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ABSTRACT 

The four matrices LoUoL1U1 at the end of the title are triangular with ones on 
their main diagonals. Their product has determinant one. Following a question and 
theorem of Toffoli, we show that any matrix with determinant one can be factored in 
this way. A transformation of the plane becomes a sequence of one-dimensional 
shears, with n 2 - 1 free parameters. © 1997 Elsevier Science Inc. 

1. I N T R O D U C T I O N  

Matrix factorizations now dominate  the subject of  linear algebra. They  are 
part  of  the theory and part  of  the language. Often their  history is o b s c u r e - - a  
theorem is brought  forward into its p roper  place by its applications. One  
c ommon  thread is that the total n u m b e r  of  parameters  is n z when factoring a 
(not quite arbitrary) matrix of  order  n" 
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n 2 - n n 2 - n 

1. A = L D U  has ----f---  + n + ~ parameters. 

n 2 -- n n 2 + n 
2. A = Q R  has 2 + 2 parameters. 

3. A = S A S - 1  has  n 2 - n + n + 0 parameters. 
n 2 - -  n n 2 + n 

4. A = U T U  n has ~ + ~ + 0 parameters. 

n 2 - -  n n 2 - -  n 

5. A = U ~ , V  n has ~ + n + ~ parameters. 

/ . / 2  _ _  n n 2 -~- n 

6. A = Q H  has -----f--- + ~ parameters. 

Each factorization is "generically" possible when complex numbers are 
allowed. The last three, Schur, SVD, and polar, are always possible. The first 
pair and last pair are real when A is real. There are special factorizations 
L D L  n and U A U  n for Hermitian matrices, again with the correct parameter 
count [now (n 2 + n) /2] .  And there are combinations like lower triangular L 
times symmetric H for which good applications have not been found. 

We do not know a general theory of matrix factorizations. Such a study 
seems reasonable, but that is not at all our goal. The purpose of this note is to 
add an occasionally useful variation to the L D U  factorization, by forcing 
D = I (unit pivots) but then extending to more triangular factors--generi- 
cally to U L U  and exceptionally to L U L U .  The determinant of A is necessar- 
ily one, since all diagonal entries are ones. The factors are s h e a r s .  These L's 
and U's are not repeated-- they are different--so a better notation is 
A = L o U o L 1 U  1. 

Before describing these shears, we comment further on factorizations 
1-6. The map from A to its factors is nonlinear. There is a choice of signs in 
the columns of Q and the diagonal entries of R. With the unit eigenvectors 
in S there is also freedom to reorder. More important is the possibility of 
n o n e x i s t e n c e :  elimination can fail and diagonalization can fail. We rescue 
diagonalization, as far as possible, by the l 's in the Jordan form. We rescue 
elimination by allowing a permutation matrix P. For numerical analysts it 
comes first: for algebraists it comes between L and U. If we permute to avoid 
small pivots, P may as well come first. Algebra prefers a canonical form, 
avoiding only zero pivots. The row and column operations on A are down- 
ward and rightward, accepting the first nonzeros as pivots. Then L - a A U  -1  

has at most one nonzero entry in each row and column, and P appears 
naturally. 
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A corresponding rescue will be needed for our factorization into shears. 
This is responsible for extending U L U  to L U L U .  The generic case A = 
UoL1U 1 will have n 2 - 1 parameters (the determinant of A is 1), and an 
extra factor L o handles exceptional cases when certain submatrices are 
singular. For n = 2 and n = 3, we expect three and eight parameters in the 
factors of A: 

11 xlll ][l UoL1U l = 1 x 1 1 • 

1 x 1 

(2) 

The factor U 0 has n - 1 nonzeros above the diagonal, all in the last column. 
Then the count for three factors is 

The U L U  factorization has special importance for orthogonal matrices, as 
in 

°01[ ]I 0111 [cos/9 - s i n  1 - t a n ( 0 / 2 )  1 
(3) 

/ ' sin 0 cos 0 1 sin 0 1 0 1 
I 

This decomposition into shears is valuable in computer graphics, when a 
plane figure is to be turned. The rotation is effectively reduced to a series of 
translations in coordinate directions. Instead of interpolating between rotated 
pixels and original pixels, the processing of each shear is o n e - d i m e n s i o n a l .  No 
rescaling is needed with unit determinants. This three-pass implementation 
seems to have been discovered independently in [1-3]; the full history is 
unclear. The recent paper [4] develops a careful analysis of one-dimensional 
interpolation, leading to a good algorithm and impressive figures. 

