  m -DCI Property

 C AI  H ENG  L I

 For a finite group  G  and a subset  S  of  G  which does not contain the identity of  G ,  let
 Cay( G ,  S )   denote the Cayley graph of  G  with respect to  S .  If ,  for all subsets  S , T  of  G  of size
 m ,  Cay( G ,  S )  >  Cay( G ,  T  ) implies  S a  5  T  for some  a  P  Aut( G ) ,  then  G  is said to have the
 m -DCI property .  In this paper ,  a classification is presented of the cyclic groups with the  m -DCI
 property ,  which is reasonably complete .

 ÷   1997 Academic Press Limited

 1 .  I NTRODUCTION

 Let  G  be a finite group and set  G 4  5  G  \ h 1 j .  For a subset  S  of  G 4 ,  the  Cayley graph
 Cay( G ,  S )   of  G  with respect to  S  is the directed graph  G   with vertex set  V  G  5  G  and
 edge set  E G  5  h ( a ,  b )  3  a ,  b  P  G , ba 2 1  P  S j .  If  S  5  S 2 1  : 5  h s 2 1

 3  s  P  S j ,  then the ad-
 jacency relation is symmetric and so Cay( G ,  S ) may be viewed as an undirected graph .

 The problem of determining whether any two Cayley graphs of a group  G  are
 isomorphic is a long-standing open problem .  If  s  P  Aut( G ) ,  then  s   induces an
 isomorphism from Cay( G ,  S ) to Cay( G ,  S s  ) .  However ,  it is of course possible that
 there exist a group  G  and subsets  S  and  T  of  G 4   such that Cay( G ,  S )  >  Cay( G ,  T  ) but
 S  is not conjugate under Aut( G ) to  T .  A Cayley graph Cay( G ,  S ) is called a  CI - graph
 (CI stands for  Cayley In y  ariant ) of  G  if ,  for any subset  T  of  G 4 ,  Cay( G ,  S )  >
 Cay( G ,  T  )   implies  S a  5  T  for some  a  P  Aut( G ) .  If all Cayley graphs of  G  of valency  m
 are CI-graphs ,  then  G  is said to have the  m - DCI property .  Recently ,  Praeger ,  Xu and
 the author in [12] proposed to characterize finite groups with the  m -DCI property .  A
 group  G  has the 1-DCI property if f all elements of  G  of the same order are conjugate
 under Aut( G ) .  Zhang [17] gave a good description for such groups .  The author [9]
 completely classified the finite groups which have the 2-DCI property but do not have
 the 1-DCI property .  It is proved in [10] that all Sylow subgroups of an abelian group
 with the  m -DCI property are homocyclic .  (A group is said to be  homocyclic  if it is a
 direct product of cyclic groups of the same order . ) In [12] ,  all finite abelian groups with
 the  m -DCI property for  m  #  4 were completely classified ,  and a general investigation
 was made of the structure of Sylow subgroups of groups with the  m -DCI property for
 certain values of  m .  However ,  this seems very far from obtaining a ‘good’ characteriza-
 tion of arbitrary groups with the  m -DCI property .  In this paper ,  we focus on the cyclic
 groups .

 A .  A ́  da ́  m [1] conjectured that if  G  is cyclic then ,  for any  S  and  T ,  Cay( G ,  S )  >
 Cay( G ,  T  )   implies  S  5  T  s   for some  s  P  Aut( G ) .  This conjecture was disproved in [6] .
 However ,  it has been proved in many cases :  it is true for graphs of valency not greater
 than 5 (see [5 ,  8 ,  16]) ,  and of order  n  where  n  5  4 p  [3 ,  7] or  n  is square-free [13] .  On the
 other hand ,  it is also known that the conjecture fails if  n  is divisible by 8 or by an odd
 prime-square .  In this paper ,  it will be shown that if  n  is not a prime-square and  n  is
 divisible by 8 or by an odd prime-square then  Z n   does not have the  m -DCI property for
 any value of  m  which is greater than the largest prime divisor of  n .  More precisely ,  the
 aim of this paper is to obtain a reasonably complete classification of cyclic groups with
 the  m -DCI property where  m  is a positive integer .
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 For convenience ,  if Cay( G ,  S ) is a CI-graph of  G ,  then the subset  S  is called a
 CI - subset  of  G .  From the definition it easily follows that a subset  S  of  G 4   is a CI-subset
 of  G  if f  G 4 \ S  is a CI-subset .  Thus ,  for any positive integer  m  ,  u G u , G  has the  m -DCI
 property if f  G  has the ( u G 4 u  2  m )-DCI property .  Therefore ,  we shall always assume
 that  m  <  ( u G u  2  1) / 2 .

 The first result of this paper determines for which positive integers  m  the cyclic
 groups of order  p 2  have the  m -DCI property ,  where  p  is a prime .  It is trivial to show
 that  Z 4  has the  m -DCI property for all values of  m ,  so we only consider the case in
 which  p  is odd .

 T HEOREM  1 . 1 .  Let G be a cyclic group of order p 2 , where p is an odd prime , and let m
 be a positi y  e integer with  1  <  m  <  (  p 2  2  1) / 2 . Then G has the m - DCI property if f either
 m  ,  p , or m  ;  0  or  2 1 (mod  p ) .

 The next result presents a classification of all cyclic groups with the  m -DCI property .

 T HEOREM  1 . 2 .  Let G be a cyclic group , and let p be a prime di y  isor of  u G u   and G p  , the
 Sylow p - subgroup of G . Suppose that G has the m - DCI property , where p  1  1  <  m  <
 ( u G u  2  1) / 2 . Then one of the following holds :
 (i)  G  5  Z p 2   and m  ;  0  or  2 1 (mod  p ) ;
 (ii)  p is odd and G p  5  Z p ;
 (iii)  p  5  2  and G 2  5  Z 2   or  Z 4 .

 R EMARK .  Let  m  be a positive integer .  A group  G  is called an  m - DCI - group  if  G  has
 the  k -DCI property for any positive integer  k  <  m .  Let  G  be a cyclic group with the
 m -DCI property .  If  m  is greater than the largest prime divisor of  u G u   and  G 2  ?  Z 4 ,  then ,
 by Theorem 1 . 2 ,   u G u   is square-free .  Consequently ,  by [13] ,   G  is a  u G u -DCI-group and so
 G  has the  m -DCI property .  On the other hand ,  if  m  is less than the least prime divisor
 of  u G u ,  then it follows from [11 ,  Theorem 1 . 1] that  G  is an  m -DCI-group and so  G  has
 the  m -DCI property .  Therefore ,  we suggest the following .

