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Abstract

We present a simple method to calculate the Stokes matrix for the quantum cohomology of the
projective spaceé:Pk_l in terms of certain hypergeometric group. We present also an algebraic
variety whose fibre integrals are solutions to the given hypergeometric equation.
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1. Generalized hypergeometric function

We begin with a short review on the motivation of our problem making reference to the
works [5,11] where one can find precise definitions of the notions below.

At first, we consider ak-dimensional Frobenius manifold with flat coordinates
(t1,...,1r) € F where the coordinate corresponds to coefficients of the bagis of
the quantum cohomologsf*(CP*~1). On H*(CP*~1) one can define so called quantum
multiplication

AgoAg= C;ﬂAy,

or

E-mail addressesanabe@mpim-bonn.mpg.de, tanabe@mccm&nabe @math.upatras.gr (S. Tanabé).

0007-4497/% — see front mattéf 2004 Elsevier SAS. All rights reserved.
doi:10.1016/j.bulsci.2004.05.001


https://core.ac.uk/display/82422909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

812 S. Tanabé / Bull. Sci. math. 128 (2004) 811-827

on the level of vector fields oR. The Frobenius manifold is furnished with the Frobenius
algebra on the tangent spa@gF depending analytically om € F, T, F = (A, (,);)
where A, is a commutative associativ@ algebra and, );: A; x A; — C a symmetric
non-degenerate bilinear form. The bilinear fofm), defines a metric orF and the
Levi-Civita connexionV for this metric can be considered. Dubrovin introduces a
deformed flat connexioV on F by the formulaV,v := V,v + xu - v with x € C the
deformation parameter. Further he extenddo F x C. Especially we havevy , =
% — E(1) — £, whereE(r) corresponds to the multiplitan by the Euler vector field
E(1) =2 1¢jzock-12— J')fj% +ktogp.

After [5,11] the quantum cohomolog¥(x) = (u1(x), ..., ux(x)) for the projective
space CP*~! at a semisimple point0,#,0,...,0) (i.e. the algebra(A,,(,);) is
semisimple there) satisfies the following system of differential equation:

dyti(x) = (kCz(t) + ﬁ)ﬁ(x), (1.1)
X
where
0 0 0 €2
10 0O O
C200.22.0.....00 = (C35)1 = | O 1 0 0
00 .. 1 0

The matrixu denotes a diagonal matrix with rational entries:
k—1 k-3 k—3 k-1
5 T T [

= diag{ —

The last componeniX(z) (after the change of variables:= kx €2/%) of the above
system for the quantum cohomology satisfies a differential equation as follows [11]:

[(ﬂz)k _ Z](]Z(—k+l)/2uk (Z) — 0, (12)

with ¢, = za"—z After the Fourier—Laplace transformation
ur) = /e’\zz(_k+l)/2uk (z)dz,

we obtain an equation as follows:

k
[(m + k- (%) ]m) _o.

Here the notatior?, stands forz\a%. After multiplying A* from the left, we obtain
[0 + D = 0205 — D@5 — D)+ (9 — (k — D) ]a(x) =0,
The equation fokii (1), the Fourier—Laplace transform gfz(~*+1/2,* () should be

MO0 = @ = D@1 =2 @r =] (2a() =0. (1.3)
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Itis evident that the Stokes matrix fgfz(~1+4)/2,% (z) is identical with that of the original
solutionu* (z).

Before proceeding further, we remind tielowing theorem that gives connexion
between the Stokes matrix of the systéhil) with the monodromy of Eq. (1.3). Let us
consider the Fourier—Laplace transform of the systér):

(05, +idp)i (1) = (kCa(1)3 — )i (h). (1.1)

In a slightly more general setting, let abserve a system with regular singularities:

(A= n-id0)dai(h) = (idx +A100))i (%) (1.1

with A € GL(k, C) whose eigenvalugé.1, ..., o) are all distinct A1 (1) € End(C*) ® O¢
with A1(0) = diag(p1, . .., px) where none of the;’s is an integer. We call solutions to
a scalar differential equation deduced frginl”) component solutiond hus solutions to
(1.3) are component solutions ¢tb.1").

Theorem 1.1 [1,5]. Under the assumption that the eigenvalues of the matii¢0) are
distinct, the Stokes matrik for the component solutions ¢1.1) expresses the symmetric
Gram matrixG of the component solutions ¢i.1') as follows

'S+ S=2G.