Note that a rotation by 0 = er is not permitted in (3), because the tangent 
becomes infinite. The 2-by-2 matrix A = - I  is not a product of three 
shears. This is one of the exceptional cases requiring four shears. 

For three-dimensional rotations, Toffoli [5] presented a generalization. 
Certainly A is a product of three plane rotations (through Euler angles). Each 
plane rotation is a product of three plane shears (making nine). By allowing 



168 GILBERT STRANG 

more  general  triangular shears, Toffoli found that  a three-pass factorization is 
again possible. His goal was the same: "The  advantage remains that  the 
address ari thmetric for a shear (at the m e m o r y  controller level) is much  
simpler than for a rotation (at the processor  level)." In certain architectures 
the shear is a native operation.  

I t  was natural to ask about  matrices that  are not rotations, and about  
orders n > 3. Here  we extend the A = ULU t heorem to the generic case, 
and continue to A = L U L U  for the exceptional cases. It was already known 
to algebraists that every unit matrix is a product  o f  shears. It may not have 
been  known that four shears are sufficient. 

2. G E N E R I C  CASE 

Which matrices can be  factored into A 1 = L1U 1 with ones on the main 
diagonals o f  both factors? Certainly det A 1 = 1. More than that, every upper  
left submatrix must  have det A(1 k) = 1. The  reason is that  these k-by-k 
submatrices also factor into A(1 k) = L(lk)U1 (k). The  ones are still on the 
diagonal, so all determinants  equal 1. In the language of  elimination, all 
pivots of  A t are one with no row exchanges. 

Suppose we a t tempt  to change a given A into such a matrix Al, by 
adding multiples of  the last row of  A to earlier rows. When  the last row is v, 
we add civ to row i (tbr each i < n). This operat ion will be  U(~-1A, producing 
A 1. The  uppe r  left k-by-k submatrix becomes  

A (k) + [cil e 2 
v k =  

r q- ¢ l v ]  

first k columns of  r2 + c2v . 

[ r~ + ck" ] 

The de terminant  of  this matrix is in tended to equal one. We  write D} k) 
for the de terminant  of  the submatrix A (k~ after v has replaced the i th row r i. 
Then  the matrix above has (by multilinearity of  determinants)  

de terminant  = det A ~k ) + c1D~ k) -t- " "  + ck D(k k ). (4)  
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We have a triangular system of n - 1 equations for the n - 1 coefficients c~ 
that yield submatrices with determinant  one: 

clD] 1) = 1 - d e t  A 0 ) ,  

clD~ 2) + c 2 D(2 e) = 1 - det A (2), 

elD~ "-1) + ... + c ._ID~"A 1) = 1 -  d e t A  ("-a) 

(5) 

I f  all coefficients D(k k) on the diagonal o f  those systems are nonzero, the ULU 
factorization is not only possible but unique. 

THEOREM 1. I f  all D(k k) 4: O, then the numbers c, and the factors o f  A 
are uniquely determined: 

1 - c l  1 1 - c  2 
A = UoLIU 1 with U 0 = . (6)  

1 

The numbers c i come f r o m  (5). They appear in Uo 1, taking A to A 1. These 
numbers become - c  i when  this "'upward" operation is on the right side in 
A = U o A 1. Now A 1 has all upper  left submatrices with determinant 1. 
Ordinary elimination then gives A 1 = L1U 1, and the three-shear factorization 
is established. 

Note that uniqueness fails for A = I. The coefficients D(k k) are all zero 
because the last row v starts with zeros. There  are many factorizations 
I = U o IUo 1. But the generic case has n 2 - 1 uniquely determined parame- 
ters in the three shears (only in the last column of  U0). 

