
ELSEVIER Theoretical Computer Science 185 (I 997) I91 -2 I3

Theoretical
Computer Science

A framework for incremental learning of logic programs’

M.R.K. Krishna Rae”.“.*

’ Mlls-Plarzck-Institut fir InJbrmatik. hn Starhuld, 66123 Suarhriickrn. Germun~

b Computer %irncr Group, Tata Institute qf’ Fundumental Rr~srard, Coldx~. Bombay 400 005, Idi a

Abstract

In this paper, a framework for incremental learning is proposed. The predicates already learned
are used as background knowledge in learning new predicates in this framework. The pro-
grams learned in this way have nice modular structure with conceptually separate components.
This modularity gives the advantages of portability, reliability and efficient compilation and
execution.

Starting with a simple idea of Miyano et al. [21,22] for identifying classes of programs which
satisfy the condition that all the terms occurring SLD-derricutions starting d/z u query’ UYC 170

bigger thun the terms in the initial query, we identify a reasonably big class of polynomial-
time learnable logic programs. These programs can be learned from a given sequence of ex-

amples and a logic program defining the already known predicates. Our class properly con-
tains the class of innermost simple programs of [32] and the class of hereditary programs of
[21,22]. Standard programs for gcd, multiplication, quick-sort, reverse and merge are a

few examples of programs that can be handled by our results but not by the earlier results

of [2 I, 22,321.

1. Introduction

Starting with the seminal work of Shapiro [27,28], the problem of learning logic

programs from examples has attracted a lot of attention in the last ten years (see,

e.g. [26,21,22,2,7, 14,321). Many techniques and systems for learning logic programs

have been developed and used in many applications [23]. In this paper, we identify a

class of polynomial-time learnable logic programs.

Our main emphasis is on incremental (step-by-step) learning of logic programs. The

predicates already known (learned) are used as background knowledge in learning new

predicates. For example, in learning a program for reverse, one can use knowledge

about the append program already known. Similarly, knowledge about addition can

*Current address: School of Computing & Information Technology, Faculty of Science & Technology,

Griffith University, Nathan, Brisbane, Australia-41 11, E-mail: krishna@cit.gu.edu.au.

’ This is a revised and extended version of [16].

0304.39751971% 17.00 @ 1997 - Elsevier Science B.V. All rights reserved

PII SO304-3975(97)00021-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82422898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

192 M. R.K. Krishna Raol Theoretical Computer Science I85 (1997) 191-213

be used in learning a program for multiplication. This way, one can learn (or syn-

thesize) programs in an incremental fashion. With the following background knowledge

app([l,Ys)=Ys

app(Wsl, Ys) = Wpp(Xs,Ys)l

about append, our algorithm comes up with the following program for reverse.

rev--se([I, [I) +-
reverse([XIXs], app(Ys, [Xl)) + reverse(Xs, Ys)

The above reverse program together with the equality theory about append constitutes

a functional logic program (cf. [ll]) and can be transformed into the following logic

program through the flattening operation of [4].

rev=-se([I, [I) +

reverse([XIXs], Z) + reverse(Xs, Ys), append(Ys, [Xl, Z)

append([l,Y,Y> +
append([XIXs],Y, [XIZs]) + append(Xs,Y, Zs)

The process of learning logic programs in our framework can be summarized as follows.

(1) We are given a set of examples (both positive and negative) of the target predicate

to be learned along with a logic program defining the already known predicates.

For instance, the following program for addition

addition(O, Y, Y) +

addition(s(X), Y, s(Z)) + addition(X,Y, Z)

and the examples for mult

(mult(0, s(O), 0), true),

(mult(O, s(a(O)), O),true),

(mult(s(O), s(s(O)), s(s(O))), true),

(mult(a(a(O)), s(a(O)), s(s(s(s(O))))), true) and

(mult(s(a(O)), s(s(O)), a(s(a(O)))), false)

can be given for learning the predicate mult.

(2) We obtain a background knowledge in the form of an equality theory, from the

given logic program. Section 3 discusses how to obtain such a background knowl-

edge.

M. R.K. Krishnrr Rao I Theoretical Computer S&ncr 185 (1997) 191~213 193

From the above program, the following background knowledge is obtained.

add(O,Y)=Y

add(s(X),Y)=s(add(X,Y))

(3) Using this background knowledge and the given positive and negative examples,

our algorithm obtains a functional logic program in polynomial time. The follow-

ing functional logic program is obtained from the above background knowledge

and examples.

mult(O,Y,O) +

mult(s(X),Y,add(Y,Z))~mult(X,Y,Z)

(4) The functional logic program obtained in the above step is transformed into an

equivalent logic program.

mult(0, Y, 0) +

mult(s(X),Y,Z))+mult(X,Y,Zl),addition(Y,Zi,Z)

(5) The logic program obtained in step 4 may be transformed into a more efficient

program, if needed, using transformations available in the logic programming lit-

erature. The logic program is now ready to be used as background knowledge in

learning new predicates.

The programs learned in the above framework have a modular structure with concep-

tually separate components. The benefits of modularity in software engineering are well-

known and widely discussed in the literature; they include (1) the divide-and-conquer

approach in the analysis and verification, (2) ease of specification, (3) clear descrip-

tion, (4) interchangeability between different “plug-compatible” components, (5) reuse

of components across applications, (6) separate analysis, optimization and compilation

of components and (7) incremental and parallel evaluation (cf. [8]).

In deriving a functional logic program consistent with the given examples, we analyze

all the terms which can possibly occur in a computation of this program. To avoid the

combinatorial explosion and get polynomial-time learnability, we use the concepts of

increasing and decreasing functions. The programs in our class have a nice property

that the size of the terms occurring in any computation is bounded by the size of the

terms in the initial query.

1.1. Rrluted works

Our work has been inspired by the works of Miyano et al. [21,22,2] and Yamamoto

[32]. Miyano et al. [21,22,2] identified a class of elementary formal systems (EFSs)
_. which are a special kind of logic programs manipulating character strings - and

presented a polynomial-time algorithm to learn these programs from examples, without

194 M. R. K. Krishna Rao I Theoretical Computer Science 185 (1997) 191-213

asking any queries. This class, called hereditary programs, ’ contains logic programs

with the following property: all the terms appearing in the body of a clause are subterms

in the head. This property ensures that each term in any SLD-derivation is a subterm of

a term in the initial query. The fact that a term of size IZ has at most n distinct subterms

plays an important role in the polynomial-time learnability of hereditary programs. The

standard append program is an example of hereditary programs. The condition that all

the terms appearing in the body of a clause are subterms in the head is a bit restrictive

from the programming point of view. It is not easy to write hereditary programs even

for simple tasks like reverse, merge, quick-sort and multiplication.

Yamamoto [32] generalized the results of [21,22,2] using generalized unification as

the background knowledge in the learning process. Some of the ideas in the frame-

work of incremental learning have been indeed presented in the literature for the first

time in [32]. Yamamoto [32] identified a class (called innermost simple programs)

of logic programs which can be learned in polynomial time with certain restrictions

on the background knowledge employed. The background knowledge about append

and addition do not satisfy the restrictions of [32] and hence the standard programs

for multiplication, quick-sort, reverse cannot be certified as polynomial-time

learnable programs. Due to a syntactic condition of innermost simple programs, the

standard merge program falls beyond the scope of the results of [32].