As for the definition of the Stokes matrikfor the systen(1.4) we refer to [5,11]. The
main theorem of this article is the following:

Theorem 1.2. Thei, j componens;;, 1 <i, j <k, of the Stokes matrix to the systétl)
has the following expression
s | DTGy, i=
0, i<j.
This theorem has already been shown by Dz@etti [11] by means of a detailed study

of braid group actions etc on the set of solutionglt®). We present here another approach
to understand the structure of the Stokes matrix.

Remark 1. In this article we observe the convention of the matrix multiplication as follows:
k—1

A - x = (aij)ogi, j<k-1(Xi)ogi<h—-1= <Zaini>
i=0 0<j<k—1

The matrix operates on the vector from left, in contrast to the convention used in [5,11].

On the other hand it has been known since [3] that a collection of coherent sheaves
O(—i), 0<i <k — 1, onCP*1 satisfies the following relation

Hom(O(—i), O(—j)) =87 (C*), 0<i,j<k-1,
Ext'(O(—i), O(—j)) =0, 0<i,j<k-1,£>0.
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These relation entails immediately the equality

. Y ¢ . N kricj-1Cimj, 2,
x(O(=1),0(=))) = ;)(—1) Ext'(O(=i), O(=))) = {O, i
We consider action of the braid gro@p € B;, 1< i < k — 1, that corresponds to the
braid action betweenth basis andi + 1)-st basis of the space on which act a matrix. In
our situation 8; represents the braid action betwe@(l — i) andO(—i). In literature on
coherent sheaves on algebraic varieties, this procedure is called mutation (e.g. [9]). Let us
denote bys an element of the braid grougy

B=pB1(B2B1) - (Br-1---B2B1).

We introduce a matrix of reordering = §; x—1—i, 0 < i < k — 1. In this situation our
Stokes matrix from Theorem 1.2 is connected with the matrie (x (O(—i), O(—))),
0<i, j <k—1,inthe following way,

'S =JBxBJ.

Eventually it turns out thag = S~1. This general fact on the braid group is explained
in [16], 82.4.

As our Stokes matrix is determined up to the change of basis, including effects by braid
group actions, the Theorem 1.2 is a confirmation of an hypothesis [6] that the matrix for
certain exceptional collection of coherent sheaves on a good Fano VEmetst coincide
with the Stokes matrix for the quantum cohomologyof

Our strategy to prove Theorem 1.2 consists in the study of sy&tdr), instead of (1.1)
itself.

Further we consider so called the Kummer covering (naming after N. Katz) of the
projective spac€P! by ¢ = A¥ to deduce an hypergeometric equation:

1 2
|:§(z9;)" - (z‘}; - %> (z?; — %> N 1)})(4“) =0, (1.4)

for v(A¥) = Aii(1). We remind of us here a famous theorem due to A.H.M. Levelt that
allows us to express the (global) monodromy group of the solutiofl®) in quite a
simple way. For the hypergeometric equation in general,

k k
[]‘[(0; —ap) — ¢ [J@c - ﬁe)]v(é) =0, (1.5)
=1 =1

we define two vectoréAs, ..., Ax) and(Bz1, ..., B) in the following way:

k
T1( - €70) = i + Ark 2 stk 2 44 A,
=1

k .

[T =€) = + Bar*~* + Bot* 2+ .. + Bi.
=1
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Definition 1.3. A linear mapL € GL(k, C) is called pseudo-reflexion if it satisfies the
condition rankid; —L) = 1. A pseudo-reflexionR satisfying an additional condition
R? =id; is called a reflexion.

Proposition 1.4 [4,13]. For the solutions tq1.5), the monodromy action on them at the
points¢ = 0, oo, 1 has the following expressions

0 0 ... 0 -—-A;
1 0 ... 0 —Ar1
ho = 0 1 0 —-Ar_» ,
0O 0 --- 1 -—-A1
0 0 --- 0 —B (1.6)
1 0 0 —Bi-1
(hoo)_lZ 0 1 0 —Bi_2
0O 0 ... 1 -B1

whereash1 = (hohoo) 1 is a pseudo-reflexion.