 C ONJECTURE  1 . 3 .  The con y  erse of Theorem  1 . 2  is true .

 If the conjecture were true ,  then Theorems 1 . 1 and 1 . 2 would provide a complete
 classification of cyclic groups with the  m -DCI property .

 Finally ,  we discuss the undirected Cayley graphs .  For a positive integer  m ,  a group  G
 is said to have the  m - CI property  if all undirected Cayley graphs of  G  of valency  m  are
 CI-graphs of  G .  For undirected graphs ,  a similar conclusion should hold ,  so we propose
 the following problem .

 P ROBLEM  1 . 4 .  Characterize the cyclic groups  Z n   and integers  m  >  2 such that  Z n   has
 the  m - CI  property .

 2 .  P RELIMINARIES

 In this section we quote some preliminary results that will be used in the proofs of
 Theorems 1 . 1 and 1 . 2 .  The normalizer of  G  in Aut  Cay( G ,  S ) is often useful for
 characterizing Cay( G ,  S ) .
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 L EMMA  2 . 1 ([7 ,  Lemma 2 . 1]) .  Let G be a finite group and let S be a subset of G  4 .
 Let A  5  Aut  Cay( G ,  S )  and  Aut( G ,  S )  5  h a  P  Aut( G )  3  S a  5  S j . Then  N A ( G )  5
 G  y  Aut( G ,  S ) , a semidirect product of G by  Aut( G ,  S ) .

 This property is especially useful for groups of prime-power order ,  because of the
 following conclusion .

 L EMMA  2 . 2 ([15 ,  p .  88]) .  Let H be a proper subgroup of a p - group G , where p is a
 prime . Then  N G ( H )  .  H . In particular , if  u [ G :  H ] u  5  p , then H  v  G .

 Next ,  we have a criterion for a Cayley graph to a be a CI-graph ,  which will be used
 in the next section .

 L EMMA  2 . 3 (Alspach and Parsons [2 ,  Theorem 1] ,  or Babai [3 ,  Lemma 3 . 1]) .  Let  G
 be a Cayley graph of a finite group G and let A be the automorphism group of  G . Let G R

 denote the subgroup of A consisting of right multiplications g :  x  5  xg by elements g  P  G .
 Then  G   is a CI - graph of G if f for any  τ  P  Sym( G )  with G τ

 R  <  A , there exists  a  P  A such
 that G a

 R  5  G τ
 R .

 The next simple lemma gives some properties about subsets of a cyclic group .

 L EMMA  2 . 4 ([10 ,  Lemma 2 . 1]) .  Let G  5  k z l   be a cyclic group of order n , and
 assume that i , m  P  h 1 ,  2 ,  .  .  .  ,  n  2  2 j . Suppose that  h z ,  z  2 ,  .  .  .  ,  z m j  5  h z i ,  z  2 i ,  .  .  .  ,  z mi j .
 Then i  5  1 .

 For a digraph  G  5  ( V ,  E ) ,  its  complement  G #  5  ( V ,  E #  ) is the graph with vertex set  V
 such that ( a ,  b )  P  E #    if ( a ,  b )  ̧  E .  The  lexicographic product  G 1 [ G 2 ] of two digraphs
 G 1  5  ( V 1  ,  E 1 )   and  G 2  5  ( V 2  ,  E 2 ) is the graph with vertex set  V 1  3  V 2  such that
 (( a 1  ,  a 2 ) ,  ( b 1  ,  b 2 ))   is an arc if f either ( a 1  ,  b 1 )  P  E 1  or  a 1  5  b 1  and ( a 2  ,  b 2 )  P  E 2  .  For a
 positive integer  n , K n   denotes the complete digraph on  n  vertices .  For a graph  G , n G
 denotes the graph which consists of  n  vertex-disjoint copies of  G .  The final lemma
 concerns the structure of graphs coming from lexicographic product of graphs .

 L EMMA  2 . 5 ([10 ,  Lemma 2 . 2]) .   Let G  5  k a ,  H l   be an abelian group , where H is a
 proper subgroup of G , and let R  5  h a i 1  ,  .  .  .  ,  a i k j H , where  k R l  5  G and i 1  ,  .  .  .  ,  i k  are
 distinct positi y  e integers less than  u G  / H u . Set G #  : 5  G  / H , R #  : 5  R  / H and  À  : 5  Cay( G #  ,  R #  ) .
 Then  Cay( G ,  R )  5  À [ K #  m ] , where m  5  u H u . Furthermore , if S  5  R  <  R 0  , where R 0   is a
 subset of H 4 , then  Cay( G ,  S )  5  À [ G 0 ] , where  G 0  5  Cay( H ,  R 0 ) .

 The terminology and notation used in this paper are standard (see ,  for example ,
 [4 ,  15]) .  In particular ,  for a positive integer  n , C n   denotes the (directed or undirected)
 cycle of length  n .  For a group and an element  g  P  G ,  denote by  u G u   and  o ( g ) the orders
 of  G  and  g ,  respectively .  For a group  G  and a pair of subsets  S , T  of  G  4 ,  if
 Cay( G ,  S )  >  Cay( G ,  T  )   but  S  is not conjugate under Aut( G ) to  T ,  then  h S ,  T  j   is called
 an  NCI - pair  of  G .
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 3 .  T HE   m -DCI  PROPERTY OF   Z p 2

 In this section ,  we will prove Theorem 1 . 1 .

 P ROOF OF  T HEOREM  1 . 1 .  Suppose that  m  .  p  and  m  ; u  0 ,  2 1 (mod  p ) .  Since
 p  ,  m  <  (  p 2  2  1) / 2 ,  we may write  m  5  kp  1  j  such that 1  <  k  <  (  p  2  1) / 2 and 1  <  j  <
 p  2  2 .  We will prove that  G  does not have the  m -DCI property .  Let  G  5  k a l ,  and set

 H S  5  h a ,  .  .  .  ,  a k jk a p l  <  h a p ,  .  .  .  ,  a j p j ,

 T  5  h a ,  .  .  .  ,  a k jk a p l  <  h a  2 p ,  .  .  .  ,  a 2 j p j .