In this paper, we identify a class of polynomial-time learnable logic programs by

relaxing certain syntactic conditions and the requirements on the background knowl-

edge presented in [32]. Our class properly contains the classes of hereditary programs

of [21,22,2] and innermost simple programs of [32]. Using our results, multipli-

cation, quick-sort, reverse and merge programs can be certified as polynomial-

time learnable.

The rest of the paper is organized as follows. The next section gives preliminary

definitions and results needed. Section 3 explains the notion of regular background

knowledge. We identify a class of programs, called hierarchical programs and prove

some properties of their computations in Section 4 and establish their polynomial-

time learnability in Section 5. A comparison with related works is given in Section 6.

Section 7 concludes the paper with a summary.

2. Preliminaries

We assume that the reader is familiar with the basic terminology of logic program-

ming and machine learning and use standard terminology from [20,23,24].

In the following, F(C,X) denotes the set of terms constructed from the set of

function symbols Z and the set of variables Z”, &(ZI, C,X) denotes the set of atoms

constructed from these terms and the predicate symbols in II. Throughout the paper, we

’ Though Miyano et al. only considered EFSs, their definitions and results can be generalized to the usual

logic programs.

M. R. K. Krishna Rao I Theorekal Computer Science 185 11997) 191-213 195

use ll and Z to denote the sets of predicate and function symbols under consideration.

The size of a term t E F(C, .%‘), denoted by It 1, is the number of function symbols and

variables occurring in it, and uar(t) is the set of variables in t. Terms which do not

contain any variable are called ground terms and we use .Y(C) to denote the set of

ground terms constructed from C. Atoms constructed from ground terms are ground

atoms. A context over C is a term in ~~(cU{n}, f), w h ere q is a special symbol called

Me. If C[n, . ,o] is a context with n holes, C[tl,. . , tll] denotes the term obtained

by substituting the terms tl, . . . , tn for the n holes in the context C from left to right.

We denote arity of a predicate/function symbol .f‘ by L&J.(~).

As can be seen from the examples in the introduction, there are two kinds of function

symbols in (functional) logic programs: function symbols like list constructors [] and

[.I.] are used for data structure building, and function symbols like app and add defined

by the background knowledge are used to describe the predicates already learned.

Accordingly, we partition C into two disjoint sets (i) r, the set of constructor symbols

(corresponding to data structures) and (ii) d, the set of defined symbols (corresponding

to predicates already known/defined). A constructor term is a term in .T(r, X) and

a constructor context is a context over I-. We denote by B(p), the set of atoms

,4({Pj. r, 4).

Definition 1. Thesizeofanatomp(tl,...,t,)isdefinedas ip(tl,...,t,,)I=max(~tI....,

(t,, I). For a set S of atoms and an integer n, we define .S, = {A E S; IA / < H}.

Definition 2. A logic Program P is a finite set of definite clauses of the form H - BI,

. . . . B,,, where H,Bl,..., B, are atoms. The atom H is the head of this clause and

BI, . , B,, is the body of this clause. The length of a program P, denoted by length(P).

is defined as follows:

~ /emgth(t) = 0 if t is a constructor term,
_ length(a) = 1 if a is a defined/predicate symbol with uuity(a) = 0,
_ /ength(,f(tl, , tnl)) = m + length(t,) + + length(t,,,) if .f E d U II and m > 0,

- length of a clause C = H + B1, , B, is defined as

length(C) = fmgth(H) + length(B,) + . . + Imgth(B,) and

~ length(P) is maximum over the lengths of clauses in P.

Informally, length of a clause is the sum of the arities of predicate/defined symbols

in it plus the number of predicate/defined symbols of arity 0 in it.

We recall the following notions from [24,21,32, 161. In the following, we use a

special predicate symbol c to denote the target predicate to be learned.

Definition 3. A concept is a subset I of B(c) and a concept class %’ is a subset of

2B(c). For a concept class %‘, we define %?/n = {I n B(c),; I E ‘%}.

Definition 4. An example is a tuple @,a) where A E B(c) and a = true or false.

It is positice if a = true and negatice otherwise. A concept I is consistent with a

196 M. R. K. Krishnu Rao I Theoretical Computer Science 185 (I 997) 191-213

sequence of examples (Ai, al), . . , (A,, a,) if Ai E I is equivalent to ai = true for each

i E [l,m].

3. Background knowledge

In this paper, we use logic programs defining the already known predicates as back-

ground knowledge in learning a new predicate. This background knowledge is pre-

sented in the form of an equality theory (either conditional or unconditional) 2 over

the defined and constructor symbols, A and r respectively. There are many tech-

niques to derive a (conditional or unconditional) term rewrite system (i.e., a set of

directed equations) from a given logic program (see e.g. [17,29, 18, 10, 11). The de-

rived rewrite systems have a nice property that in the lefi-hand sides, dejned sym-

bols occur only at the outermost level and constructor symbols do not occur at the

outermost level. Such rewrite systems are called constructor systems. For an equal-

ity theory 58 presented by a confluent and terminating constructor system, narrowing

serves as a sound and complete E-unification method [12]. Throughout the paper, we

consider equality theories presented by confluent and terminating constructor systems.

Any equality theory B presented by such a rewrite system has the property: for every

pair of constructor terms s and t, B b s = t if and only if s and t are syntactically

identical.

Definition 5. A term rewriting system (TRS, for short) B is a pair (9, R) consisting

of a set 9 of function symbols and a set R of rewrite rules of the form 14 r satisfying:

(i) 1,r E F(F,%“),

(ii) left-hand-side 1 is not a variable and

(iii) Var(r) C Var(1).

A rule I+ r applies to term t in Y-(5-, 5?), if a subterm s oft matches with 1 through

some substitution CJ, i.e. s = lo, and the rule is applied by replacing the subterm s in

t by YCJ resulting in a new term u. This is formalized in the following definition.

Definition 6. The rewrite relation +,H induced by a TRS B is defined as follows:

s +, t if there is a rewrite rule I 4 P in .%‘, a substitution CT and a context C[] such

that s = C[la] and t =: C[ra].

We say that s reduces to t in one rewrite (or reduction) step if s +,A t and say s

reduces to t ifs +,s t, where +,s is the reflexive-transitive closure of +p.

Termination and confluence are the most important properties of term rewriting sys-

tems. Termination ensures that each computation is of finite length, whereas confluence

ensures that the nondetetministic choice of where to apply the rewrite step in any term

has no effect on the result of a computation, that is, all the computations results in the

same value.

M. R. K. Krishna Rao I Throreiical Computer Science IKS (1997) 191-213 107

Definition 7. A term rewriting system 9? is terminating if there is no infinite rewriting

derivation tl J# t2 =+H t3 +.A . .

Definition 8. A term rewriting system 8 is confluent if there exists a term r such

that t +s I: and u +s v whenever s =+s t and s +f u.

Both termination and confluence properties are undecidable in general. However, a

lot of techniques and tools are available in the literature to prove termination of many

classes of term rewriting systems. For terminating systems, it is relatively simple to

verify the confluence property. In particular, it is enough to prove that all the critical

pairs are joinable to ensure the confluence property of a term rewriting system.