It is worthy to notice that the above proposition does not precise for which bases of
solution to (1.5) the monodromy is calculated. As a@rollary to the Proposition 1.4,
however, we see that the monodromy action on the solutions to our equatHrcan
be written down with respect to a certain basis as follows:

0O 0 ... 01
1 0 ... 0O
ho=|0 1 ... 00
0O 0 ... 10
rC1 1 0 0 O (1.7)
—xC2 0 1 0 O
B — : P P
(-DFLCr—2 0 0 10
(-D*Cr1 0 O 01
—(=1)k 00 00
In other words,
det(r — ho) = t* — 1, dett — hoo) = (t — DF. (1.8)
Furthermore we have,
(—=1)k-1 00 00
D21 10 00
hi=| D2 01 00 (1.9)

+C1 00 ... 01
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In the next section we will see that the theory of Levelt supplies us with necessary data to
calculate further the Stokes matrix of the solutions to (1.1)

2. Invariantsof the hypergeometric group

Let us begin with a detailed description of the generators of the hypergeometric group
defined for the solutions to Eq. (1.3).

Proposition 2.1 (cf. [8], I, 8.5). The generators of the hypergeometric gratif Eq.(1.3)
are expressed in terms of the matrices introduced in the Propoditibas follows

Mo=hE=1, Mi=h1=(hoheo)™t, Mo =hk,

My =hlhhi, (i=12,..k=1), (2.1)
whereM,; denotes the monodromy action around the poianPi. The generators around
singular pointsw’ = e2*v =1/ naturally satisfy the Riemann—Fuchs relation

MooM g1 M 2 --- My, My = idg. (2.2)

w

Proof. Let us think of ak-leaf coveringévPi of CP} that corresponds to the Kummer
coveringzk = A. In lifting up the path around = 1 the first leaf of@i, the monodromy
h1 is sent to the conjugation with a path aroune: co. That is to say we havé/, =
hgolhlhoo. For other leaves the argument is similar
Let us denote b X ak x k matrix that satisfies the relation
gxKig=x¥, (2.3)

for every elemeng of a groupK c GL(k, C). From the definition, the set of ak X for
a groupk represents & vector space in general. We will call a matrix of this space the
quadratic invariant of the groui.

In the special case in which we are intéegk the following statement holds.

Lemma 2.2. For the hypergeometric group/ generated by the pseudo-reflexions as in
(2.1), for every X there exists a non-zetbo x k matrix X such thatx” = 1 X# for
somei € C\ {0}.
Proof. The relation
hiX'hy=X (2.4)
gives rise to equations ovp; andx jo. That is to say, the first row of (2.4) corresponds to
(—1)'iCixoo— (=D xoi =x0i, 1<i<k—1,
while
(—=1)'iCixoo— (=D txio=xi0, 1<i<k—1
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Thus we obtained @ — 1) linearly independent equations. Further by concrete calculus
one can easily see that

Mwe =idy +Tp,
where
P %% ... 1P 0 ... 0
T
T = . : . : N E
. . : . : : :
1‘(() )Tk—l tj(_ )Tk—l té )Tk—l 0O ... O

with (k — ¢)-zero columns from the right. The remaining columns are generatedfiom
after simple linear recurrent relations by an inductive way. The relagX’ M, = X
gives rise to new equations

(1+ t{l)rl)lel + linear functions in(xg;, x;0) = x11,
with 1+ P71 = 14 (:C1)2 £ 1 and

(1+ til)rl)xli + linear functions in(xg;, x;0, X11) = X1,

(1+ til)rl)xil + linear functions in(xg;, x;0) = X;1.

Thus we get R — 3 new linearly independent equations. In generaliof) term, we get
from the relationM « X ‘M, =X, 1< €<k —1,

(1+ te(g)re)zxu + linear functions in(x,;, xj,, 0 < v < £ — 1) = xyy,
with 147" 7p = =1+ (+Cp)? # 1. Forx;
(1+ lél)‘l,'g)xig + linear functions in(x,;, x;v, 0 < v < £ — 1, x¢¢) = xi9.

In this way we get a set of® — 1) + Z'g;i(Z(k —¢) — 1) = k% — 1 independent linear
equations with respect to the elementsfof O

The quadratic invariank o for Hy = {ho, hoo} is invariant with respect tdf. After
Lemma 2.2,C vector space of quadratic invariamXd’ is one-dimensional. Thus every
XHo is alsoX . Hence we can calculate the quadratic invari&ft after the following
relations,

hoX® 'ho=x", hoo XM hoy = X1 (2.5)
From [4] we know that the inverse 0 = X | if it exists, must be a Toeplitz matrix
ie.
X0 X1 X2 cee Xk—1
X_1 X0 X1 oo Xg=2
(XHO)_l — X_2 X_1 X0 ... Xk—3

X_(k=1) X—(k-2) X—(k=3) --- X0
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Making use of this circumstances, it is possible to show that the system of equations that
arises from the relations

oo (XH0) oo = (XH0) T thg(xH0) g = (x70) 7T,
for (X Ho)~1 consists of 2 — 1) equations.

