Four-genera of quasipositive knots

Toshifumi Tanaka*
Graduate School of Mathematics, Kyushu University, Hakozaki 6-10-1 Higashiku, Fukuoka 812, Japan Received 21 August 1996; revised 2 January 1997

Abstract

By using a result of Rudolph concerning the four-genera of classical knots, we give an infinite family of knots which have arbitrary large gaps between the four-genera and the topological fourgenera. © 1998 Published by Elsevier Science B.V.

Keywords: Four-genus; Topological four-genus; Quasipositive knots
AMS classification: 57M25; 57N70

1. Introduction

A link is a closed oriented 1-manifold smoothly embedded in the 3-sphere S^{3}; a knot is a link with one connected component. Two knots K_{0} and K_{1} are smoothly (respectively, topologically) cobordant if there is an oriented annulus C smoothly (respectively, topologically locally-flatly) embedded in $S^{3} \times[0,1]$ such that $C \cap S^{3} \times\{0,1\}=K_{0} \cup-K_{1}^{*}$, where $-K_{1}^{*}$ is the mirror image of K_{1} with reversed string orientation. We denote by $\mathcal{K}_{\text {DIFF }}$ (respectively, $\mathcal{K}_{\text {TOP }}$) the set of smooth (respectively, topological) cobordism classes of knots which is endowed with an abelian group structure under the operation of connected sum, denoted \sharp. Every knot in the identity class of $\mathcal{K}_{\text {DIFF }}$ (respectively, $\mathcal{K}_{\text {TOP }}$) is called smoothly (respectively, topologically) slice. Knots $\left\{K_{i}\right\}$ are linearly independent if the smooth cobordism classes of $\left\{K_{i}\right\}$ are linearly independent in $\mathcal{K}_{\text {DIFF }}$. If K_{0} and K_{1} are smoothly cobordant, so are they topologically. Thus, there is a natural epimorphism $i: \mathcal{K}_{\text {DIFF }} \rightarrow \mathcal{K}_{\text {TOP }}$. By making use of a result of Donaldson [5], Gompf [6] showed that the kernel of i contains a free abelian group of infinite rank. More recently, by making

[^0]use of a result of Furuta concerning the homology cobordism groups of homology 3spheres, Endo [10] gave an infinite family of knots of infinite order which are linearly independent in the kernel of i.

In this note, we define the four-genus (respectively, topological four-genus) for a knot K as the minimum genus for an oriented 2-manifold, without closed component, which is smoothly (respectively, topologically locally-flatly) embedded in 4 -disk D^{4} with boundary K, and denote it by $G_{\mathbf{S}}(K)$ (respectively, $G_{\mathbf{T}}(K)$). It is obvious that $G_{\mathbf{S}}(K) \geqslant G_{\mathbf{T}}(K)$ for any K.

We consider the following question:
Question. For each pair (l, m) of non-negative integers such that $m>l$, is there a knot K which satisfies that $G_{\mathbf{T}}(K)=l$ and $G_{\mathbf{S}}(K)=m$?

In the recent works of Rudolph [8,9], it was shown that there are infinitely many knots $\left\{K_{i}\right\}$ satisfying $G_{\mathrm{T}}\left(K_{i}\right)=0$ and $G_{\mathbf{S}}\left(K_{i}\right)=1$. On the other hand, Yasuhara showed that there are infinitely many knots $\left\{K_{j}\right\}$ satisfying $G_{\mathbf{T}}\left(K_{j}\right)=0$ and $G_{\mathbf{S}}\left(K_{j}\right) \geqslant 3$ [11].

Our main result is:
Theorem 1.1. For each pair (l, m) of non-negative integers such that $m>l$, there exists an infinite family of prime knots $\left\{K_{i}\right\}$ which are linearly independent, and satisfy that $G_{\mathbf{T}}\left(K_{i}\right)=l$ and $G_{\mathbf{S}}\left(K_{i}\right)=m$.

Remark 1.2. In particular, the above theorem says that there is an infinite family of linearly independent knots in the kernel of i which have the four-genera as large as desired and also says that there is an properly embedding in D^{4} of oriented connected 2-manifold, with arbitrary genus, which is topologically locally-flatly, but not smoothly.

In Section 2, we review Rudolph's works [9] on the quasipositive link and Endo's result [11] which are used, in Section 3, to prove the main theorem.

