Resolvable 4-cycle group divisible designs with two associate classes: Part size even

Elizabeth J. Billingtona, C.A. Rodgerb

aDepartment of Mathematics, The University of Queensland, Brisbane, Qld. 4072, Australia
bDepartment of Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, AL 36849-5310, USA

Received 15 December 2004; received in revised form 10 October 2005; accepted 27 November 2006

Available online 2 June 2007

Abstract

Let λ_1K_a denote the graph on a vertices with λ_1 edges between every pair of vertices. Take p copies of this graph λ_1K_a, and join each pair of vertices in different copies with λ_2 edges. The resulting graph is denoted by $K(a,p;\lambda_1,\lambda_2)$, a graph that was of particular interest to Bose and Shimamoto in their study of group divisible designs with two associate classes. The existence of z-cycle decompositions of this graph have been found when $z \in \{3,4\}$. In this paper we consider resolvable decompositions, finding necessary and sufficient conditions for a 4-cycle factorization of $K(a,p;\lambda_1,\lambda_2)$ (when λ_1 is even) or of $K(a,p;\lambda_1,\lambda_2)$ minus a 1-factor (when λ_1 is odd) whenever a is even.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Resolvable; Cycle systems; Associate classes; 2-factorizations

1. Introduction

In this paper, graphs usually contain multiple edges. In particular, if G is a simple graph, then let λG denote the multigraph formed by replacing each edge in G with λ edges. Let C_2 denote a cycle of length 2.

For any two vertex-disjoint graphs G and H, define $G \vee H$ to be the graph formed from the union of G and H by joining each vertex in G to each vertex in H with exactly 2 edges; if $\lambda = 1$ then this may be represented by simply $G \vee H$. Let $K(a,p;\lambda_1,\lambda_2)$ denote the graph formed from p vertex-disjoint copies of the multigraph λ_1K_a by joining each pair of vertices in different copies of K_a with λ_2 edges. It will be useful to refer to edges in $K(a,p;\lambda_1,\lambda_2)$ that join vertices in different copies of λ_1K_a as being mixed edges, and edges joining vertices in the same copy of λ_1K_a as being pure edges. The vertex sets of the p copies of λ_1K_a will usually be $V \times \{i\}$ with $0 \leq i < p$ for some set V, where $|V| = a$. Then for each pair $\{u,v\} \subseteq V$, with $0 \leq i < j < p$, it will be useful to refer to the edges $\{(u,i),(v,j)\}$ and $\{(u,j),(v,i)\}$ as being the corresponding mixed edges to the edge $\{u,v\}$ in K_a. Also, for each $u \in V$ we will refer to the edges $\{(u,i),(u,j)\}$ as being the horizontal mixed edges.

An H-decomposition of a graph G is an ordered pair (V,C), where V is the vertex set of G and C is a set of copies of H such that each edge in G occurs in exactly one graph in C. When the actual vertex set V is of no interest, it will cause no confusion to refer to the decomposition by simply C. There has been considerable interest over the past 20 years in H-decompositions of various graphs, such as complete graphs and complete multipartite graphs, especially when H is a...
cycle (see [1,3,8,10,11], for example). More recently, the existence problem for C_z-decompositions of $K(a, p; \lambda_1, \lambda_2)$ for $z = 3$ [4,6] and for $z = 4$ [5] has been solved. Such decompositions are known as C_z group divisible designs with two associate classes, following the notation of Bose and Shimamoto who considered the existence problem for K_z group divisible designs [2]. (The reason for this name is that the structure can be thought of as partitioning ap symbols (i.e. vertices) into p sets of size a in such a way that symbols that are in the same set in the partition occur together in λ_1 blocks, and are known as first associates, whereas symbols that are in different sets in the partition occur together in λ_2 blocks, and are known as second associates.)

In an H-decomposition (V, C) of a graph G, a parallel class is a subset S of C such that each vertex in V occurs in exactly one copy of H in S. The decomposition (V, C) is said to be resolvable if C can be partitioned into parallel classes. In this paper we completely settle the existence problem for resolvable C_4-decompositions of $K(a, p; \lambda_1, \lambda_2)$, or of $K(a, p; \lambda_1, \lambda_2)$ minus a 1-factor, when a is even. A resolvable C_4-decomposition is also known as a C_4-factorization, and a parallel class in a resolvable C_4-decomposition is also known as a C_4-factor.