Xf—1—i =X_i_1, (2.6)

(D" 1+ (—DKCraxk 2 + - 41 Caxo_i —i Cox1_i + kx_
=X_-1—i- (2.6//)

This calculates the matriX ” for the case-odd.
As for the casé-even, our matrixx” has the following form

0 y1 y2 cee Vk—1
y-1 0 1 N
xH_| »y-2 y-1 0 =R
y-tk=1) Y-(k-2) Y-*k-3 --- O
wherey_—y, ..., yk—1 satisfy 2k — 1) equations for some constayi,
yvi+y_i=0, yi—y_i=2(-1)"iCiyo, 1<i<k-—1, (2.6”)

which are derived from (2.5). Thus the mat#¥’ for the case-even is obtained.
We remember here a classical theorem on the pseudo-reflexions.

Theorem 2.3 (cf. Bourbaki Groupe et Algébre de Lie, Chapitre V, 86, Exercise.8) .E
be a vector space with basiss, ..., ¢;), and their dual basig f1, ..., f4) € E*. Let us
seta;; = fi(e;). The pseudo-reflexian with respect to the basis is defined as

si(ej) =e€; — fi(ej)e,- =ej —dajje;.

Set
a1l a»1 asi ... aqi 0 0 0 0
0 azp azx ... ag2 a2 O 0 0
v=| 0 0 as ... as|, y=|as as O 0]. @7
0 0O ... 0 au aiyg azg ... ag-—1q4 O

Under these notations, the composition of all possible reflexigns 1 - --s1 (a Coxeter
elementwith respect to the basies, .. ., ¢q) is expressed as follows

SdSd—1---s1=(idg —V)(idg —i—U)_l. (2.8)

Proof. For 1< i, k <d we define

yi=si-1---51(¢&;).
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Itis possible to see that
ei=Yyi+ Y. @y sa-eesi(e) =yi— Y ariyk.
k<i<d i<k<d
The statement follows immediately from these relations.

To establish a relationship between the invari&ft and the Gram matrix necessary
for calculus of the Stokes matrix, we investtg a situation where the generators of the
hypergeometric group have special forms. Namely consider a hypergeometricigmafup
rankk generated by pseudo-reflexioRg, ..., Rx—1 where

Rj =idy—0Qj, (2.9)
with
0O ... 0 to O ... O
0O ... 0 1 0 ... O
Q= 0 ... 0 52 0 ... 0f 0<j<k—1, (2.10)
0 0 tj k-1 0o .. 0

all zero components except for theth column. Let us define the Gram matr&
associated to the above collection of pseudo-reflexions:

100 110 .o Ik-10
101 111 cee Ik-11
G = 102 iz ... f-12 |. (2.12)
0k-1 k-1 -+ Tk—1k-1

We shall treat the cases wheeis either symmetric or anti-symmetric. Let us introduce
an upper triangle matrif satisfying

G=S+'S (respG=5-"9),

for a symmetric (anti-symmetric) matrig. In the anti-symmetric case, we shall use a
convention so that the diagonal part$fs a scalar multiplication on the unit matrix. It is
easy to see that for the symmetric (resp. anti-symmetfithe diagonal element; =2
(resp.tj; = 0).

Proposition 2.4. For an hypergeometric groufy defined oveR, the following statements
hold.

(1) Suppose that the space of quadratic invariant matrikésis 1-dimensional. Thex I’
coincides with the Gram matri& (2.11)up to scalar multiplication.
(2) The composition of all generatoRy, ..., R;_1 gives us the Seifert form
Ri_1---Ro=F'S-57%, (2.12)

where to the minus sign corresponds symmeticand to the plus sign anti-
symmetrioG.
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Proof. (1) Itis enough to prove that the Gram matrix is a quadratic invariant. We calculate
R;G'R; = (idy —0,)G(ide — Q).

It is easy to compute

QG = (tajtjp)o<a,b<k~1, G' Q) = (tjatjb)o<a,b<k—1,
0;G'Q;=1;;G'Q.