Definition 9. Let II --f ~1 and 12 + ~1 be renamed versions of rules in a rewrite system

.9(S,R) such that they have no variables in common. Suppose a nonvariable subterm

s of II unifies with 12 through a most general unifier g, i.e. S(T E lla and let C be a

context such that Ii G C[s]. The pair oJ’ terms (C[q]a. YIO-) is culled u critical puir

c$#(.F,R). If I, + ~1 and 12 + r2 are renamed versions of the same rewrite rule, we

do not consider the case C = El.

For checking confluence property of a terminating term rewriting system, one can

rewrite the two terms tl and t2 of each critical pair (tl, t2) until they cannot be further

rewritten and check for equality. That is, (1) rewrite t, to ti such that (a) t, =s: t:

and (b) t: is irreducible and (2) check whether ti G t$. The following lemma ensures

correctness of this procedure.

Lemma 1. A terminuting term rewriting system A’ is confluent if’each of its criticul

puirs is ,joinahle, i.e. [3v tl +> t‘ and t2 =F; v] jar euch criticul pair (tl, t2) of’ ./A.

Example 1. The equality theory presented by the following rewrite system is a back-

ground knowledge .% about append.

app([1, Ys) --f Ys

wp([Wsl,Ys)+ Wpp(Xs,Ys)l

One can see the similarity of this term rewrite system and a logic program defining

append.

It is easy to note that this rewrite system is terminating as the recursive argument

of app gets smaller after each application of the second rewrite rule. The system is

confluent as it is terminating and has no critical pair.

Definition 10. A unifier of two terms s and t in .7(,X;, X) W. r. t. un equulity theor!,

.%I is a substitution 8 such that .% /= SO = to. A un$ier of two atoms p(s,, . , s,,) and

p(tl,...,tn) w.r.t. 99 is a substitution 0 such that .%9 ~.s,$=t,Wr\...r\s,U=t,~H. Two

terms (or atoms) are unifiable if there exist a unifier for them.

198 M. R.K. Krishna Rao I Theoretical Computer Science 185 (1997) 191-213

A unifier 0={Xi/si,...,X,,/s,} of two terms (or atoms) s and t is relevant if

{Xl,...,&) cvar(s)Uvar(t).

Example 2. The following are some of the relevant unifiers of terms s = app(X, Y) and

t = [l, 2,3] with respect to the background knowledge 98 given in the above example.

Q1 = {x/r 1, y/P, 731); 62 = {X/[ll> Y/P, 31);

f33 = {X/[L 21, YA31); Q4 = {X/[L 2731, Y/L I).

As mentioned above, narrowing serves as a sound and complete E-unification method

for an equality theory B presented by a confluent and terminating constructor sys-

tem [12]. In the following, we only consider the background knowledges presented by

confluent and terminating constructor systems. This is a reasonable requirement as the

transformations which derive term rewriting systems from logic programs (defining the

already known predicates) are becoming more and more powerful, and often derive

terminating rewrite systems from terminating logic programs.

To establish polynomial-time learnability of hierarchical programs, we need to put some

restrictions on the background knowledge employed. We explain these restrictions in

the following and by g’, we denote the background knowledge under consideration.

Definition 11. A defined symbol f E d is increasing if 1 tI 3 /t, 1 for each i E [1, n] when-

ever B? kf(tl,...,t,,)=t and tl, . . . , tn, t are constructor terms.

A defined symbol f E A is decreasing if /t 1 d Iti I for some i E [1, n] whenever 59 +

f(tl,...,tll)=t and tl, . . . , tn, t are constructor terms.

Example 3. Consider the background knowledge B about add presented by the fol-

lowing rewrite system.

add(O,Y)+Y

add(s(X),Y)+ s(add(X,Y))

It is very easy to see that the defined symbol add is increasing. Similarly, the defined

symbol app presented in Example 1 is increasing.

Example 4. Consider the background knowledge .% about mod and subtract functions

presented by the following rewrite system.

mod(X, Y) -+X

mod(X, Y) + mod(subtract(X, Y), Y)

subtract(X, 0) --j X

if X < Y and Y > 0

if XaY and Y >O

subtract(s(X), s(Y)) ---f subtract(X, Y)

The defined symbol mod is decreasing as the value of mod(X,Y) is less than or equal to

X when mod(X,Y) is defined (i.e., when Y > 0). Similarly, subtract is decreasing as

M. R.K. Krishna Rao I Theoretical Computer Science 185 11997) 191-213 199

the value of subtract(X,Y) is less than or equal to X when subtract(X,Y) is defined

(i.e., when X>Y).

The algorithms presented in the literature for generating linear predicate inequalities

from given logic programs - such as the ones presented in Ullman and van Gelder [30]

and Pliimer [25] - can be used in proving that the defined functions in the background

knowledge corresponding to the predicates already known are increasing or decreasing.

To capture the set of all terms that occur in a computation, we introduce the follow-

ing notion of dependent set. In the following, we only consider background knowledge

such that A can be partitioned as Al u 42 with A 1 containing increasing functions and

A2 containing decreasing functions.

Remark 1. Note that the above definition of increasing and decreasing functions allows

a function to be both increasing and decreasing. When a defined function f is both

increasing and decreasing, we put f in either Al or 42 depending on whether f occurs

in the heads or the bodies of the clauses in the program under consideration. If f only

occurs in the heads, it is placed in Ai and if f only occurs in the bodies, it is placed

in AI. The motivation for this will become clear in the sequel.

Definition 12. The dependent set D(t) of a ground constructor term t is defined as

(I) tED(t) and

(2) the ground constructor terms si , , s,, E D(t) if J + ,f’(.si . , s,~) = s for some

,f’ E r U Al and s E D(t).

(3) the ground constructor term s E D(t) if .% b ,f(si, . s,,) = s for some ,f’ E Al and

Si) . . ,S,! E D(t).

It is easy to see that D(t) is closed under subterms, i.e., every subterm of s is in

D(t) if s E D(t). The following lemma shows that the size of the terms in D(t) is

bounded by the size of t.

Lemma 2. For euch term u E D(t), 1~11 d Itl.

Proof (Induction). Let us consider the 3 cases in the above definition. (1) Lemma

holds trivially for t E D(t). (2) The ground constructor terms ~1,. , s, E D(t) if .& b

.f’(Sl>... ,s,)=s and sod for some ,f~ r U Al. By induction hypothesis, IsI <ItI.

If ,f E r, each s; is a subterm of s and hence Is, I < It 1. If ,f’ E Al, each 1.~~1 < Is/ as

,f is increasing. Hence Isij < ItI. (3) The ground constructor term s ED(~) if .# +

.f’@l,. . ,s,,) = s and si,. ,s, E D(t) for some ,f E A*. By induction hypothesis, each

I.siI d It 1. It follows that IsI < ItI from the fact that ,f‘ is decreasing and each

ls;I < ItI. 17

Definition 13. We say that a background knowledge .A? has polynomiul dependuzq

property if ID(t)1 is bounded by a polynomial in It 1.

200 M.R. K. Krishna Rao I Theoreticul Computer Science 185 (1997) 191-213

Example 5. Consider the background knowledge 9J about app given in Example 1.

For a list L, D(L) is the set of sublists of L. The number of sublists of a list L of length

n is (n + 1)~~’ which is of the order 0(n2). Therefore, 98 has polynomial dependency

property.
Basically, a sublist of L can be identified by its two end-points. So to compute the

number of sublists, we need to compute the number of possible ways of choosing two

points on a line with n + 1 points. That is, the number of sublists of a list L of length

n is (n + 1)~~.