Let $G[V]$ denote the subgraph of G induced by the vertex set V.

2. Some preliminary results

A near C_4-factor of G is a spanning subgraph of G in which one component is K_2 and all others are C_4. A partition of $E(G)$ in which each element induces a near C_4-factor is called a near C_4-factorization of G. We can easily obtain the following result, which is of some interest in its own right.

Theorem 1. For all $n \geq 1$ there exists a near C_4-factorization of K_{4n+2}.

Proof. Let $V(K_{4n+2}) = \mathbb{Z}_{2n+1} \times \mathbb{Z}_2$. Then

$$B = \bigcup_{i=0}^{2n} \{(i, 0), (i, 1), (j + i, 0), (j + i + 1, 1), (j + 1, 0), (-j + i, 0)|1 \leq j \leq n\}$$

provides the required resolvable decomposition. □

In any near C_4-factorization S of K_{4n+2}, it is clear that the set $F(S)$ of copies of K_2 forms a 1-factor of K_{4n+2}. Let $\{F_0, F_1, \ldots, F_{4n}\}$ be a 1-factorization of K_{4n+2}. By simply renaming vertices in S, it is clear that for $0 \leq i \leq 4n$ we can form a near C_4-factorization S_i of K_{4n+2} in which $F(S_i) = F_i$.

This observation is especially useful here for the following reason. Let $a = 4n + 2$. For $0 \leq i \leq 4n$ and for $j = 0, 1$, let $\mathcal{F}_j(S_i)$ be the set of 4-cycles formed by deleting F_i from S_i and renaming each vertex u in each 4-cycle with the vertex (u, j). Then

$$\mathcal{F}(S_i) = \mathcal{F}_0(S_i) \cup \mathcal{F}_1(S_i) \cup \{(x, 0), (y, 1), (x, 1), (y, 0)|x, y \in E(F_i)\}$$

is a C_4-factorization of the graph formed by joining two copies of K_a with the 1-factor formed by the mixed edges corresponding to the edges in F_i. Also note then that $\bigcup_{i=0}^{4n} \mathcal{F}(S_i)$ is a C_4-factorization of $(4n + 1)K_a \cup (4n + 1)K_a - \{(u, 0), (u, 1)|u \in V\}$, where $V = V(K_a)$. So we can easily get the following result.

Lemma 1. Let $a = 4n + 2$. There exists a C_4-factorization of $aK_a \cup aK_a$.

Proof. Extending the notation developed in the previous paragraph, define

$$\mathcal{F}'(S_i) = \mathcal{F}_0(S_i) \cup \mathcal{F}_1(S_i) \cup \{(x, 0), (x, 1), (y, 1), (y, 0)|x, y \in E(F_i)\}$$

Then $\bigcup_{i=0}^{4n} \mathcal{F}'(S_i) \cup \mathcal{F}(S_0)$ is a C_4-factorization of $aK_a \cup aK_a$. □

We can also obtain Lemma 3 below with a much more sophisticated use of this observation together with the following extremely useful result, essentially proved by Stern and Lenz (see [12] and [9] p.158)).
Lemma 2. Let \(G \) be a regular graph. Suppose there exists a partition of the vertex set of \(G \) into two sets of equal size, \(V_1 \) and \(V_2 \) such that

- \(G_1 = G[V_1] \) and \(G_2 = G[V_2] \) are isomorphic simple regular graphs, and
- there exists an isomorphism \(f \) from \(G_1 \) to \(G_2 \) such that \(\{v, f(v)\} \) is an edge in \(G \) for each vertex \(v \) in \(G_1 \).

Then there exists a 1-factorization of \(G \).

Lemma 3. Let \(a = 4n + 2 \). Let \(1 \leq r < a \). There exists a \(C_4 \)-factorization of \(G = rK_a \cup \cdots \cup rK_a - E(F) \), where \(F \) is a 1-factor of \(G \) when \(r \) is odd and \(F \) has no edges when \(r \) is even.