It yields the following equality,
G'Qj+0Q;G—Q;G"Qj = (tjp((A=1;)tja +1a}))ocq pek—1-

that vanishes foG symmetric withr;; = 2 and forG anti-symmetric with;; = 0.
(2) It is possible to apply directly our situation to that of Theorem 2.3. In the symmetric
casey;; =2 and

2 1o to ... fk-10 0 0 0 e 0

0 2 1 ... ftr-11 1o 0 0 e 0
V= 0 O 2 ... fk—12 , U= 120 121 0 0 ,

0O 0 ... O 2 th-10 tH-11 ... tk—1x-2 O

in accordance with the notation (2.7). Therfala (2.8) means (2.12) with minus sign. In
the anti-symmetric casg =0, 0<i <k — 1, and (2.7) yields (2.11) with plus sign0

Coroallary 2.5. We can determine the Stokes mafiky the following relation
S = (idy —Ri—1--- Ro) 'G, (2.13)

with the aid of the Gram matrix and pseudo-reflexions.

In some sense, a converse to Proposition 2.4 holds. To show this, we remember a
definition and a proposition from [14].

Definition 2.6. The fundamental sei« (L), ..., ux_1(1)) of the system(1.1”) is a set of
its component solutions satisfying the following asymptotic expansion:

o0
uj0) =0 =27y g 0= )",
r=0

where (Lo, ..., A,—1) are eigenvalues of the matrix. The exponentp; are diagonal
elements of the matriX1(0).

After [14], the fundamental set to the syst¢il”) is uniquely determined.
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Proposition 2.7 [14]. Every generator of an hypergeometric grofipover R defined for
the system of typél.1”) (without logarithmic solutiohis a product of pseudo-reflexions
of the following form expressed with respect to its fundamental set

0 ... 0 spo 0 ..0

, 0 ... 0 sp1 0 ..0
Mj=idg—| . . .. e (2.14)

0 - 0 5551 0 ... O

wheres;; =2 or 0.
We get the following corollary to the above Proposition 2.7.

Corollary 2.8. Assume that the hypergeometric gratips generated by pseudo-reflexions
To, ..., Tr—1 such thatrank(7; — idy) =1 for 0 < i < k — 1. Then it is possible to
choose a suitable set of pseudo-reflexions generaitgrigke (2.9), (2.10) up to constant
multiplication on Q;, so that they determine the quadratic invariant Gram matrix
like (2.11)

Proof. Proposition 2.7 implies that every generaipris a product of pseudo-reflexions
M; with s;; possibly different from;,. From the condition on the quadratic invariant
x!" and Proposition 2.4,;; must coincide with ;. That is to sayi™” must be generated by
Mo, ..., M_1withs;,/tja =sjp/tjp foralla, b, j € {0, ..., k—1}. This means thal has
as its generators the pseudo-reflexi®gs. . . , Rr—1 of (2.12) up to constant multiplication
on Qj. O

Proof of Theorem 1.2. First we remark that solutions to (1.3) have no logarithmic
asymptotic behaviour around any of their singular points except for the infinity.

In the case withk odd for X, there exists: # 0 such that the vectary :=' (1 +
(=D 1 —k 4Co, ..., (=D 2 Ch_o, (=D 1Cr_1) € R satisfies the relation:

xH059="(a,0,0,...,0).

Actually this fact can be proven almost without calculation in the following way. First we
introduce a series of vectors

We=(X_¢,X_¢41,...,Xk—1-¢), £=0,1,.... k—1
Then Eq.(2.6”) can be rewritten in terms aby:
k=1
- vo= Y (~1)iCi-xi¢=0 forl<e<k—1.
i=0
On the other hand, the vectay is linearly independent of the vectois, ..., wi_1 by
virtue of the construction of the matrix. Thereforeig - vg # 0 asvg # 0. This means the
existence of the non-zero constardas above.

This relation with Corollary 2.8 gives immediately the expression below for the pseudo-
reflexions
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0 ... 0 (=/*YZec,.r 0 ... 0
0 ... 0 — (=D k. r 0 0
, 0 ... 0 A+EDYH.r o0 0 .
i=ide=1g g —k-r 0 o Os/sk
0 ... 0 xCo-r 0 0
0 ... 0 (=¥ Cyjo1-r O ... O
(2.15)
whose Gram matrix is equal to
Gij=(=Di7H=LCi_ir, i>j,
Gii =1+ (=D .r, i=J (2.16)

Gij = (=" /iCji -, J>i

with some constant. As for the casé&-even, Eqs(2.6”) and Corollary 2.8 gives us the
expression (2.15) for the pado-reflexion generators.