 Clearly ,   G 1  : 5  Cay( k a p l ,  h a p ,  .  .  .  ,  a j p j )  >  Cay ( k a p l ,  h a  2 p ,  .  .  .  ,  a 2 j p j ) .  Let  G #  : 5  G  / k a p l ,
 S #  : 5  S k a p l / k a p l \ h 1 j   and  T #  : 5  T  k a p l / k a p l \ h 1 j .  Then  S #  5  h a #  ,  .  .  .  ,  a #  k j  5  T #  .  Let  G 2  5
 Cay( G #  ,  S #  )   ( 5  Cay( G #  ,  T #  )) .  By Lemma 2 . 5 ,  Cay( G ,  S )  >  G 2 [ G 1 ]  >  Cay( G ,  T  ) .  If  G  has
 the  m -DCI property ,  then there exists  a  P  Aut( G ) mapping  S  to  T .  Since  a  P  S  we
 have  a a  P  T ,  and since  o ( a  a )  5  o ( a ) ,  we have  a  a  P  h a ,  .  .  .  ,  a k jk a p l .  Thus  a a  5  a i 1 hp   for
 some integers  i , h  with 1  <  i  <  k .  Let  a #    be the automorphism of  G #    induced by  a  .  Then
 h a #  i ,  .  .  .  ,  a #  i k j  5  S #  a #  5  T #  5  h a #  ,  .  .  .  ,  a #  k j .  By Lemma 2 . 4 ,   i  ;  1 (mod  p ) and since
 1  <  i  <  k  ,  p ,  we have  i  5  1 .  Therefore ,  ( a p ) a  5  ( a 1 1 hp ) p  5  a p .  Since 1  <  j  <  p  2  2 ,
 a p  ̧  T ,  so ( a p ) a  P  S a  \ T ,  which is a contradiction .

 Conversely ,  we need to prove that  G  has the  m -DCI property for  m  ,  p  or  m  ;  0 ,
 2 1   (mod  p ) .  Let  G  5  k a l  >  Z p 2 ,  and let  S  be a subset of  G 4   of size  m .  Our goal is to
 show that  S  is a CI-subset .  Let  G  5  Cay( G ,  S ) and  A  5  Aut  G ,  and let  A 1  be the
 stabilizer of 1 in  A .  If  p è u A 1 u ,  then  G  is a Sylow  p -subgroup of  A .  By Sylow’s Theorem
 and Lemma 2 . 3 ,   S  is a CI-subset .  Thus we may assume that  p  3  u A 1 u .

 First ,  assume that  m  ,  p .  If  k S l  5  G ,  then  p è u A 1 u ,  which is a contradiction .  Thus
 k S l  ,  G  and so  k S l  5  k a p l .  Let  B  5  Aut  Cay( k a p l ,  S ) and let  B 1  be the stabilizer of 1 in
 B .  Since  m  ,  p ,  p è u B 1 u ,  so  S  is a CI-subset of  k a p l   (arguing as in the previous
 paragraph) .  For any subset  T  of  G 4   such that Cay( G ,  S )  >  Cay( G ,  T  ) ,  we have
 k T  l  5  h a p l   and Cay( k a p l ,  S )  >  Cay( k a p l ,  T  ) ,  and ,  therefore ,  since  S  is a CI-subset of
 k a p l ,  there exists  a  P  Aut( k a p l ) satisfying  S a  5  T .  Furthermore ,  there exists  b  P
 Aut( G )   such that the restriction of  b   to  k a p l   is equal to  a .  Hence  S b  5  T  and so  S  is a
 CI-subset of  G .

 Next ,  suppose that  m  >  p  and  m  ;  0 or  2 1 (mod  p ) ;  that is ,   m  5  kp  or  kp  1  (  p  2  1)
 for some  k  such that  p  <  m  <  (  p 2  2  1) / 2 .  Since  p  3  u A 1 u ,  a Sylow  p -subgroup of  A  has
 order at least  p 3 .  By Sylow’s Theorem ,  there exists a Sylow  p -subgroup  P  of  A  which
 contains  G  as a subgroup .  By Lemma 2 . 2 ,   N A ( G )  >  N P ( G )  .  G .  First ,  we study the
 structure of  S .  From Lemma 2 . 1 ,  it follows that there exists  a  P  Aut( G ) of order  p  such
 that  S a  5  S .  It is easy to see that  a a  5  a 1 1 jp   for some 1  <  j  <  p  2  1 .  Thus ,  for any integer
 k ,  ( a k ) a  5  a k 1 kjp ,  so ( a k ) a  5  a k   if f  p  3  k ,  which is equivalent to  a k  P  k a p l .  Therefore ,   a
 fixes every element of  S  of order  p  and fixes no elements of  S  of order  p 2 .  Moreover ,  if
 a k  P  S  and ( a k ) a  ?  a k ,  then  a k k a p l  5  a k k a kjp l  5  h a k , a k 1 kjp ,  .  .  .  ,  a k 1 (  p 2 1) kjp j  5  h a k ,  ( a k ) a  ,
 .  .  .  ,  ( a k ) a  p 2 1 j  5  ( a k ) k a  l  ’  S .  Since  a   is of order  p ,  every non-trivial  k a  l -orbit (on  S ) has
 length  p .  Since  G  has exactly  p  2  1 elements of order  p ,  it follows that there is a subset
 Q  of  G  \ k a p l   of size  k  such that ,  if  m  5  kp ,  then  S  5  Q k a p l ,  and if  m  5  kp  1  (  p  2  1) then
 S  5  Q k a p l  <  k a p l 4 .

