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Abstract 

By using a result of Rudolph concerning the four-genera of classical knots, we give an infinite 
family of knots which have arbitrary large gaps between the four-genera and the topological four- 
genera. 0 1998 Published by Elsevier Science B.V. 
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1. Introduction 

A link is a closed oriented 1 -manifold smoothly embedded in the 3-sphere S3; a knot is 

a link with one connected component. Two knots Ko and K1 are smoothly (respectively, 

topologically) cobordant if there is an oriented annulus C smoothly (respectively, topo- 

logically locally-jlutly) embedded in S3 x [0, l] such that C n S' x (0, l} = KCJ U -KT, 

where -K; is the mirror image of K1 with reversed string orientation. We denote by 

lCurr~ (respectively, ICrop) the set of smooth (respectively, topological) cobordism classes 

of knots which is endowed with an abelian group structure under the operation of con- 

nected sum, denoted #. Every knot in the identity class of lCur~~ (respectively, ICrop) is 

called smoothly (respectively, topologically) slice. Knots { K2} are linearly independent 

if the smooth cobordism classes of {K,} are linearly independent in F&r. If KO and K1 

are smoothly cobordant, so are they topologically. Thus, there is a natural epimorphism 

i : KDIFF ---f KTOP. By making use of a result of Donaldson [5], Gompf [6] showed that 

the kernel of i contains a free abelian group of infinite rank. More recently, by making 
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use of a result of Furuta concerning the homology cobordism groups of homology 3- 

spheres, Endo [IO] gave an infinite family of knots of infinite order which are linearly 

independent in the kernel of i. 

In this note, we define the,fi)ur--gP/ru.r (respectively, topological four-genus) for a knot 

I< as the minimum genus for an oriented 2-manifold, without closed component, which is 

smoothly (respectively, topologically locally-flatly) embedded in 4-disk D” with boundary 

Ix?, and denote it by Gs(K) (respectively, Gr(K)). It is obvious that Gs(K) 3 Gr(IC) 

for any K. 

We consider the following question: 

Question. For each pair (/, 1~1) of non-negative integers such that nl > 1, is there a knot 

K which satisfies that GT(I<) = I and Gs(li) = u/‘? 

In the recent works of Rudolph [8,9]. it was shown that there are infinitely many knots 

{I{, } satisfying Gr(K,) = 0 and Gs( I<,) = I. On the other hand, Yasuhara showed that 

there are infinitely many knots {I<,,} satisfying GT(IC,]) = 0 and Gs(Kf) 3 3 [I 11. 

Our main result is: 

Theorem 1.1. For each pair (1. II/) of nowrqati\~e integers such that rn > 1, there 

e.rists an injnite ,fnmily of prime krwts { K, } \vhich ore linearly independent, and sutisjj 

thrit GT(K,) = 1 and Gs(i<,) = rrt. 

Remark 1.2. In particular. the above theorem says that there is an infinite family of 

linearly independent knots in the kernel of i which have the four-genera as large as 

desired and also says that there is an properly embedding in D’ of oriented connected 

2-manifold, with arbitrary genus, which is topologically locally-flatly, but not smoothly. 

In Section 2, we review Rudolph’s works [9] on the yun.sipnsitive link and Endo’s 

result [I I] which are used, in Section 3, to prove the main theorem. 

2. Quasipositivity and four-genera of links 

In this section we survey a work of Rudolph 191 on the link which is called quusipositive 

link defined as following: 

Let Iw” be identified with 

Definition 2.1. In the n-string hrmid group 

B,, :=!/r a,.1 <i<n- 1 
[fr,./T,] = +J,. 
[(T,.O,)] = I. 

a positive lmicl is any conjugate L’(T,~~~ ’ (ti E Ll,, ): a quasipositive braid is any product 

of positive bands. A qusipositive oriented link is one which can be realized as the 

closure of a quasipositive braid. 



Four-genus. Let I< be a knot in S’. Let xs(l<) (respectively, XT(K)) be the greatest 

Euler chamcteri.stic y(F) of an oriented 2-manifold F, without closed components, 

smoothly (respectively, topologically locally-flatly) embedded in DJ with boundary 11~. 

Now we define the following: 

Gs(A-) “A (1 ~ #(Ii-))/2. Gr(K) “’ (I - ),r(h_))/2. 

It is obvious that I< is smoothly (respectively, topologically) slice if and only if 

G&(1<) = 0 (respectively, Gr(I<) = 0). W e call Gs(IC) (respectively, Gr(I<)) the 

f&r-genus (respectively, topologiccrl ,fimr-gems) of K. 

Rudolph showed the following: 

Theorem 2.2 (Rudolph [9]). J&-l = J,cT,~; UI~‘T,~ di;’ E B,, is qumipositi~~e, then 

#(,j) = 77 ~ k. 

Quasipositive pretzel. Let 11. q, r t Z. A diagram for the pretxl link ~(II. (1.1.) is ob- 

tained from a braid diagram for &,,‘. := (~l”a~~“cr~ Pr’ E B6 by forming the plat of :I’~,,~~.,. 

as shown in Fig. 1. 

If 11. q. I* are all odd, then ?(p_ 4, r) is a knot. Rudolph showed thatj?Jr 11~ (1% r all odd, 

~(p. 4. I.) is yua.sipo.siti\~e $f min{p + 4,~ + r, q + r} > 0, and he also showed that 

q(l). 4. r) satisfies Gr(q(~). (1. 7.)) = 0, Gs(+(r,. (1. 1.)) = I for a triple (p. (I. r) of odd 

integers satisfying 

~~(~+~,/‘+c~r’= -1. ~JI~.~~l.I/~~ # I. 