2. Quasipositivity and four-genera of links

In this section we survey a work of Rudolph [9] on the link which is called quasipositive link defined as following:

Let \mathbb{R}^{4} be identified with

$$
\mathbb{C}^{2} \supset S^{3}:=\{(z, w):|z|+|w|=1\} .
$$

Definition 2.1. In the n-string braid group
a positive band is any conjugate $\omega \sigma_{i \omega^{-1}}\left(\omega \in B_{n}\right)$; a quasipositive braid is any product of positive bands. A quasipositive oriented link is one which can be realized as the closure of a quasipositive braid.

Four-genus. Let K be a knot in S^{3}. Let $\chi_{\mathbf{S}}(K)$ (respectively, $\chi_{\mathbf{T}}(K)$) be the greatest Euler characteristic $\chi(F)$ of an oriented 2-manifold F, without closed components, smoothly (respectively, topologically locally-flatly) embedded in D^{4} with boundary K.

Now we define the following:

$$
G_{\mathbf{S}}\left(K^{\circ}\right) \stackrel{\text { def }}{=}\left(1-\chi_{\mathbf{S}}(K)\right) / 2 . \quad G_{\mathbf{T}}(K) \stackrel{\text { def }}{=}\left(1-\chi_{\mathbf{T}}(K)\right) / 2
$$

It is obvious that K is smoothly (respectively, topologically) slice if and only if $G_{\mathbf{S}}(K)=0$ (respectively, $G_{\mathbf{T}}(K)=0$). We call $G_{\mathbf{S}}(K)$ (respectively, $G_{\mathbf{T}}(K)$) the four-genus (respectively, topological four-genus) of K.

Rudolph showed the following:
Theorem 2.2 (Rudolph [9]). If $\beta=\omega_{1} \sigma_{i} \omega_{1}^{-1} \ldots \omega_{k} \sigma_{i_{k}} \omega_{k}^{-1} \in B_{n}$ is quasipositive, then $\chi \mathbf{s}(\hat{\beta})=n-k$.

Quasipositive pretzel. Let $p, q, r \in \mathbb{Z}$. A diagram for the pretzel link $\varphi(p, q, r)$ is obtained from a braid diagram for $\beta_{p, q . r}:=\sigma_{1}^{-p} \sigma_{3}^{-q} \sigma_{5}^{-r} \in B^{6}$ by forming the plat of $\beta_{p, q, r}$ as shown in Fig. 1.

If p, q, r are all odd, then $\varphi(p, q, r)$ is a knot. Rudolph showed that for p, q, r all odd, $\varphi(p, q, r)$ is quasipositive iff $\min \{p+q, p+r, q+r\}>0$, and he also showed that $\varphi(p, q, r)$ satisfies $G_{\mathbf{T}}(\varphi(p, q, r))=0, G_{\mathbf{S}}(\varphi(p, q, r))=1$ for a triple $(p . q, r)$ of odd integers satisfying

$$
p q+p r+q r=-1 . \quad|p| \cdot|q| \cdot|r| \neq 1
$$

All the pretzel knots of the following Endo's theorem are of this type.
By using a result of Furuta concerning the homology cobordism group of homology 3-spheres, Endo showed the following theorem:

Thcorem 2.3 (Endo [10]). Each family of infinitely many pretzel knots exhibited below are linearly independent in the kernel of i.

Fig. 1. Pretzel link $\varphi(p, q, r)$.

$$
\begin{array}{ll}
\varphi(-2 k-1,4 k+1,4 k+3) & (k=1.2, \ldots) \\
\varphi\left(-2 k-1,2 k+3,2 k^{2}+4 k+1\right) & (k=1.2, \ldots) \\
\varphi\left(-2 k-1,2 k+5, k^{2}+3 k+1\right) & (k=1.2, \ldots) \\
\varphi(-4 k-1,6 k+1,12 k+5) & (k=1.2 \ldots) \\
\varphi(-4 k-3,6 k+5,12 k+7) & (k=1,2, \ldots) \tag{5}
\end{array}
$$

3. Proof of the main theorem

In this section, we prove the Theorem 1.1 by making use of the following three lemmas.
Lemma 3.1. Let K_{0} and K_{1} be two quasipositive knots. Put $K=K_{0} \sharp K_{1}$. Then

$$
G_{\mathbf{S}}(K)=G_{\mathbf{S}}\left(K_{0}\right)+G_{\mathbf{S}}\left(K_{\mathbf{1}}\right)
$$