Taking into account Theorem 1.1 for the symmetric Gram matrix, we obtain the desired
statement for the cageodd, as it is required from Proposition 257; =2 =2r.

For the casek-even, we remember a statement on the Stokes matrix from [1]
(Proposition 1.2) which @ims that if the matrixx of (1.1) has integer eigenvalues, the
equality detS +'S) = 0 must hold. Corollary 2.5 gives us the relation

§ = (idx +(idy — V) (idk +U) ") 7'G = (idy +U)G LG =ids +U,
with
Uj= (=D)L ior >
We shall choose the constant 1 so thatS+'S = 2id; +U + ‘U possesses an eigenvector

(1,-1,...,1, —1) with zero eigenvalue. O

Remark 2. The Gram matrix (2.16) that has been calculated for the fundamental set
(Definition 2.6) of Eq. (1.3) gives directly a suitable Stokes matrix we expected. For other
Fano varieties, however, the Gram matrix calculated with respect to the fundamental set
does not necessarily give a desirable form, as it is seen from the case of odd dimensional
quadrics. This situation makes us to be careful in the choice of the base of solutions for
which we calculate the Gram matrix.

3. Geometricinterpretation of the hypergeometric equation

In this section we show that Eq. (1.4) arises from the differential operator that
annihilates the fibre integral associated to the family of variety defined as a complete
intersection

Xy = {(x0,....xx) eCF fi(x) +5=0, fo(x) +1=0}. (3.1)
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where
J1(x) =xox1---xg, fo(x)=x0+x1+ -+ xk.

This result has been already announced by [7,8] and [2]. Our main theorem of this section
is the following

Theorem 3.1. Let us assume thati(f1(x) + s)|r < 0, R(f2(x) + s)|r < 0, out of

a compact set for a Leray coboundary cyde e H*t1(CK1\ X;) avoiding the
hypersurfacegi (x) +s = 0and f>(x) + 1 = 0. For such a cycle we consider the following
residue integral

1452 (s) = / A0 +5) 7 (f2@) + 1)_”2%, (3.2

r
for the monomiak' := xéo . ~x,ik, xY:=xg---x¢. Then the mtegralf(1 l)(s) satisfies the
following hypergeometric differential equation

k_ pk 1 2\ .. kN1,
[ﬁs ks(mk)(mk) (mkﬂz (5)=0 (3.3)

which has unique holomorphic solutionsat 0,

k
Mg:}j?@ . (3.4)

m>=0

We shall putz = 1/(k*s), to get (1.4) from (3.3). Our calculus is essentially based on
the Cayley trick method developed in [15].

Proof of Theorem 3.1. Let us consider the Mellin transform of the fibre integral (3.2)

ds
M%”%m=/¢$“%n7. (3.5)
I
For the Mellin transform (3.5), we have the following

k-1 k=1
MUEP (@) =@ [[Me+ic+1- vz)F(— D e+ —kz+vi+ kUZ)
£=0 £=0
xI'(—z 4+ v2) I (2), (3.5)
with g(z) a rational function in ®2, The formula(3.5) shall be proven below. In
substituting = 0, v = v2 = 1, we see that

k
I(ll)(s) /s g(z) r'e dz,
I"(kz)

Iy

wherelT denotes the path-ico, +ico) avoiding the poles of (z) = 0, —1, —2, ... From
this integral representation, Eq. (3.3) immediately follows in taking account the fact that
the factorg(z) plays no role in establishment of the differential equatiom.
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Proof of (3.5"). In making use of the Cayley trick, we transform the integ&) into the
following form

(v2,02) (it +5)+y +1) w1 vy o dy ds
MO () = / @AM e s S oS (3.6)
HxRixF
with R, the positive real axis i€y, for p =1 or 2. Here we introduce new variables
T09 ceey T](+21

Ti=ywxi, 0<i<k-1,

3.7
Ti = y15,  Try1=y2xox1--xp-1, Tkr2=1y2 (3.7)
in such a way that the phase function of the right-hand side of (3.6) becomes
yi(fi(x) + ) +y2(f2(x) + D =To+ T1+ - - + Ti+2.
If we set
LogT :=' (logTy, ..., logTiy2),
& =" (x0,...,%-1,5, Y1, y2),
Log = :=' (logxo, ..., logxi_1, logs, logys, logy?).
Then the above relationship (3.7) can be written down as
LogT =L-LogZ, (3.8)
where
1 0 O 0 0 1 O]
010 0 01O
0 01 0 010
L : P
0 0O 1 010
0 0O 0 010
1 11 1 0 0 1
|0 0 0 0 1 0 1]