 Let  T  be a subset of  G 4   such that Cay( G ,  S )  >  Cay( G ,  T  ) .  It follows from the
 arguments in the previous paragraph that if  m  5  kp  then  T  5  Q 9 k a p l ,  and if
 m  5  kp  1  (  p  2  1)   then  T  5  Q 9 k a p l  <  k a p l 4 ,  for some subset  Q 9  of  G  \ k a p l   of size  k .  We
 want to prove that  S  is conjugate under Aut( G ) to  T .  Let  G #  5  G  / k a p l   and
 S #  5  S k a p l / k a p l ,  and let  À  5  Cay( G #  ,  S #  ) .  By Lemma 2 . 5 ,  if  m  5  kp ,  then  G  >  À [ K #  p ] ;  if
 m  5  kp  1  (  p  2  1) ,  then  G  5  À [ K p ] .  Thus  A  preserves the unique non-trivial imprimitive
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 system  h x k a p l  3  x  P  G j   of  V  G   consisting of  p  blocks of size  p .  Similarly ,  setting
 G 9  5  Cay( G ,  T  ) ,  also Aut  G 9  has the unique imprimitive system  h x k a p l  3  x  P  G j .
 Therefore ,  if  r   is an isomorphism from Cay( G ,  S ) to Cay( G ,  T  ) ,  then  h x k a p l  3  x  P
 G j r  5  h x k a p l  3  x  P  G j .  Hence  r   induces an isomorphism from Cay( G #  ,  S #  ) to Cay( G #  ,  T #  ) ,
 where  T #  5  T  k a p l / k a p l .  Since  V  À   is of size  p , G #    is a Sylow  p -subgroup of Aut  À .  All
 subgroups of Aut  À   which act regularly on  V  À   are cyclic of order  p  and hence are
 conjugate by Sylow’s Theorem .  So ,  by Lemma 2 . 3 ,   S #    is a CI-subset of  G #  .  Hence there
 exists  τ  P  Aut( G #  ) such that  S #  τ  5  T #  ,  so  a #  τ  5  a #  r   for some integer  r  P  h 1 ,  2 ,  .  .  .  ,  p  2  1 j .
 Write  S #  5  h a #  i 1  ,  a #  i 2  ,  .  .  .  ,  a #  i k j ,  and then  T #  5  S #  τ  5  h a #  i 1 r ,  a #  i 2 r ,  .  .  .  ,  a #  i k r j .  Therefore ,   S  5
 a i 1 k a p l  <  a i 2 k a p l  <  .  .  .  <  a i k k a p l   and  T  5  a i 1 r k a p l  <  a i 2 r k a p l  <  .  .  .  <  a i k r k a p l .  Since  r  is co-
 prime to  p , a  5  a r   induces an automorphism  s   of  G .  Now  S s  5  T ,  so  S  is a CI-subset of
 G .  Therefore ,   G  has the  m -DCI property .  h

 4 .  P ROOF OF  T HEOREM  1 . 2

 This section is devoted to proving Theorem 1 . 2 .  Let  G  be a cyclic group with the
 m -DCI property ,  and let  p  be a prime divisor of  u G u .  If  G  is of order  p 2 ,  then we have
 completely determined the  m -DCI property in Theorem 1 . 1 .  Thus here we only
 consider the other cases ;  that is ,  we assume that  G  is not of order  p 2 .

 P ROOF OF  T HEOREM  1 . 2 .  Let  G  5  k z l   with order  n ,  and let  G p  5  k a l  >  Z p d   be the Sylow
 p -subgroup of  G .  If  G  5  Z p 2  then ,  by Theorem 1 . 1 ,   m  ;  0 or  2 1 (mod  p ) ,  as in part (i) .
 Suppose that  G  ?  Z p 2 ,  and that if  p  is odd then  d  >  2 ,  and if  p  5  2 then  d  >  3 .
 To prove the theorem ,  we shall construct an NCI-pair of size  m  for every
 m  P  h  p  1  1 ,  p  1  2 ,  .  .  .  ,  ( u G u  2  1) / 2 j .

 Case  1 .  Suppose that  p  is odd and that  d  >  2 .  Let  n 9  5  n  / p  and let  a 0  5  z n 9 .  Then  a 0  is
 of order  p ,  and since  p  3  n 9 ,  a n 9

 0  5  1 .  Write  m  5  kp  1  j ,  where 0  <  j  <  p  2  1 , k  >  1 ,  and if
 j  5  0   then  k  .  1 .

 Step  1 .  Assume that 1  <  j  <  p  2  2 .  Set  S 0  5  h a 0  ,  .  .  .  ,  a j
 0 j   and  T 0  5  h a 2 1

 0  ,  .  .  .  ,  a 2 j
 0  j ,  and

 let

 H  S  5  h z ,  .  .  .  ,  z k jk a 0 l  <  S 0  ,
 T  5  h z ,  .  .  .  ,  z k jk a 0 l  <  T 0 .

 Let  G #  5  G  / k a 0 l , S #  5  S k a 0 l / k a 0 l   and  T #  5  T  k a 0 l / k a 0 l .  Then  S #  5  T #  5  h z #  ,  .  .  .  ,  z #  k j .  Let
 G 1  5  Cay( G #  ,  S #  )   and  G 2  5  Cay( k a 0 l ,  S 0 ) .  Then  G 2  >  Cay( k a 0 l ,  T 0 ) ,  and hence ,  by Lemma
 2 . 5 ,  Cay( G ,  S )  5  G 1 [ G 2 ]  >  Cay( G ,  T  ) .  Since  G  has the  m -DCI property ,  there exists
 a  P  Aut( G )   such that  S a  5  T .  Since  o ( z  a  )  5  o ( z )  5  n  and  o ( a 0 )  ,  n ,  we have  z a  P
 z i k a 0 l   for some 1  <  i  <  k .  Thus  z #  a #  5  z #  i ,  where  a #    is the automorphism of  G #    induced by
 a .  Therefore ,   h z #  i  ,  .  .  .  ,  z #  k i j  5  h z #  ,  .  .  .  ,  z #  k j a #  5  S #  a #  5  T #  5  h z #  ,  .  .  .  ,  z #  k j .  By Lemma 2 . 4 ,   i  ;  1
 (mod  n 9 ) ;   that is ,   z  a  5  za h

 0  for some integer  h .  Since 1  <  j  <  p  2  2 , a 0  ̧  T .  However ,
 since  z n 9  5  a 0  and  a n 9

 0  5  1 ,  we have  a  a
 0  5  ( z n 9 ) a  5  ( za h

 0 ) n 9  5  a 0  P  S a  ,  which is a contradic-
 tion .  Therefore ,   h S ,  T  j   is an NCl-pair of  G .

 Step  2 .  Assume that  j  5  p  2  1 ,  so that  m  5  kp  1  (  p  2  1) .  First ,  suppose that  G  > u  Z p d .
 Then  z p d

 ?  1 and  G  5  k a l  3  k z p d l .  Set  S 9  5  h a 0  ,  .  .  .  ,  a p 2 2
 0  j  <  h z p d j   and  T  9  5

 h a 2 1
 0  ,  .  .  .  ,  a 2 (  p 2 2)

 0  j  <  h z p d j .  If  p d  .  k ,  then let

 H  S  5  h z ,  .  .  .  ,  z k jk a 0 l  <  S 9 ,

 T  5  h z ,  .  .  .  ,  z k jk a 0 l  <  T  9 ;
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 if  p d  <  k ,  then let

 H  S  5  ( h z ,  .  .  .  ,  z k 1 1 ) \ h z p d j ) k a 0 l  <  S 9 ,

 T  5  ( h z ,  .  .  .  ,  z k 1 1 j \ h z p d j ) k a 0 l  <  T  9 .