Similarly, the background knowledge %? about add presented in Example 3 has

polynomial dependency property as D(n) is the set of natural numbers less than or

equal to n.

Example 6. Consider the background knowledge ~!8 about mod and subtract functions

presented in Example 4. This has polynomial dependency property as D(n) is the set

of natural numbers less than or equal to II.

Definition 14. A defined symbol f E Al is solvable if there exists an algorithm which

takes a term t E F(r) as input and outputs all the tuples (tl, . . , t,,) of ground con-

structor terms satisfying 98 + f(tl,. . . , t,,) = t if exists and reports failure otherwise.

Further, f is polynomial-time solvuble if the algorithm runs in polynomial-time of It 1.
Similarly, a defined symbol f E 42 is solvable if there exists an algorithm which

takes a tuple (tl , . . , tn) of ground constructor terms and outputs a term t E F(r)

satisfying &J + f(tl,. . . , t,) = t if exists and reports failure otherwise. Further, f is

polynomial-time solvable if the algorithm runs in polynomial-time of Itr 1 + . . . + Itn I.

Remark 2. Any function symbol defined by a confluent and terminating term rewriting

system is solvable, as narrowing serves as the E-unification algorithm.

The following example gives two polynomial-time solvable functions.

Example 7. Consider the background knowledge B presented in Example 1. The de-

fined symbol app is polynomial-time solvable, as list of length n > 1 can be broken

into two sublists in n + 1 different ways. Similarly, the defined symbol add defined by

the background knowledge 6J presented in Example 3 is polynomial-time solvable, as

a natural number IZ can be split into two natural numbers in n + 1 different ways.

The defined symbols mod and subtract of the background knowledge presented in

Example 4 are well-known to be polynomial-time solvable.

Definition 15. A background knowledge G9 is regular if it has the polynomial depen-

dency property and each defined symbol in it is polynomial-time solvable.

Example 8. The background knowledge W about (1) app given in Example 1, (2) add

given in Example 3 and (3) mod and subtract given in Example 4 are all regular as

we have proved both the above requirements.

M.R.K. Krishna RaolTheoretical Computer Science 185 IIY97) 191-213 201

4. Hierarchical programs

In this section, we define a class of logic programs and study certain properties of

their computations.

Definition 16. Let .B be a regular background knowledge with defined symbols A, H A,.

A definite clause H + BI,. . , B,, is hierurchical w.r.t. ./A if

(a) all the arguments of defined symbols occurring in it are constructor terms,

(b) no function symbol in 42 occur in H and no function symbol in dl occur in

Bl,..., B,, and

(c) each argument in Bl,. . , B, is either a constructor term occurring in H or of the

form ,f(tt , , tn) such that f E Al and each tk is a constructor term occurring

in H.

A logic program is hierarchicul w.r.t. 23 if each clause in it is hierarchical.

Informally, the arguments of H are either constructor terms or terms containing both

constructor and defined symbols in d 1 but without any nesting of defined symbols. The

arguments in the body are either constructor terms or terms containing both constructor

and defined symbols in dz but with defined symbols only at the topmost level and all

the constructor terms in the body also occur in H.

Example 9. The following program for greatest common divisor

gcd(X,O,X)cX > 0

gcd(X, Y, Z) + gcd(Y,mod(X, Y), Z)

is hierarchical w.r.t. the background knowledge d given in Example 4 as mod is a

decreasing function and occurs only in the body.

Similarly, the programs for multiplication and reverse given in the introduction

are hierarchical w.r.t. the background knowledges about add and app respectively, as

the functions add and app are increasing and occur only in the heads.

All the three conditions in the definition of hierarchical programs are purely syntac-

tical conditions and can be checked by scanning each clause in the program once.

Lemma 3. It is deciduble whether a giaen progrum is hierarchical W.Y. t. cl given reg-

ular backyround knowledge.

A computation of a hierarchical program w.r.t. a regular background knowledge

involves repeated application of the following computation step. We say a goal is a

ground constructor goal if every term in it is a ground constructor term. The selection

rule is fixed a priori.

202 M. R.K. Krishna Rao I Theoretical Computer Science 18.5 (1997) 191-213

Definition 17. A computation step derives a ground constructor goal

G’=+Al,..., A/_l,BIO ,..., BjB,Al+I ,..., Ak

from (1) a clause H + Bi, . . . , Bj in a hierarchical program P w.r.t. a regular back-

ground knowledge .%? and (2) a ground constructor goal G = +-AI,. . . ,Ak as follows:

(i) let 6 be a relevant most general unifier w.r.t. 93 of H and the selected atom At

in G,

(ii) for each i E [l,j], let Bi6 be the ground constructor atom obtained from Bid by

reducing each term of the form f(tl , . , tM), f E A2 in it to the normal form

w.r.t. the rewrite system representing 93’,

(iii) if no such ground constructor atom Big occurs for an atom BiO, no computation

step is possible from G with input clause H + B1, _. . , Bj.

Definition 18. A computation of a hierarchical program P w.r.t. a regular background

knowledge 93 starting with a ground constructor goal G is a sequence GO,. . . , G, of

ground constructor goals satisfying the following:

(i) Go=G and

(ii) for each i E [1, n], G; is derived from Gi_ 1 and a clause in P by a computation

step.

Now, we prove an important property of computations of hierarchical programs.

Lemma 4. If P is a hierurchical program w.r. t. a regular buckground knowledge .%

and + p(t1,. . . , t,,) is a ground constructor goal, then ull the terms occurring in

any computation of P starting with + p(tl,. . ., t,) are ground constructor terms in

s=D(t,)u..‘uD(t,).

Proof (Induction on the length 1 of’ the computation).

Basis: I = 0. The lemma follows from the fact that t E D(t) for any term t.

Induction hypothesis: Assume that the lemma holds for all computations of length

l<k.

Induction step: Now, we establish that it holds for I = k. Let A be the selected atom

and H + B 1,. . . ,B, be the input clause used in the last computation step. By the

induction hypothesis, all the arguments of A are ground constructor terms belonging - -
to S. We have to show that all the arguments of B10, , . , B,g are ground constructor

terms in S, where Q is a most general unifier of A and H.

Consider an argument t0 in B1 0, . . . , B, 8. Since P is a hierarchical program, t is a

constructor subterm of an argument (say, s) in H if t is a constructor term. Let s’

be the term in the corresponding argument-position of A. By the induction hypothe-

sis, s’ E S. If s is a constructor term it is obvious that ttl is a subterm of SO = s’.

Since s’ ES, all its subterms are in S as well and hence t0 E S. If s contains de-

fined symbols, it can be written as C[si, . . , s,J, where C is a context of constructor

M. R. K. Krishnu Ruol Theoreticul Computer Science 185 11997) 191-213 203

symbols and variables and root(s,) is a defined symbol for each i E [l,m]. It is

clear that s’ can be written as C[s’, , . ,sk] and each .Y: E 5’. Now, t is either a sub-

term of C or one of si. If t is a subterm of C, it can be proved td ES as above.