All the pretzel knots of the following Endo’s theorem are of this type. 

By using a result of Furuta concerning the homology cobordism group of homology 

3-spheres. Endo showed the following theorem: 

Theorem 2.3 (Endo [ IO]). Each jilmily of’ ir$nitely tnnrzy pretzel knots exhibited helmz~ 

uly linearly itdeperdent in the kernel of i. 

IPI I4 Irl 

tp).)q),trt: the number of crossings 

Fio C’ I Pretzel link ~(II% q. I.). 



y(-2k- 1.4k-t 1,4k:+3) (/Y = 1.2, .), 

9(-2k- 1,2/~+3,2@+4k+ 1) (k= 1.2 1... ), 

$9-2/V 1,2k+5,k’+3k+ I) (k:= 1.2....), 

p(-4k- 1.6/~+ I:12/~+5) (k = 1.2.. .), 

+41c - 3,6k + 5,12k + 7) (k = I. 2. .). 

(1) 

(2) 

(3) 

(4) 

(5) 

3. Proof of the main theorem 

In this section, we prove the Theorem 1.1 by making use of the following three lemmas. 

Lemma 3.1. Let Kc) and Kl he two quasipositive krzots. Put K = Ko#Kl. Then 

Gs(K) = Gs(Ko) + Gs(Kl). 

Proof. Let /‘?$ and ,Y, be the quasipositive braids corresponding to Kc) and I<,, respec- 

tively (i.e., ,& E B,,,, jO1 E I%,,). Let the lengths of :j(, and RI be to k and 1, respectively. 

Put /3 = /&~,,,pi (i.e., ,!?I is the braidsword obtained from 41 adding rn, to all its indices). 

Then R is quasipositive and 3 = Ii’. By Theorem 2.2, we note that 

x&)=m+12-@+I+l)=( II?, - I;) + (II - 1) - I = x&,) + x&3,) - 1. 

so 

G(K) = (1 - x&j))/2 = (1 - xs(;jo))/2 + (1 - xs(&/2 

= Gs(h;,) + Gs(KI). 0 

Corollary 3.2. There is no quasipositive knot which has order two in KDIFF, so there 

are many knots which are not quasipositive. 

Proof. For a quasipositive knot K, suppose that K#lC is slice. By the Lemma 3.1, 

Gs(K) + Gs(K) = Gs(KflK) = 0. 

So Gs(K) = 0. 0 

A knot K in S’ is prime if any 2-sphere in S’, which meets K transversely in two 

points, bounds in S” a ball meeting K in an unknotted spanning arc. 

Lemma 3.3. Let K be a knot, then there is N prime knot h-’ which satisfies Gs(K) = 

Gs(K’). 

Proof. By the Kirby and Lickorish’s theorem [4] we have that any knot is cobordant 

to a prime knot. The lemma follows from the cobordism invariance of four-genera of 

knots. 0 
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Let a knot K have a Seifert surface F, and let the Seifert form Hi (F) x HI (F) + 2 

be represented, with respect to some basis by the Seifert matrix V. Then, the signature 

of the symmetric matrix V + VT is the signature of K, denoted a(K). Murasugi [ll 

proved of the smooth cobordism invariance of the signature. It is well-known that the 

following lemma holds. 

Lemma 3.4 (for example, see [3]). Ler a(K) be the signature of K. Then the following 

holds. 

Remark 3.5. We can prove the Lemma 3.4 by making use of the Wall’s topological 

version 121 of the G-signature theorem. 

Proof of Theorem 1.1. Let {Ki} be the family of an inhnitely many linearly independent 

quasipositive knots with Gr(K,) = 0 and Gs(Ki) = 1 (for example, let {K,} be a 

family of the pretzel knots of the Theorem 2.5) and KT be a quasipositive knot with 

GT(A?_T) = Gs(KT) = lc~(li’~)]/2 = 1 (f or example, let I(T be a trefoil knot). Put 

#“z+Q-, = Kj#. flK*, @i-T = I(T!. ;fK(T 
. , \ , 

n-1 I 

By Lemma 3.1, we can show that 

Gs(ijrrt-‘KI) = rn - 1. GT(#‘*‘-~ h’,) = 0. 

Thus, by Lemma 3.4, we obtain 

G~((#“‘~‘h-,)t;(#‘h~~)) = 1. Gs(( jr”-‘K,)#(#‘KT)) = m. 

We show that the knots {(C”‘~‘h’,)j(~lK~)} are linearly independent in Knrrr. For 

any integers p. {tiL1}yZ, with p 3 2 and of + . + CL; # 0, assume that 

(LI [(#“‘-‘A-,)!(#%)] + ” -t QP [(#‘“-‘IQt(~%-T)] 

( = (771 - l)tk, [h’,] + ” + ( rn - l)ck,[Kp] + l(ck, + . + ~+))[KT]) = 0. 

Put in? = I(cri +. .+n[,). If Lu’ = 0, then CKI = . . = or, = 0. It is contrary to assumption. 

Suppose that J # 0; then 

It is also contrary to assumption. 

By the proof of Lemma 3.3, the cobordism classes of these knots can be represented by 

the prime knots, denoted by {Kpy.’ }. From the cobordism invariance of the four-genus 

and the signature of knots, the four-genera and the topological four-genera of {KpZ7r1.1} 

equal to m and I, respectively. Thus we have completed the proof. 0 
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