 It is easy to see that  K  : 5  k S 9 l  5  k T  9 l  5  k a 0  ,  z p d l  5  k a 0 l  3  k z p d l   and  G  5  K  <  zK  <  ?  ?  ?  <
 z p d 2 1 2 1 K .  Thus  z i K  is the vertex-set of the connected component of both Cay( G ,  S 9 )
 and Cay( G ,  T  9 ) containing the vertex  z i .  Let  C i   and  D i   denote the connected
 components of Cay( G ,  S 9 ) and of Cay( G ,  T  9 ) ,  respectively ,  with vertex set  z i K .
 Clearly ,  there exists  s  P  Aut( K ) such that  a s

 0  5  a 2 1
 0   and ( z p d

 ) s  5  z p d
 ,  which satisfies

 S 9 s  5  T  9 .  Thus  s   induces an isomorphism from Cay( K ,  S 9 ) to Cay( k ,  T  9 ) .  Let  r   be a
 map from  G  to  G  defined by

 r  :  z i u  5  z i u s  ,  where  i  P  h 0 ,  1 ,  .  .  .  ,  p d 2 1  2  1 j  and  u  P  K .

 Then ( z i K ) r  5  z i K ,  and  r   induces an isomorphism from  C i   to  D i   for every  i .  Thus  r
 preserves adjacency from Cay( G ,  S 9 ) to Cay( G ,  T  9 ) .

 We want to prove that  r   is an isomorphism from Cay( G ,  S ) to Cay( G ,  T  ) .  Write
 l  5  n  / p d , z 9  5  z p d

   and  K  5  k a 0 l  <  z 9 k a 0 l  <  ?  ?  ?  <  z 9 l 2 1 k a 0 l .  Since  k a 0 l s  5  k a 0 l   and  z 9 s  5  z 9 ,
 we have ( z 9 i k a 0 l ) s  5  z 9 i k a 0 l   for  i  5  0 ,  1 ,  .  .  .  ,  l  2  1 .  Furthermore ,  write  G  as the union of
 cosets of  k a 0 l   by

 G  5  !

 0 < s < p d 2 1 2 1
 !

 0 < t < l 2 1
 z s z 9 t k a 0 l .

 Then we have ( z s z 9 t k a 0 l ) r  5  z s ( z 9 t k a 0 l ) s  5  z s z 9 t k a 0 l ,  so  r   maps  z i k a 0 l   to  z i k a 0 l   for all
 i  P  h 0 ,  1 ,  .  .  .  ,  k  1  1 j .  Consequently ,   r   also preserves adjacency from Cay( G ,  S  \ S 9 ) to
 Cay( G ,  T  \ T  9 ) .  It follows that  r   is an isomorphism from Cay( G ,  S ) to Cay( G ,  T  ) .  Since
 G  has the  m -DCI property ,  there is  a  P  Aut( G ) such that  S a  5  T .  Now  z  a  5  z i   for
 some integer  i  P  h 1 ,  .  .  .  ,  n  2  1 j .  Since  k a 0 l a  5  k a 0 l ,  we have ,  for any integer  h ,
 ( z h k a 0 l ) a  5  z h i k a 0 l .  Consequently ,  ( h z ,  .  .  .  ,  z k j H ) a  5  h z ,  .  .  .  ,  z k jk a 0 l   and (( h z ,  .  .  .  ,  z k 1 1 j \
 h z p d j ) k a 0 l ) a  5  ( h z ,  .  .  .  ,  z k 1 1 j \ h z p d j ) k a 0 l .  It follows that  S 9 a  5  T  9 .  Since  z p d

   is a unique
 element of  S 9  <  T  9  of order coprime to  p ,  ( z p d

 ) a  5  z p d
 ,  so ( z p d k a 0 l ) a  5  z p d k a 0 l .

 Therefore ,

 h z i ,  .  .  .  ,  z i k jk a 0 l  5  ( h z ,  .  .  .  ,  z k jk a 0 l ) a  5  h z ,  .  .  .  ,  z k jk a 0 l ,  if  p d  .  k ;
 or

 h z i ,  .  .  .  ,  z i ( k 1 1) jk a 0 l  5  ( h z ,  .  .  .  ,  z k 1 1 jk a 0 l ) a  5  h z ,  .  .  .  ,  z k 1 1 jk a 0 l ,  if  p d  <  k .

 By Lemma 2 . 4 ,  in either case  i  ;  1 (mod  n  / p ) ;  that is ,   z  a  5  za h
 0  for some integer  h .

 Therefore ,   a a
 0  5  ( z n 9 ) a  5  ( za h

 0 ) n 9  5  z n 9  5  a 0  P  S a  \ T ,  a contradiction .  Thus  h S ,  T  j   is an
 NCI-pair .

 Now suppose that  G  5  Z p d ,  where  d  >  3 .  Set  S 9  5  h a 0  ,  .  .  .  ,  a p 2 2
 0  j  <  h z p d 2 2 j   and

 T  9  5  h a 0  ,  .  .  .  ,  a p 2 2
 0  j  <  h z p d 2 2 1 p d 2 1 j .  If  p d 2 2  .  k ,  then let

 H S  5  h z 1  ,  .  .  .  ,  z k jk a 0 l  <  S 9 ,
 T  5  h z ,  .  .  .  ,  z k jk a 0 l  <  T  9 ;

 if  p d 2 2  <  k ,  then let

 H  S  5  ( h z ,  .  .  .  ,  z k 1 1 j \ h z p d 2 2 j ) k a 0 l  <  S 9 ,
 T  5  ( h z ,  .  .  .  ,  z k 1 1 j \ h z p d 2 2 j ) k a 0 l  <  T  9 .

 Now  K  : 5  k S 9 l  5  k T  9 l  5  k z p d 2 2 l  >  Z p 2 ,  and  G  5  K  <  zK  <  ?  ?  ?  <  z p d 2 2 2 1 K .  Then  z i K  is the
 vertex-set of the connected component of both Cay( G ,  S 9 ) and Cay( G ,  T  9 ) containing
 the vertex  z i .  Let  C i   and  D i   denote the connected components of Cay( G ,  S 9 ) and of
 Cay( G ,  T  9 ) ,  respectively ,  with vertex set  z i K .  There is  s  P  Aut( K ) such that
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 ( z p d 2 2
 ) s  5  z p d 2 2 1 p d 2 1

 ,  which fixes  a 0 ( 5  z p d 2 1
 ) .  Therefore ,   S 9 s  5  T  9  and so  s   induces an

 isomorphism from Cay( K ,  S 9 ) to Cay( K ,  T  9 ) .  Let  r   be a map from  k z l   to  k z l   defined by

 r  :  z i u  5  z i u s  ,  where  i  P  h 0 ,  1 ,  .  .  .  ,  p d 2 2  2  1 j  and  u  P  K .