Let us now consider the case that t is a subterm of s,. Since, P is a hierarchical

program, s, is of the form f(tl,. , th), where J’ E ill and each t, is a constructor

term. Since (1 is a unifier of A and H, it follows that ,&’ b ,f‘(tl~~. . . , thfl) =s:. Since

.s: ES it follows from Definition 12 that each t,O ES. Since t is a constructor sub-

term of or,, it must be a subterm of some ti. Therefore, tf1 is a subterm of t,O and

hence tO E S.

Now consider the case that t is not a constructor term. Since P is a hierarchical

program, t is of the form f(tl,. . , t,,) such that f E 42 and each tk- is a constructor

subterm of an argument in H. As in the above case, each tl;B E S and by Definition

12, the normal form of ,f(tld, . . , t,H) w.r.t. the rewrite system defining ./A belongs to - -
5’. Therefore the argument in Bt 8,. . , B,B corresponding to t is in S. This completes

the proof. 3

From this lemma and Lemma 2, we get the following theorem

Theorem 1. If P is a hierarchical program W. r. t. a regular background kno\ttledgqe

.lA and + p(tl,. , tn) is a ground constructor goal, then all the atoms occurring

in rnnj, computation starting Il,ith + p(tl.. . , t,,) are of size less thun or eq~11 to

Ip(tl,...,t,,)i.

5. Polynomial-time learnability

In this section, we prove polynomial-time learnability of hierarchical programs w.r.t.

regular background knowledge.

Definition 19. For a hierarchical

{A E B(T)1 there is a computation

ending in the empty goal}.

program P, we define the semantics’ M(P) as

of P starting with a ground constructor goal + A

We need the following lemma.

Lemma 5. Let H be the head of a hierarchicul clause ~‘.r. t. u regular background

kno+r,ledge 2. If H unifies with a ground constructor atom of A \v.r.t. .#‘, the size

qf’each constructor subterm in H and each constructor contest in H is less than OI

equal to the size of A.

? The semantics IV(P) can also be defined as the least fixpoint of a monotonic operator (similar to the rr>

operator in [24]) in a straightforward way.

204 M. R.K. Krishna Raol Theoretical Computer Science 185 (1997) 191-213

Proof. Let IA] = n. By definition, each argument s of A has Is] <n. Now, consider

an argument t of H and the corresponding argument s of A. If t is a constructor

term, it is obvious that ItI <n as it is unifying with a ground constructor term s with

(sl dti. Otherwise, t can be written as C[fl(tll,..., tin,),. . .,fm(tml ,..., t,,,,,)] such

that C is a context of constructor symbols and variables, f; E A 1 for each i E [1, m]

and each tij is a constructor term. It is obvious that ICI <n as s should be of the

form C[. . .]. Each J(t;i, . . . , tin,) unifies with a subterm Si of s and Isi(<n. That is,

93 + A(tile,..., m, t. d)=si. Since J; is an increasing function, ItijO(6 /sij <n for each

j E [1, nil. Hence (tijl d n for each j E [1, nil. This completes the proof. 0

Definition 20. For k, l,m30, Hier(8, k, l,m) is the class of concepts definable by

hierarchical programs P w.r.t. W having at most m variable occurrences in the head of

any clause and satisfying IP[<k and length(P)< 1. We also use Hier(g, k, l,m) to

denote the above class of hierarchical programs.

Note that the number of defined symbols in a clause is bounded by its length.

Lemma 6. Let 95’ be a regular background knowledge, A be a ground constructor

atom p(sl,..., sh) and C be the set of all clauses in Hier(g, k, 1, m) which (1) have

at most k distinct predicate symbols and (2) their heads unijj with A. Then JCJ is

bounded by a polynomial in the size of A.

Proof. Let H c B,, . , B,, be a clause satisfying the above conditions. By the above

lemma, the size of each constructor subterm in H and each constructor context in H

is less than or equal to the size of A (say, n). By the definition of length of a clause,

there are at most 1 such constructor contexts or maximal constructor subterms in H.

That is, the number of symbols in H is at most n.1. Further, there are at most 1 - 1

Al -symbols in H and the arities of all these symbols add up to at most 1 - 1.

_ The 1 - 1 At-symbols in H can occur in choose(n.1, (1 - 1)) possible positions.

This is in the order of (n l)l-‘.

’ - There are lAt/(l-‘) ways of choosing 1 - 1 At-symbols.
- The arguments of A r-symbols in HO are in Ui E ,,,hl II(s where 6 is an mgu of A

and H. There are) Ui E [I,h] D(Si)}l(l-l) ways of choosing arguments for Al-symbols

in H8.

- H has at most m distinct variables which can occur in choose(n.l,m).mm ways in H.

This is in the order of (n.1.m)”

- Therefore, there are at most (n.1)l.lAlll.l ~i~~,,hlD(s~)}~l.(n.l.m)m ways of choosing

H. A polynomial in n (note that 1 Ui E ,,,hl D(si)}) is bounded by a polynomial in n

by the polynomial dependency property of 37).

By the definition of length of a clause, there are at most 1 - 2 predicate or Ax-

symbols in the body, i.e., (k +)A21)(1-2) p ossibilities. Further, there are at most

1 - 2 constructor subterms in the body and these subterms occur in H, i.e., (n.l)‘-*

MR. K. Krishna Raol Theoretical Computer S&nw INS (1997) 191-213 20s

possibilities. Therefore, there are at most (k + ~AI/)‘.(n.l)’ ways of choosing the body

of a clause with head H. A polynomial in n. Hence IC/ is bounded by a polynomial

in n. 0

Now, we are in a position to establish our main result. Our assumption in the

above lemma that there are at most k distinct predicate symbols is justified by the

following. If there is a predicate p which occurs in a clause c in a program P but

does not occur in the head of any clause in P, then M(P)= M(P - {c}). So, it suf-

fices to consider programs in Hier(J?, k, 1, m) which have at most k distinct predicate

symbols.

Theorem 2. If the background knowledge .% is reyulur, then the cluss of’ concepts

Hier(.#, k, 1, m) is polynomial-time learnable for any k,l,m>O.

Proof. We prove that one can find a program P E Hier(J, k, 1, m) consistent with a

given sequence S of both positive and negative examples of a concept in

Hier(.#, k, 1, m) in polynomial time. The idea behind the proof is essentially same as

that in [21,22,32]. Let n = (~1,. . . , pk.(l + l)} be the set of predicate symbols with

arity(p,) = i mod (1 + 1) and c = pj be the target predicate for some j E [1, k.(1 + 1)].
Given a sequence S of examples, we can produce a program P consistent with S

as follows. Let St be the set of positive examples in S. If S+ = 4, the algorithm

returns P = 4. Otherwise, let Tf = {t E s(T); t = tj for some c(ti, . , th) E .Y?-’ }. For

each i E [1, k.(l + 1)], let H, denote the set of atoms { p;(tl, , th); h = i mod (1 + 1)

and tl,...,t/7E U,,. D(t)}. By the polynomial dependency property of .J9, IH, 1 is

polynomial in Cst ‘/ 1st for every in [l,k.(l + l)].

We first generate a set 9 of all programs P E Hier(J, k, 1, m) satisfying: q’ there i.r

CI cluusr H + B,,..., B, in P and the predicate symbol of’H is p, thelz there uist.s

N A E H, such that A and H are unijiable w.r. t. .8. This set d can be generated in

polynomial time as /8/ is polynomial in CsE,,/ Is/ by the above lemma.