This yields immediately
LogZ =Lt LogT,

with

M1 0 0 0O -1 0 0

0 1 0 0O -1 0 O

0 0 1 0O -1 0 O

= : : Lo

0 0 0 1 -1 0 O

1 1 1 1 -k -1 1

0 0 0 0 1 0 O
-1 -1 -1 -1 k 1 0]
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If we set

(0 ... »ik-1,2,v1,v2) - L 1 = (Lo(i, z,v1,v2), ..., Lys2(i, 2, v1, v2)). (3.9

then we can see that

(v1,v2) 41 oot Tipp . v1 vz Ox dy ds
M7 ()= / x'T-e't 2yt v, sz—l—l—l
' xtyls
17><R3_><1"
= / elot+Tkt2 1_[ T_ﬂi(i,z,vl,vz) /\ @
o<i<ki2 ocicran li
L*(HxRixF) Sisk+ SESk+

HereL, (T x Ri x I') denotes d@k + 3)-chaininTy - - - Tr42 # 0 that obtained as a image
of IT x Ri x I under the transformation induced byin view of the choice of the cycIf,
we can apply the formula to calculatefunction to our situation:

/ e ’re d7T = (1- ") (0),
C

for the unique nontrivial cycl€ turning aroundl’ = 0 that begins and returns 7 —
+o00. Here one can consider the natural actior€, — A(C,) defined by the relation,

/ e—Ta Taca d7, — / e—Ta (eZH«/—lTa)O'a d7, )
T, T,
MCq) (Ca)

In terms of this actiom., (/T x Ri x I") is shown to be homologous to a chain

! (p) k42 (p)
m. . A (R Ma (Cyr),
> i) 1"[) (Ry) 1"[2 (Car)
a= a'=

Gy ElL, AJH3
with M) o) € Z. This explains the appearance of the fagior) in front of the I”
0 oJk42

function factors in(3.5).
The direct calculation of (3.9) shows that

Lo(i,z,v1,v2) =z4+ig+1—-v2, 0<L<L<hk—1,
k=1

Li(i,z,01,v2) ==Y (ir+ 1) +v1+k(v2—2),
=0

Liy1(,z,v1,v2) =—z24v2, Lryo(,z,v1,v2) =2.

This shows the formulé3.5"). O

In combining Theorems 1.2, 3.1, we can state that we found out a deformation of an
algebraic varietyX; = {(A/k)*(xox1---xx) + 1 =0,x0 + x1 + - -- + x = 1 = 0} such
that its variation gives rise to Eqg. (1.3). It means that we establish a connexion between an
exceptional collection dEP*~1 and a set of vanishing cycles for its mirror counter part
Thus our theorems give an affirmative answer to the hypothesis stating the existence of
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such relationship between two mirror symmetric varieties (so called Bondal-Kontsevich
hypothesis) in a special case. See [8] and [12] in this respect for the detall.

It is known from the theory of period integrals associated to the complete intersec-
tions [10] that the mtegrall;(“l U2 ((k/1)%) for I' € Hy41(C*+1\ X;, Z) has singularities

only at the discriminant Iocus of,, where the cycld™ becomes singular (or vanishes).
On the other hand, in §2 we found a set of solutions called fundamental suah; that

has an singular point= e2*v=1j/k_Two solutions to an hypergeometric differential equa-
tion (1.3) with the same assigned asymptotic behaviours at all possible singular points must
coincide. In combination of this argument with the Picard—Lefschetz theorem, we obtain
the following.

Corollary 3.2. There exists a set of cycles € H,_1(X,Z), 0< j <k — 1, such that for
their Leray’s coboundary”; € Hj4+1(C*1\ X;, Z) we have the |dent|ty,

k
11 ((k .
’§0,3/<<x> )=u,~<x), 0<j<k-1,

with  ; (1) the fundamental solution td.3) in the sense of DefinitioR.6. Consequently
the Gram matrixG of (2.16) is equal to the intersection matriXy;, y;))o<i, j<k—1 after
proper choice of constamt= 1.
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