 Then ( z i K ) r  5  z i K ,  and  r   induces an isomorphism from  C i   to  D i   for every  i .  Thus  r
 preserves adjacency from Cay( G ,  S 9 ) to Cay( G ,  T  9 ) .

 We want to prove that  r   is an isomorphism from Cay( G ,  S ) to Cay( G ,  T  ) .  Write
 z 9  5  z p d 2 2

   and  K  5  k a 0 l  <  z 9 k a 0 l ?  ?  ?  <  z 9 p 2 1 k a 0 l .  Since ( z h p d 2 2 k a 0 l ) s  5  z h (  p d 2 2 1 p d 2 1 ) k a 0 l  5
 z h p d 2 2 k a 0 l   for  h  5  0 ,  1 ,  .  .  .  ,  p  2  1 ,  we have ( z 9 i k a 0 l ) s  5  z 9 i k a 0 l   for  i  5  0 ,  1 ,  .  .  .  ,  p  2  1 .
 Furthermore ,  write  G  as the union of cosets of  k a 0 l   by

 G  5  !

 0 < s < p d 2 2 2 1
 !

 0 < t < p 2 1
 z s z 9 t k a 0 l .

 Now ( z s z 9 t k a 0 l ) r  5  z s ( z 9 t k a 0 l ) s  5  z s z 9 t k a 0 l ,  and ,  consequently ,   r   maps  z i k a 0 l   to  z i k a 0 l   for
 all  i  P  h 0 ,  1 ,  .  .  .  ,  p d 2 1  2  1 j .  Thus  r   also preserves adjacency from Cay( G ,  S  \ S 9 ) to
 Cay( G ,  T  \ T  9 ) .  It follows that  r   is an isomorphism from Cay( G ,  S ) to Cay( G ,  T  ) .  Since
 G  has the  m -DCI property ,  there is  a  P  Aut( G ) such that  S a  5  T .  Let  z  a  5  z i   for some
 integer  i .  Since  k a 0 l   is a characteristic subgroup of  k z l ,  k a 0 l a  5  k a 0 l ,  so

 h a i
 0 ,  .  .  .  ,  a i (  p 2 2)

 0  j  5  h a 0  ,  .  .  .  ,  a p 2 2
 0  j a  5  h a 0  ,  .  .  .  ,  a p 2 2

 0  j .

 Thus  i  ;  1 (mod  p ) ;  namely ,   i  5  1  1  lp  for some integer  l .  Therefore ,  ( z p d 2 2
 ) a  5  z ip d 2 2

 5
 z (1 1 lp ) p d 2 2

 5  z p d 2 2 1 lp d 2 1
 .  Thus ( z p d 2 2 k a 0 l ) a  5  z p d 2 2 k a 0 l ,  and so

 h z i ,  .  .  .  ,  z i k jk a 0 l  5  ( h z ,  .  .  .  ,  z k jk a 0 l ) a  5  h z ,  .  .  .  ,  z k jk a 0 l ,  if  p d 2 2  .  k ;
 or

 h z i ,  .  .  .  ,  z i ( k 1 1) jk a 0 l  5  ( h z ,  .  .  .  ,  z k 1 1 jk a 0 l ) a  5  h z ,  .  .  .  ,  z k 1 1 jk a 0 l ,  if  p d 2 2  <  k .

 By Lemma 2 . 4 ,  in either case  i  ;  1 (mod  p d 2 1 ) ,  so  p d 2 1  divides  lp .  In particular ,  since
 d  >  3 , p 2  divides  lp .  Therefore ,  ( z p d 2 2

 ) a  5  ( z 1 1 lp ) p d 2 2
 5  z p d 2 2 1 lp ? p d 2 2

 5  z p d 2 2
 ,  which is not

 in  T ,  a contradiction .  Thus  h S ,  T  j   is an NCI-pair of  G .
 Step  3 .  Assume that  j  5  0 ;  namely ,   m  5  kp .  First ,  suppose that  G  is neither  Z p d   nor

 Z 2 p d .  Then  z p d
   is of order greater than 2 .  Set  S 9  5  h a 0  ,  .  .  .  ,  a p 2 2

 0  j  <  h z p d
 ,  z  2 p d j   and

 T  9  5  h a 2 1
 0  ,  .  .  .  ,  a 2 (  p 2 2)

 0  j  <  h z p d
 ,  z 2 p d j .  If  p d  >  k ,  then let

 H  S  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  S 9 ,

 T  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  T  9 ;
 if  p d  <  k  2  1 ,  then let

 H  S  5  ( h z ,  .  .  .  ,  z k j \ h z p d j ) k a 0 l  <  S 9 ,

 T  5  ( h z ,  .  .  .  ,  z k j \ h z p d j ) k a 0 l  <  T  9 .

 Arguing as for the case  G  ?  Z p d   in Step 2 ,  we know that Cay( G ,  S )  >  Cay( G ,  T  ) ,  but  S
 is not conjugate under Aut( G ) to  T ,  so  h S ,  T  j   is an NCI-pair .

 Next suppose that  G  5  Z p d ,  where  d  >  3 .  Then  z p d 2 2 1 p d 2 1
 ̧  h z p d 2 2

 ,  z 2 p d 2 2 j .  Set  S 9  5
 h a 0  ,  .  .  .  ,  a p 2 2

 0  j  <  h z p d 2 2
 ,  z 2 p d 2 2 j   and  T  9  5  h a 0  ,  .  .  .  ,  a p 2 2

 0  j  <  h z p d 2 2 1 p d 2 1
 ,  z  2 p d 2 2 2 p d 2 1 j .  If

 p d 2 2  >  k  then let

 H  S  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  S 9 ,

 T  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  T  9 ;

 if  p d 2 2  <  k  2  1 ,  then let

 H  S  5  ( h z ,  .  .  .  ,  z k j \ h z p d 2 2 j ) k a 0 l  <  S 9 ,

 T  5  ( h z ,  .  .  .  ,  z k j \ h z p d 2 2 j ) k a 0 l  <  T  9 .



 Cai Heng Li 662

 Arguing as for the case  G  5  Z p d   in Step 2 ,  we know that Cay( G ,  S )  >  Cay( G ,  T  ) ,  but  S
 and  T  are not conjugate under Aut( G ) ,  so  h S ,  T  j   is an NCI-pair .