We then check for each P E 9 and s ES whether s EM(P) or not, as required

for the consistency, by constructing a bottom-up proof for s. By Lemma 4, all the

atoms appearing in the proof are in the set U, E ,,,k, c1+1), H,. Hence the proof goes in

polynomial in CVt ‘, 1.~1. This completes the proof. C

Now, we give a few examples illustrating our main result.

Example 10. The programs for reverse and multiplication given in the introduc-

tion are polynomial-time learnable as they are in Hier(,%, 2,6,4) and Hier(.$, 2,8,4)

respectively and the corresponding background knowledges are regular.

Example 11. The greatest common divisor program given in Example 9 is

polynomial-time learnable as it is in Hier(a, 2,8,3) and the background knowledge

.a presented in Example 4 is regular.

206 M.R.K. Krishna Raol Theoretical Computer Science 185 (1997) 191-213

Example 12. The following program for merge is hierarchical w.r.t. an empty back-

ground knowledge 98.

merge([I, [1, [I) +

merge([XJXs], [YlYs], [X/Zs]) +X< Y, merge(Xs, [YlYs],Zs)

merge([XIXs], [YlYs],[YIZs])+X>Y, merge([XIXs], Ys,Zs)

This program is polynomial-time learnable as it is in Hier(&I, 3,8,6).

Example 13. The following program for quick-sort over lists of distinct elements

(need not be natural numbers but on any set with a total order) is hierarchical w.r.t.

the background knowledge 9 about append. This program is non-conventional and

needs an explanation. The lack of local variables (which occur in the body but not in

the head) in hierarchical programs contributes to the non-simplicity of the program.

The second clause of qs says that app(A, [H I Bl > is the result of (quick) sorting

[HI L] if A is the sorted list of all the elements in L smaller than H (implied by the

atoms less (H, L, A) and qs (A, A) in the body) and B is the sorted list of all the elements

in L bigger than H (implied by the atoms great (H,L,B) and qs(B, B) in the body).

The atom Is1 (H, L,A) stands for the fact that A contains all the elements in L smaller

than H and the atom ls2(H,A) stands for the fact that all the elements in A are smaller

than H. The meanings of predicates grl and gr2 are similar.

qs([13 [I) +
qs([Hbl, w(A, WI)) + l-N L Ah great(H, LB), qs(A, A), qs(B, B)

less(H,L,A)+ subset(A,L), lsl(H,L,A), ls2(H,A)

lsl(H,[LA) +
1slQ-h [YIYsl,A) + H>Y, member(Y,A), lsl(H,Ys,A)
lsl(H, [YIYsl, A) + H<Y, lsl(H,Ys,A)
ls2(H, [I> +
ls2(H,[Y/Ys])+ H>Y, ls2(H,Ys)

great(H,L,A)+ subset(A,L), grl(H,L,A), gr2(H,A)

grl(H, [],A) +
p-W, [YIYsl, A) + H<Y, member(Y,A), grl(H,Ys,A)
grl(H, [YIYsl,A) +-- H>Y, grl(H,Ys,A)

gr2(H,[I> +
gr2(H,[Y(Ys])+- H<Y, gr2(H,Ys)

subset([],L)+

subset([XIXs],L) +-member(X,L), subset(Xs,L)

member(H,[H(L]) +

member(H,[YIYs])+member(H,Ys)

This program is polynomial-time learnable as it is in Hier(&I, 18,14,5) and 9? is

regular.

A4.R.K. Krishnu Raol Theoretical Computer Science 185 (1997) 191-213 207

6. Comparison with related works

The present paper pursues the line of research presented in [21,22,2,32, 161. We

first compare our results with the results of [21,22,2,32, 161 and then compare with

the other related works by Cohen, Dzeroski, Kietz, Frazier, Page, Lapointe, Matwin

and Idestam-almquist.

Our results are generalizations of the results in Yamamoto [32] in the following

respects:

(i) The class of innermost-simple programs is a proper subclass of the class of hi-

erarchical programs, as innermost-simple programs allow only variables in the

body and these variables should occur in the head of the clause. For this reason,

the class of innermost-simple programs [32] does not contain the class of heredi-

tary programs of [2 1,22,2]. Hierarchical programs allow non-variable constructor

terms in the body if these terms are subterms of the terms in the head of the

clause. The class of hierarchical programs contains both the class of hereditary

programs and the class of innermost-simple programs.

(ii) In Yamamoto [32], it is essential that each defined symbol is coqdetely dcfinrd

(over .y(r)). For the quick-sort program (with constructors: [1, [.I.] and

natural numbers), it is not clear how to make the defined function append a

completely defined one since append is defined only on lists (but not on natural

numbers). We do not need this requirement. Our requirement that the rewrite sys-

tem presenting the background knowledge is confluent ensures that for any tuple

(tr , . , t,7) of ground constructor terms there is at most one ground constructor

term t such that J k f(tt , , t,,) = t for any defined symbol ,f t A.

(iii) Yamamoto [32] needs that each defined symbol is iqjectice in the following sense

that for any ground constructor term t there is at most one tuple (tt , , t,!) of

ground constructor terms such that 98 b f(tr , . , tll) = t for any defined symbol

,f’ E A. We do not impose such a requirement and find injectivity very restrictive

as many defined functions such as app and add are not injective. We notice that

in the revised version of [32], the requirement of injectivity is omitted.

(iv) Our notion of increasing function is a generalization of the corresponding no-

tion in [32]. Our notion only needs that ItI 3 It,1 for each i E [1, n] when .%1 b

,f‘(tr,. , fn) = t, while the notion in [32] needs that It] 3 Iti / + . + It,1 when

.a /== ,f’(tr, , t,:) = t. For this reason, defined symbols add and append given in

the previous sections are not increasing in the sense of [32].

None of the above programs reverse, multiplication, quick-sort and merge can

be certified as polynomial-time learnable by the results of [32]. Program merge cannot

be certified as there are nonvariable terms [X] Xs] and [Y IYsl in the bodies of the

two non-unit clauses. Programs reverse, multiplication and quick-sort cannot

be certified as the defined symbols append and add are not increasing in the sense

of [32]. However, a slightly different program (given in the following Example) for

reverse can be proved as polynomial-time learnable by the results of [32].

208 M. R.K. Krishna Raol Theoretical Computer Science 185 (1997) 191-213

Example 14. Consider the following program and background knowledge.

reverse(reverse [I, [1) +

reverse([XlXs],addlast(X,Ys)) + reverse(Xs,Ys)

99 : addlast(X, [I> + [Xl

addlast(X, [Y IYs] 1 4 [Y laddlast(X,Ys)l

This background knowledge is regular in the sense of [32] (also our sense) and the

program is innermost-simple. Hence it is polynomial-time learnable.

The function addlast is a specialized version of app and appends an element at

the end of a given list. These two are equally efficient in this special case. Apparently,

multiplication, quick-sort and merge cannot be certified as polynomial-time

learnable by the results of [32] through such modifications as in the case of reverse.

6.1. The class of generalized-hereditary programs

In Krishna Rao [16], the class of generalized-hereditary programs is introduced. This

class properly contains both the class of hereditary programs and the class of innermost-

simple programs. The class of generalized-hereditary programs allow defined functions

only in the heads and assume that all the defined functions are increasing. In contrast,

the class of hierarchical programs allow defined functions both in the head as well

as in the body. The class of generalized-hereditary programs is a proper subclass of

hierarchical programs.