3. E X C E P T I O N A L  CASES 

Two difficulties can arise in the above construction. Either the ~articular 
vector v in the last row of  A fails to give nonzero coefficients D(k k), or no 
vector v in that row can do so. W h e n  the fault lies in the particular vector v, 
we use a fourth (downward) shear L 0 to replace it by a bet ter  vector. When  
the fault is not in the last row, but  in other  rows, we include more  nonzeros 
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in U o. Here  are examples of  both: 
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 aultinv 0] 0.5 ; fault in A (2): A = 

0 0 0 1 
0 0 1 0 
0 1 0 0 
1 0 0 0 

(7) 

For the first matrix, L 0 can add row I to row 2. Then  the last row v becomes 
satisfactory. Subtracting a multiple of  v from row 1 yields the matrix A 1 ,  with 
upper  left entry equal to one. Then  A 1 = L1U 1 as required. 

For  the second matrix, no last row would be satisfactory. Adding multiples 
to row 1 and 2 cannot produce a nonsingular 2-by-2 matrix in the comer .  A 
remedy is available by including other  upward operations in U0: add row 3 to 
row 1. It is this possibility that we have to generalize. 

L e m m a  1 will remove the first difficulty, and Lemma 2 the second. We 
do not at tempt a "minimal" adjustment in these exceptional cases when 
Theorem 1 does not succeed. 

LEMMh 1. Suppose v in R" is not in the span of  the first rows 
r 1 . . . . .  r , _  1. By downward row operations, the last row of  A can be changed 
to a nonzero multiple of  v. 

Proof. Write v as a combination of  r 1 . . . . .  r , ,  which form a basis 
because det A = 1. Dividing by the coefficient of  r .  yields a vector cv  = 
a i r  I + . . .  -ban_lrn_ 1 + rn, in which r ,  has coefficient one. Downward  row 
operations can produce this vector cv  in the last row of  A. I f  there is any 
acceptable v for the last row, this lemma puts it there by downward 
operations. Those are executed by (the inverse of) the fourth factor L 0. 

LEMMn 2. I f  a matrix has rank at least k -  1, then upward row 
operations can make its f irst k - 1 rows linearly independent. 

These upward steps can be done in a definite order. Remember  that row 
n is not involved at this stage. The steps begin as follows: 

1. The n - 1-by-2 matrix in the first two columns has rank at least 1. 
Make its first row nonzero. 

2. The  n - 1-by-3 matrix in the first three columns has rank at least 2. 
Make its second row independent  of  its first row. 
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W h e n  we reach the n - 1-by-k matrix in the first k columns, the rank is at 
least k - 1 (because including the n th  row would give k complete columns 
of  A, and those columns are independent).  The first k - 2 rows are already 
made independent .  At that point, I~LX row k - 1 using lower rows. Stop when 
this is done for k = n - 2. 

Now all the k-by-k determinants D~ k~, with v inserted in row k, are to be 
nonzero. Almost any v will make this true. For  k = 1 . . . . .  n - 1, the vector v 
has to yield a k th row that is independent  of  the first k - 1 rows. L e m m a  1 
assures that such a v is available. 

Note that we may test the preliminary upward operations early, to 
determine an acceptable v for the nth row. Lo  I puts a multiple of  v in that 
row. Then  Uo 1 does the upward operations first (not altering row n, as in 
Lemma 2) by using v to reach A t. With the coefficients c~ from Equation 
(5), all upper  left submatrices have det A~ k~ = 1. Ordinary elimination gives 
A 1 = L1U1, and the four-shear factorization A = LoUoA 1 = LoUoL1U l is 
complete.  

We  end with an example that creates v in row 3 and then produces unit 
matrices (determinant  1) in rows 1 and 2: 

A =  0 ~ 0 
0 - - 1  - 

[i o - 1  
1 = A 1 --~ L1U 1. 

--1 

We thank Tom Toffoli for sending his "'ULU theorem" for orthogonal 
matrices, and also Chris Leary for his invitation to teach a class at SUNY 
Geneseo--in which the 2-by-2 "'LULU theorem" was proved ~ointly with the 
class). 
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