 Finally ,  suppose that  G  5  Z 2 p d ,  where  p  is an odd prime and  d  >  2 .  Then
 z p d 2 1

 ?  z  2 p d 2 1
 .  Set  S 9  5  h a 0  ,  .  .  .  ,  a p 2 2

 0  j  <  h z p d 2 1
 ,  z  2 p d 2 1 j   and  T  9  5  h a  2 1

 0  ,  .  .  .  ,  a 2 (  p 2 2)
 0  j  <

 h z p d 2 1
 ,  z 2 p d 2 1 j .  If  p d 2 1  .  k  then let

 H  S  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  S 9 ,
 T  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  T  9 ,

 if  p d 2 2  <  k  2  1 ,  then let

 H  S  5  ( h z ,  .  .  .  ,  z k j \ h z p d 2 1 j ) k a 0 l  <  S 9 ,
 T  5  ( h z ,  .  .  .  ,  z k j \ h z p d 2 1 j ) k a 0 l  <  T  9 .

 Arguing as for the case  G  ?  Z p d   in Step 2 ,  Cay( G ,  S )  >  Cay( G ,  T  ) ,  but  S  and  T  are not
 conjugate under Aut( G ) ,  so  h S ,  T  j   is an NCI-pair .

 Case  2 .  Suppose that  p  5  2 and  d  >  3 .  If  m  5  3 ,  then let  S  5  h a ,  a  5 ,  a  2 j   and
 T  5  h a ,  a 5 ,  a 6 j .  It is easy to show that  h S ,  T  j   is an NCI-pair (see the following
 arguments) .  Assume that  m  >  4 .

 First ,  we treat the case  d  5  3 .  Let  G  5  k a l  3  X ,  where  k a l  5  Z 8  and  u X  u   is odd .  Write
 m  5  4 r  1  s  such that  r  >  1 and  s  5  0 ,  1 ,  2 or 3 .  Take  R , R 0  ‘  X  \ h 1 j   such that  u R u  5  r  and
 u R 0 u  5  s ,  and set

 H  S  5  h a ,  a 5 ,  a 2 ,  a 4 j R  <  R 0  ,
 T  5  h a ,  a  5 ,  a  6 ,  a  4 j R  <  R 0  .

 Let  r   be a map from  G  to  G ,  defined by

 a 2 j 1 k x  5  a  6 j 1 k x ,  where  0  <  j  <  3 ,  k  5  0  or  1 ,  and  x  P  X .

 We are going to prove that  r   is an isomorphism from Cay( G ,  S ) to Cay( G ,  T  ) .  Every
 element of  G  can be written as  a i x  for some integer  u  P  h 0 ,  1 ,  .  .  .  ,  7 j   and some  x  P  X .
 By definition ,  ( a i x ) r  5  a i 9 x  for some integer  i 9  P  h 0 ,  1 ,  .  .  .  ,  7 j .  Taking two adjacent
 vertices  y  1  5  a i 1 x 1  and  y  2  5  a i 2 x 2  of Cay( G ,  S ) ,  we have  a i 2 2 i 1 x  2 1

 1  x 2  5  y  2 1
 1  y  2  P  S .  Thus

 a i 2 2 i 1  P  h a ,  a  5 ,  a 2 ,  a 4 j   and  x  2 1
 1  x 2  P  R .  Now  y  r

 1  5  a i 9 1 x 1  and  y  r
 2  5  a i 9 2 x 2  .  To prove that  r   is an

 isomorphism ,  we need only prove that ( y  p
 1 ) 2 1 y  r

 2  5  a i 9 2 2 i 9 1 x 2 1
 1  x 2  P  T .  Since  x  2 1

 1  x 2  P  R ,  we
 need only prove that  a i 9 2 2 i 9 1  P  h a ,  a 5 ,  a 6 ,  a  4 j .  Now  r   induces a function on  h 0 ,  1 ,  .  .  .  ,  7 j
 (mod  8) .  Without loss of generality ,  we may consider  r   as this function ,  so
 (2 j  1  k ) r  ;  6 j  1  k  (mod  8) .  Write  i 1  5  2 j 1  1  k 1  such that  k 1  5  0 or 1 .  Then  i r

 1  5  6 j 1  1  k 1  .
 If  k 1  5  0 ,  then  i 1  5  2 j 1  and

 i 2  5 5
 2 j 1  1  1 ,
 2 j 1  1  5  5  2(  j 1  1  2)  1  1 ,

 2 j 1  1  2  5  2(  j 1  1  1) ,
 2 j 1  1  4  5  2(  j 1  1  2) .

 Therefore ,   i r
 1  5  6 j 1  and

 i r
 2  5 5

 6 j 1  1  1 ,

 6(  j 1  1  2)  1  1  5  6 j 1  1  13 ,

 6(  j 1  1  1)  5  6 j 1  1  6 ,

 6(  j 1  1  2)  5  6 j 1  1  4 .
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 Consequently ,   i r
 2  2  i r

 1  ;  1 ,  5 ,  6 or 4 (mod  8) ,  as required .  If  k 1  5  1 ,  then  i 1  5  2 j 1  1  1 and

 i 2  5 5
 2 j 1  1  1  1  1  5  2(  j 1  1  1) ,
 2 j 1  1  1  1  5  5  2(  j 1  1  3) ,

 2 j 1  1  1  1  2  5  2(  j 1  1  1)  1  1 ,
 2 j 1  1  1  1  4  5  2(  j 1  1  2)  1  1 .

 Therefore ,   i r
 1  5  6 j 1  1  1 and

 i r
 2  5 5

 6(  j 1  1  1)  5  6 j 1  1  6 ,
 6(  j 1  1  3)  5  6 j 1  1  18 ,

 6(  j 1  1  1)  1  1  5  6 j 1  1  7 ,
 6(  j 1  1  2)  1  1  5  6 j 1  1  5 .

 Consequently ,   i r
 2  2  i r

 1  ;  5 ,  1 ,  6 or 4 (mod  8) ,  as required .  Thus  r   is an isomorphism
 from Cay( G ,  S ) to Cay( G ,  T  ) .  Since  G  has the  m -DCI property ,  there exists
 a  P  Aut( G )   such that  S a  5  T .  Consider  G #  5  G  / X .  We have  S #  5  SX  / X  5  h a #  ,  a #  5 ,  a #  2 ,  a #  4 j
 and  T #  5  TX  / X  5  h a #  ,  a #  5 ,  a #  6 ,  a #  4 j .  Let  a #    be the element of Aut( G #  ) induced by  a .  Then
 S #  a #  5  T #  ;   that is ,   h a #  ,  a #  5 ,  a #  2 ,  a #  4 j a #  5  h a #  ,  a #  5 ,  a #  6 ,  a #  4 j .  Thus  a #  a #  5  a #    or  a #  5 ,  and so ( a #  2 ) a #  5  a #  2  or
 a #  1 0 ( 5  a #  2 ) ,  respectively ,  which is not in  T ,  a contradiction .  Therefore ,   h S ,  T  j   is an
 NCI-pair .