The occurrences of defined functions in a clause of a functional logic program has

the following relation with the atoms having predicate symbols corresponding to the

defined symbols in the clauses of a logic program obtained through the flattening

operation. Let P be a functional logic program and P’ be the logic programming

obtained from P by eliminating the defined symbols through the flattening operation.

The atoms with predicate symbols corresponding to the defined symbols in the head of

a clause in P occur only at the end of a clause in P’. The atoms with predicate symbols

corresponding to the defined symbols in the body of a clause in P occur anywhere in

the body of a clause in P’. This is illustrated by the following two examples.

Example 15. Consider the following functional logic program

app([1,Ys) =Ys

app(CXIXsl,Ys) = CXlapp(Xs,Ys)l

reverse([: 1,C I) +
reverse ([X 1 Xsl , app (Ys, [Xl > > t reverse (Xs, Ya>

and the logic program obtained through the flattening operation of [8]

reverse(C I, C I> +
reverse ([X I Xsl , Z> + reverse (Xs, Ys>, append(Ys, [Xl, Z>

M. R.K. Krishnu Raol Theoretkal Computer Sciencr IX5 11997) 191 213 209

append([: l,Y,Y) +
append ([X I Xsl , Y, [X I Zsl > + appendo(s, Y, Zs>

Note that the append atoms only occur at the end of clauses in the derived logic

program as the defined function app occurs only in the heads in the functional logic

program.

Example 16. Consider the following functional logic program

mod(X,Y) =X if X<Y and Y>O

mod(X,Y) =mod(subtract(X,Y),Y) if X>Y and Y>O

subtract (X, 0) = X

subtract(s(X),s(Y)) =subtract(X,Y)

gcd(X.O,X) + X>O

gcd(X.Y,Z) + gcd(Y,mod(X,Y),Z)

and the logic program obtained through the flattening operation.

gcd(X,O,X) + X>O

gcd(X.Y,Z) + mod(X,Y,Y’),gcd(Y,Y’, Z)

mod(X,Y,X) + X<Y,Y>O

mod(X,Y.Z) + X>Y, subtract (X,Y,Y’), mod(Y’,Y,Z)

subtract (X, 0, X> +

subtract(s(X),s(Y),Z) + subtract (X,Y,Z)

Note that the mod atom occurs in front of the gcd atom as the defined function mod

occurs in the body in the functional logic program.

To summarize, the results of the present paper allow the already known predicates

anywhere in the body, whereas the results of [16,32] allow the already known pred-

icates only at the end of the new clauses. This is a significant improvement from a

programming point of view. The program for gcd given in Example 9 belongs to the

class of hierarchical programs but not generalized-hereditary programs.

For the sake of completeness, we discuss an example which is beyond the scope

of our results (as well as [21,22,2,32, 161). A program for merge-sort with a

background knowledge about merge cannot be handled by our results, as the defined

symbol merge does not have polynomial dependency property (unlike app). For any

ground list L of length n there are 2” pairs of ground lists satisfying .# + merge(Ll,

Lz) = L.

6.2. Determinate programs

In the recent years, there has been a significant amount of research (5-7, 15) on the

learnability of determinate logic programs. The class of determinate programs is closely

210 M.R. K. Krishna Rao I Theoretical Computer Science 185 (1997) 191-213

related our class of hierarchical programs. We now define the class of determinate

programs.

Definition 21. Consider a clause H c Bi,. . . ,B,. A literal Bi is determinate if and only

if each of its variables that does not occur in preceding literals has only one possible

binding given the bindings of its variables that occur in the preceding literals. The

clause H + B1, _ . . , B, is determinate if and only if each of its literals is determinate.

Definition 22. Consider a clause H t Bl, . , B,. Variables occurring in H have depth

zero. The depth of a variable X which occurs first in Bi is d + 1 if d is the maximum

depth of any other variable in B, that also occurs in H, BI, , Bi_ 1.

Definition 23. A k-clause predicate definition consists of up to k Horn clauses with

the same predicate symbol in the head.

The following results are established in [7]

Theorem 3. (1) k-clause predicate definitions consisting of non-recursive determinate

function-free Horn clauses with variables of bounded depth are polynomially PAC-

learnable under simple distributions.

(2) k-clause (possibly recursive) predicate definitions consisting of determinate

function-free Horn cluuses with variables of bounded depth are polynomiully PAC-

learnable under simple distributions tf we restrict the arity of the target predicate to

be less than a fixed bound and allow existential and membership queries about the

target predicate.

The function-free restriction in the above theorem is not a very serious problem as

any clause containing function symbols can be rewritten in determinate function-free

form with the addition of one background knowledge per function symbol [7].

To relate our results with the above results, note that our assumption that background

knowledge is presented by a terminating and confluent rewrite system implies that the

program defining the already known predicates is determinate. Since our emphasis

is to use the predicates already learned as background knowledge in learning new

predicates, we are essentially dealing with determinate programs. Our restriction that

defined symbols are not nested in hierarchical programs meant that the variables are

of depth at most one. In this sense the class of hierarchical programs is a subclass of

the class of determinate programs.

However, the advantages of our result over the above result are that (1) we do

not need any existential or membership queries, but learn a consistent program from

a given sequence of positive and negative examples and (2) do not require simple

distributions in contrast to the above result.

In two survey papers [5,6], Cohen has presented a list of learnability and non-

learnability results. In particular, he proves that one depth bounded determinate recur-

M. R. K. Krishna Rao I Theoretical Computer Science 185 11997) 191-213 21 I

sive clause is learnable from equivalence queries (and hence PAC-learnable), and a

program consisting of one such recursive clause and one depth bounded determinate

nonrecursive clause is learnable from equivalence queries (and hence PAC-learnable)

if an additional ‘basecase oracle’ is given.

Frazier and Page [9] investigate the learnability of several classes of recursive logic

programs from examples only (as in our approach). Their main result is that two-clause

two-literal programs built from unary predicates, unary functions and constants are poly-

nomially PAC-learnable. Further they show that removing restriction on predicate arity

leads to non-learnability (unless a constant bound is placed on predicate arity). Though

these two classes are quite restrictive, they contain some non-determinate programs.

Lapointe and Matwin [19] propose an algorithm to learn recursive programs with

just one unit clause and just one recursive clause, using the notion of sub-unification.

They use logical implication (rather than 0-subsumption used in all other approaches)

as generalization principle and argue that it is the best approach to inductive logic

programming. However, there is no consensus on this issue in the literature so far.

Their algorithm works in two modes (1) to learn recursive clauses with just two

literals and (2) to learn left recursive clauses (possibly with more than one literal in

the body). At present, their approach cannot deal with clauses having more than one

recursive literal or the clauses with non-left recursion.

Idestam-almquist [131 proposes an approach to learn tail recursive programs with at

most two clauses but no more than one recursive clause. He uses structural analysis

of saturations of the given positive examples in constructing tail recursive clauses.

In contrast to the approaches of [9,19,13] we allow predicate definitions with more

than one recursive clauses and more than one recursive literals in the recursive clauses.

7. Concluding remarks

In this paper, we propose a framework for incremental learning of logic programs.