Proof. Let β_{0} and β_{1} be the quasipositive braids corresponding to K_{0} and K_{1}, respectively (i.e., $\beta_{0} \in B_{m}, \beta_{1} \in B_{n}$). Let the lengths of β_{0} and β_{1} be to k and l, respectively. Put $\beta=\beta_{0} \sigma_{m} \beta_{1}^{\prime}$ (i.e., β_{1}^{\prime} is the braidsword obtained from β_{1} adding m to all its indices). Then β is quasipositive and $\hat{\beta}=K$. By Theorem 2.2, we note that

$$
\chi_{\mathbf{S}}(\hat{\beta})=m+n-(k+l+\mathbf{1})=(m-k)+(n-l)-1=\chi_{\mathbf{S}}\left(\hat{\beta}_{0}\right)+\chi_{\mathbf{S}}\left(\hat{\beta}_{1}\right)-1 .
$$

So

$$
\begin{aligned}
G_{\mathbf{S}}(K) & =\left(1-\chi_{\mathbf{S}}(\hat{\beta})\right) / 2=\left(1-\chi_{\mathbf{s}}\left(\hat{\beta}_{0}\right)\right) / 2+\left(1-\chi_{\mathbf{s}}\left(\hat{\beta}_{1}\right)\right) / 2 \\
& =G_{\mathbf{S}}\left(K_{0}\right)+G_{\mathbf{S}}\left(K_{1}\right) .
\end{aligned}
$$

Corollary 3.2. There is no quasipositive knot which has order two in $\mathcal{K}_{\text {DIFF }}$, so there are many knots which are not quasipositive.

Proof. For a quasipositive knot K, suppose that $K \sharp K$ is slice. By the Lemma 3.1,

$$
G_{\mathbf{S}}(K)+G_{\mathbf{S}}(K)=G_{\mathbf{S}}(K \sharp K)=0 .
$$

So $G_{\mathbf{S}}(K)=0$.
A knot K in S^{3} is prime if any 2 -sphere in S^{3}, which meets K transversely in two points, bounds in S^{3} a ball meeting K in an unknotted spanning arc.

Lemma 3.3. Let K be a knot, then there is a prime knot K^{\prime} which satisfies $G_{\mathbf{S}}(K)=$ $G_{\mathbf{S}}\left(K^{\prime}\right)$.

Proof. By the Kirby and Lickorish's theorem [4] we have that any knot is cobordant to a prime knot. The lemma follows from the cobordism invariance of four-genera of knots.

Let a knot K have a Seifert surface F, and let the Seifert form $H_{1}(F) \times H_{1}(F) \rightarrow Z$ be represented, with respect to some basis by the Seifert matrix V. Then, the signature of the symmetric matrix $V+V^{T}$ is the signature of K, denoted $\sigma(K)$. Murasugi [1] proved of the smooth cobordism invariance of the signature. It is well-known that the following lemma holds.

Lemma 3.4 (for example, see [3]). Let $\sigma(K)$ be the signature of K. Then the following holds.

$$
|\sigma(K)| / 2 \leqslant G_{\mathbf{T}}(K)
$$

Remark 3.5. We can prove the Lemma 3.4 by making use of the Wall's topological version [2] of the G-signature theorem.

Proof of Theorem 1.1. Let $\left\{K_{i}\right\}$ be the family of an infinitely many linearly independent quasipositive knots with $G_{\mathbf{T}}\left(K_{i}\right)=0$ and $G_{\mathbf{S}}\left(K_{i}\right)=1$ (for example, let $\left\{K_{i}\right\}$ be a family of the pretzel knots of the Theorem 2.5) and K_{T} be a quasipositive knot with $G_{\mathbf{T}}\left(K_{T}\right)=G_{\mathbf{S}}\left(K_{T}\right)=\left|\sigma\left(K_{T}\right)\right| / 2=1$ (for example, let K_{T} be a trefoil knot). Put

$$
\sharp^{m-l} K_{i}=\underbrace{K_{i} \sharp \cdots \sharp K_{i}}_{m-l}, \quad \sharp^{l} K_{T}=\underbrace{K_{T} \sharp \cdots \sharp K_{T}}_{l} .
$$

By Lemma 3.1, we can show that

$$
G_{\mathbf{S}}\left(\sharp^{m-l} K_{i}\right)=m-l, \quad G_{\mathbf{T}}\left(\sharp^{m-l} K_{i}\right)=0 .
$$