 Now assume that  d  >  4 .  Let  n 9  5  n  / 4 and let  a 0  5  a 2 d 2 2
 .  Then  a 0  5  z n 9  is of order 4 ,

 and since 4  3  n 9 , a n 9
 0  5  1 .  Write  m  5  4 k  1  j ,  where 0  <  j  <  3 , k  >  1 ,  and if  j  5  0 then

 k  .  1 .  We use a method similar to that in Case 1 to construct NCI-pairs .  (In fact ,  this
 case can be treated with the case in which  p  is odd in a uniform way .  The reason why
 we treat them separately here is only so that the arguments will be more readable . )

 Step  1 .  Assume that  j  5  1 or 2 .  Set  S 0  5  h a 0  ,  a j
 0 j   and  T 0  5  h a 2 1

 0  ,  a 2 j
 0  j ,  and let

 H  S  5  h z ,  .  .  .  ,  z k jk a 0 l  <  S 0  ,
 T  5  h z ,  .  .  .  ,  z k jk a 0 l  <  T 0 .

 Arguing as in Step 1 of Case 1 ,   h S ,  T  j   is an NCI-pair of  G .
 Step  2 .  Assume that  j  5  3 ;  namely ,   m  5  4 k  1  3 .  First ,  suppose that  G  ?  k a l   ( >  Z 2 d ) .

 Then  z 2 d
 ?  1 and  G  5  k a l  3  k z  2 d l .  If 2 d  .  k ,  then let

 H S  5  h z ,  .  .  .  ,  z k jk a 0 l  <  h a 0  ,  a  2
 0 ,  z  2 d j ,

 T  5  h z ,  .  .  .  ,  z k jk a 0 l  <  h a 2 1
 0  ,  a 2 2

 0  ,  z  2 d j ;
 if 2 d  <  k ,  then let

 H S  5  ( h z ,  .  .  .  ,  z k 1 1 j \ h z  2 d j ) k a 0 l  <  h a 0  ,  a  2
 0 ,  z  2 d j ,

 T  5  ( h z ,  .  .  .  ,  z k 1 1 j \ h z 2 d j ) k a 0 l  <  h a 2 1
 0  ,  a 2 2

 0  ,  z 2 d j .

 Arguing as in Step 2 of Case 1 ,   h S ,  T  j   is an NCI-pair .
 Now suppose that  G  5  Z 2 d   for  d  >  4 .  If 2 d 2 2  .  k ,  then let

 H S  5  h z ,  .  .  .  ,  z k jk a 0 l  <  h a 0  ,  a  2
 0 ,  z  2 d 2 2 j ,

 T  5  h z ,  .  .  .  ,  z k jk a 0 l  <  h a 0  ,  a 2
 0 ,  z 2 d 2 2 1 2 d 2 1 j ;

 if 2 d 2 2  <  k ,  then let

 H S  5  ( h z ,  .  .  .  ,  z k 1 1 j \ h z  2 d 2 2 j ) k a 0 l  <  h a 0  ,  a  2
 0 ,  z  2 d 2 2 j ,

 T  5  ( h z ,  .  .  .  ,  z k 1 1 j \ h z 2 d 2 2 j ) k a 0 l  <  h a 0  ,  a 2
 0 ,  z 2 d 2 2 1 2 d 2 1 j .

 Arguing as in Step 2 of Case 1 ,   h S ,  T  j   is an NCI-pair of  G .
 Step  3 .  Assume that  j  5  0 ;  namely  m  5  4 k .  First ,  suppose that  G  ?  Z 2 d .  Then  z 2 d

   is of
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 order greater than 2 .  Set  S 9  5  h a 0  ,  a  2
 0 j  <  h z  2 d

 ,  z  2 2 d j   and  T  9  5  h a  2 1
 0  ,  a  2 2

 0  j  <  h z  2 d
 ,  z  2 2 d j .  If

 2 d  >  k ,  then let

 H  S  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  S 9 ,
 T  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  T  9 ;

 if 2 d  <  k  2  1 ,  then let

 H  S  5  ( h z ,  .  .  .  ,  z k j \ h z  2 d j ) k a 0 l  <  S 9 ,
 T  5  ( h z ,  .  .  .  ,  z k j \ h z  2 d j ) k a 0 l  <  T  9 .

 Arguing as for the case  G  ?  Z 2 d   in Step 3 of Case 1 ,  we know that Cay( G ,  S )  >
 Cay( G ,  T  ) ,  but  S  is not conjugate under Aut( G ) to  T ,  so  h S ,  T  j   is an NCL-pair .

 Next ,  suppose that  G  5  Z 2 d .  Then  z  2 d 2 3 1 2 d 2 1
 ̧  h z 2 d 2 3

 ,  z  2 2 d 2 3 j .  Set  S 9  5  h a 0  ,  a  2
 0 j  <

 h z 2 d 2 3
 ,  z 2 2 d 2 3 j   and  T  9  5  h a 0  ,  a 2

 0 j  <  h z  2 d 2 3 1 2 d 2 1
 ,  z 2 2 d 2 3 2 2 d 2 1 j .  If 2 d 2 3  >  k ,  then let

 H S  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  S 9 ,
 T  5  h z ,  .  .  .  ,  z k 2 1 jk a 0 l  <  T  9 ,

 if 2 d 2 3  <  k  2  1 ,  then let

 H S  5  ( h z ,  .  .  .  ,  z k j \ h z  2 d 2 3 j ) k a 0 l  <  S 9 ,
 T  5  ( h z ,  .  .  .  ,  z k j \ h z  2 d 2 3 j ) k a 0 l  <  T  9 .

 Arguing as for the case  G  5  Z 2 d   in Step 3 of Case 1 ,  we know that Cay( G ,  S )  >
 Cay( G ,  T  ) ,  but  S  and  T  are not conjugate under Aut( G ) ,  so  h S ,  T  j   is a NCI-pair .  This
 completes the proof of the theorem .  h
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