In this framework, logic programs defining the already known predicates are used

as background knowledge in learning new predicates. The programs learned in this

way have nice modular structure. A class of logic programs which can be learned in

polynomial-time using this approach is identified and a comparison with the known

results is provided.

The algorithm sketched in the proof of the polynomial-time learnability result has

left lot of details to the implementation and the bounds given there are very loose. Lots

of improvements can be made during the implementation stage. For example, it does

not discuss the predicate invention needed while learning more than one predicate from

the examples of a single target predicate (see quick-sort example). Our proof shows

that more than one predicate (a target predicate and the intermediate predicates needed

in defining the target predicate by a hierarchical program) can be learned in principle

through an enumeration. However, it will be more efficient to use some known predicate

invention algorithm for inventing intermediate predicates. Further, some implementation

212 M. R. K. Krishna Rao I Theoretical Computer Science 185 (1997) 191-213

decisions to restrict the size of constructor terms in the clauses can drastically improve

the efficiency of the algorithm even though the class of programs that can be learned

becomes a bit small. For example, restricting size of constructor terms in the clauses to

3 allows all the example programs given in previous sections to be learned, but gives

a vast improvement in the efficiency.

Acknowledgements

The author would like to thank the anonymous referees for their constructive com-

ments improving the paper in a significant way. He also thanks Luc De Raedt for his

timely help of supplying some papers and a copy of his recent book.

References

[1] G. Aguzzi, U. Modigliani, Proving termination of logic programs by transforming them into equivalent

term rewriting systems, in: Proc. FST&TCS’93, Lecture Notes in Computer Science, Vol. 761, Springer,

Berlin, 1993, pp. 114-124.

[2] S. Arikawa, S. Miyano, A. Shinohara, T. Shinohara, A. Yamamoto, Algorithmic learning theory and

elementary formal systems, IEICE Trans. Inform. System. E75-D (1992) 405-414.

[3] A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth, Learnability and Vapnik-Chervonenkis

dimension, .I. Assoc. Comput. Math. 36 (1989) 929-965.

[4] P.G. Bosco, E. Giovannetti, C. Moiso, Narrowing vs. SLD-resolution, Theoret. Comput. Sci. 59 (1988)

3-23.

[5] W.W. Cohen, Pat-learning recursive logic programs; efficient algorithms, J. Artificial Intell. Res. 2

(1995) 501-539.

[6] W.W. Cohen, Pat-learning recursive logic programs; negative results, J. Artificial Intel]. Res. 2 (1995)

541-573.

[7] S. Dzeroski, S. Muggleton, S. Russel, PAC-learnability of determinate logic programs, in: Proc.

COLT’92, 1992, 128-135.
[8] R. Farrow, T.J. Marlowe, D.M. Yellin, Composable attribute grammars: support for modularity in

translator design and implementation, in: Proc. POPL’92, 1992, 223-237.

[9] M. Frazier, CD. Page, Learnability in inductive logic programming: some results and techniques, in:

Proc. AAA1’93, 1993, 93-98.

[lo] H. Ganzinger, U. Waldmann, Termination proofs of well-moded logic programs via conditional rewrite

systems, in: Proc. CTRS’92, Lecture Notes in Computer Science, Vol. 656, Springer, Berlin, 1992,

pp. 216-222.

[111 M. Hanus, The integration of functions into logic programming: a survey, J. Logic Programming 19/20

(1994) 583-628.

[12] J.-M. Hullot, Canonical forms and unification, in: Proc. CADE’80, Lecture Notes in Computer Science,

Vol. 87, Springer, Berlin, 1980, pp. 318-334.

[13] P. Idestam-almquist, Efficient induction of recursive definitions by structural analysis of saturations, in:

L. De Raedt (Ed.), Advances in Inductive Logic Programming, 10s Press, 1996, pp. 192-205.

[14] K. lto, A. Yamamoto, Polynomial-time MAT learning of multilinear logic programs, in: Proc. ALT’92,

Lecture Notes in Computer Science, Vol. 743, Springer, Berlin, 1993, pp. 63-74.

[15] J.-U. Kietz, S. Dzeroski, Inductive logic programming and learnability, SIGART Bull. 5 (1994) 22-32.

[16] M.R.K. Krishna Rao, Incremental Learning of Logic Programs, in: Proc. ALT’95, Lecture Notes in

Computer Science, Vol. 997, Springer, Berlin, 1995, pp. 95- 109.

[17] M.R.K. Krishna Rao, D. Kapur, R.K. Shyamasundar, A Transformational methodology for proving

termination of logic programs, in: Proc. CSL’9 I, Lecture Notes in Computer Science, Vol. 626, Springer,

Berlin, 1992, pp. 213-226.

M. R. K. Krishna Rue I Theorrtid Computer Science 185 11997) 191-213 213

[181 M.R.K. Krishna Rao, D. Kapur, R.K. Shyamasundar, Prowng termination of GHC programs, tn Proc.

ICLP’93, 1993. pp. 720-736.

[191 S. Lapointe. S. Matwin, Sub-unification: a tool for efficient induction of recursive programs, rn: Proc.

ML’92, 1992. pp. 273-281.

[20] J.W. Lloyd, Foundations of Logic Programming, Springer, Berlin 1987.

1211 S. Miyano, A. Shinohara, T. Shinohara, Which classes of elementary formal systems are polynomtal-time

learnable‘? in: Proc. ALT’91, 1991. pp. l3Y- 150.

1221 S. Miyano. A. Shinohara. T. Shinohara, Learning elementary formal systems and an application to

discovering motifs in proteins, Tech. Report RIFIS-TR-CS-37, RIFIS, Kyushu University, 1993.

1231 S. Mugglcton, L. De Raedt, Inductive logic programming: theory and methods, J. Logic Programming.

19/20 (1994) pp. 629-679.

[24] B.K. Natarajan, Machine Learning: A Theoretical Approach. Morgan-Kaufmann, Los Altos. MA. 1901.

1251 L. Pliimcr, Termination proofs for logic programs, Ph. D. Thesis. University of Dortmund. Also appear!,

as Lecture Notes in Computer Science, Vol. 446, Springer, Berlin, 1990.

[26] Y. Sakakibara, Inductive inference of logic programs based on algebraic semantics. New Gen. C‘omp.

7 (1990) 36S-3X0.

[27] E. Shapiro. Inductive inference of theories from facts. Tech. Report, Yale Univ., 1981.

[28] E. Shapiro. Algorithmic Program Debuggmg, MIT Press. Cambridge, MA. 1983.

[29] R.K. Shyamasundar, M.R.K. Krishna Rao, D. Kapur, Rewriting concepts in the study of tenninatmn of

logic Programs, in: K. Broda (Ed.) Proc. ALPUK’92 Conf. Workshops in Computing series, Springer,

Berlin, I Y92.

(301 J.D. Ulhnan. A. van Gelder, Efficient tests for top-Down termination of logical rules, JACM 35 (198X)

345-373.

[3l] L.C. Valtant. A theory of learnable, Comm. CACM 27 (1984) I l34- 1142.

[32] A. Yamamoto, Generalized unification as background knowledge in learning logic programs, in Proc.

ALT’93. Lecture Notes in Computer Science, Vol. 744, Springer, Berlin. 1993. pp. I I I-122. Revised

version as Learning logic programs using definite equality theories as background knowledge. IEICE

Trans. Inform. System. E78-D (May 1995) 539-544.