Thus, by Lemma 3.4, we obtain

$$
G_{\mathbf{T}}\left(\left(\sharp^{m-l} K_{i}\right) \sharp\left(\sharp^{l} K_{T}\right)\right)=l, \quad G_{\mathbf{S}}\left(\left(\sharp^{m-l} K_{i}\right) \sharp\left(\sharp^{l} K_{T}\right)\right)=m .
$$

We show that the knots $\left\{\left(\sharp^{m-l} K_{i}\right) \sharp\left(\sharp^{l} K_{T}\right)\right\}$ are linearly independent in $\mathcal{K}_{\text {DIFF }}$. For any integers $p,\left\{\alpha_{i}\right\}_{i=1}^{p}$ with $p \geqslant 2$ and $\alpha_{1}^{2}+\cdots+\alpha_{p}^{2} \neq 0$, assume that

$$
\begin{aligned}
& \alpha_{1}\left[\left(\sharp^{m-l} K_{1}\right) \sharp\left(\sharp^{l} K_{T}\right)\right]+\cdots+\alpha_{p}\left[\left(\sharp^{m-l} K_{p}\right) \sharp\left(\sharp^{l} K_{T}\right)\right] \\
& \quad\left(=(m-l) \alpha_{1}\left[K_{l}\right]+\cdots+(m-l) \alpha_{p}\left[K_{p}\right]+l\left(\alpha_{1}+\cdots+\alpha_{p}\right)\left[K_{T}\right]\right)=0 .
\end{aligned}
$$

Put $\omega=l\left(\alpha_{1}+\cdots+\alpha_{p}\right)$. If $\omega=0$, then $\alpha_{1}=\cdots=\alpha_{p}=0$. It is contrary to assumption. Suppose that $\omega \neq 0$; then

$$
\begin{aligned}
& \sigma\left(\left(\sharp^{(m-l) \alpha_{1}} K_{1}\right) \sharp \cdots \sharp\left(t^{(m \quad l) \alpha_{v}} K_{p}\right) \sharp\left(\sharp^{\omega} K_{T}\right)\right) \\
& \quad=(m-l)\left(\alpha_{1} \sigma\left(K_{1}\right)+\cdots+\alpha_{p} \sigma\left(K_{p}\right)\right)+\omega \sigma\left(K_{T}\right) \\
& \quad=\omega \sigma\left(K_{T}\right) \neq 0 .
\end{aligned}
$$

It is also contrary to assumption.
By the proof of Lemma 3.3, the cobordism classes of these knots can be represented by the prime knots, denoted by $\left\{K_{P_{i}^{m, l}}^{m}\right\}$. From the cobordism invariance of the four-genus and the signature of knots, the four-genera and the topological four-genera of $\left\{K_{P}{ }^{m . l}\right\}$ equal to m and l, respectively. Thus we have completed the proof.

Acknowledgements

The author would like to thank Professor Mitsuyoshi Kato for his encouragement. He also thanks Professors Katura Miyazaki, Akira Yasuhara, Yoshihisa Sato for their informations.

References

[1] K. Murasugi, On a certain numerical invariant of link type, Trans. Amer. Math. Soc. 117 (1965) 387-422.
[2] C.T.C. Wall, Surgery on Compact Manifolds (Academic Press, 1976).
[3] C.McA. Gordon and R.A. Litherland, On the signature of a link, Invent. Math. 47 (1978) 53-69.
[4] R.C. Kirby and W.B.R. Lickorish, Prime knots and concordance, Math. Proc. Camb. Phil. Soc. 86 (1979) 437-441.
[5] S. Donaldson, An application of gauge theory to four-dimensional topology, J. Diff. Geometry 18 (1983) 279-315.
[6] R.E. Gompf, Smooth concordance of topologically slice knots, Topology 25 (3) (1986) 353373.
[7] L. Rudolph, Algebraic functions and closed braids, Topology 22 (1983) 191-201.
[8] L. Rudolph, Some topologically locally-flat surfaces in the complex projective plane, Comment. Math. Helv. 59 (1984) 592-599.
[9] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. 29 (1993).
[10] H. Endo, Linear independence of topologically slice knots in the smooth cobordism group, Topology Appl. 63 (1995) 257-262.
[11] A. Yasuhara, Connecting lemmas and representing homology classes of simply connected 4-manifold, Tokyo J. Math. 19 (1996) 245-261.

[^0]: * E-mail: ttanaka@math.kyushu-u.ac.jp.