Proof. Let the vertex set of \(rK_a \cup \cdots \cup rK_a \) be \(\mathbb{Z}_{2n+1} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \). Let the edges joining vertices with different third coordinates be known as mixed edges, and all other edges be known as pure edges. Let \(r = 4s + \varepsilon \) where \(\varepsilon \in \{0, 1, 2, 3\} \).

Let \(\{H_1, \ldots, H_\beta\} \) be a Hamilton decomposition of \(K_{2n+1} \) on the vertex set \(\mathbb{Z}_{2n+1} \). For \(1 \leq j \leq n-s-[(\varepsilon-2)/4]=\nu \), if \(H_j = (v_0, v_1, \ldots, v_{2n}) \) then define

\[
C_{2j-1} = \{((v_{\ell}, 0, 0), (v_{\ell+1}, 0, 1), (v_\ell, 1, 0), (v_{\ell+1}, 1, 1))|0 \leq \ell \leq 2n\}
\]

and

\[
C_{2j} = \{((v_{\ell+1}, 0, 0), (v_\ell, 0, 1), (v_{\ell+1}, 1, 0), (v_\ell, 1, 1))|0 \leq \ell \leq 2n\}.
\]

Then each of \(C_1, C_2, \ldots, C_{2\nu} \) is a \(C_4 \)-factor of \(K_{2n+1} \) which contains only mixed edges; in fact, the mixed edges in \(C_{2j-1} \cup C_{2j} \) are precisely the mixed edges corresponding to the edges in \(\{((u, 0), (v, 0)), ((u, 0), (v, 1)), ((u, 1), (v, 0)), ((u, 1), (v, 1))\} \times \{v, u\} \in E(H_j) \).

Now let \(G \) be the graph with vertex set \(\mathbb{Z}_{2n+1} \times \mathbb{Z}_2 \) and edge set

\[
E(G) = \{((u, 0), (v, 0)), ((u, 0), (v, 1)), ((u, 1), (v, 0)), ((u, 1), (v, 1))\} \cup \{((u, 0), (u, 1))|u \in \mathbb{Z}_{2n+1}\}
\]

Then, by the definition of \(\nu \), \(G \) is a \(\beta \)-regular graph, where

\[
\beta = \begin{cases}
4s + 1 & \text{if } \varepsilon \leq 2 \\
4s + 5 & \text{if } \varepsilon = 3
\end{cases}
\]

Furthermore, the function \(f((u, 0)) = (u, 1) \) is clearly an isomorphism from \(G[\mathbb{Z}_{2n+1} \times \{0\}] \) to \(G[\mathbb{Z}_{2n+1} \times \{1\}] \). Therefore, by Lemma 2, there exists a 1-factorization \(\{F_1, \ldots, F_{\beta}\} \) of \(G \). For \(1 \leq i \leq \min[\beta, r] \) let \(S_i \) be a new \(C_4 \)-factorization of \(K_{4n+2} \) on the vertex set \(\mathbb{Z}_{2n+1} \times \mathbb{Z}_2 \) in which \(F(S_i) = F_i \). Now use this to form \(\mathcal{F} (S_i) \), a \(C_4 \)-factorization of the graph formed by joining two copies of \(K_{4n+2} \) (on the vertex set \(\mathbb{Z}_{2n+1} \times \mathbb{Z}_2 \)) by the 1-factor consisting of the mixed edges corresponding to \(F_i \). Let \(B = (\bigcup_{1 \leq j \leq 2n} C_j) \cup (\bigcup_{1 \leq i \leq \min[\beta, r]} \mathcal{F} (S_i)) \).

The only case where \(\beta < r \) is when \(r = 4s+2 \), so \(\varepsilon = 2 \) and so \(\beta = 4s+1 \). So cycles in \(B \) cover each pure edge exactly \(r \) times except when \(\varepsilon = 2 \); in this exceptional case each pure edge is covered exactly \(r - 1 \) times. All mixed edges are covered by cycles in \(B \) exactly once except for the mixed edges corresponding to edges in \(\{F_{\min[\beta, r]+1}, \ldots, F_{\beta}\} \) and except for the horizontal mixed edges.

If \(\varepsilon \neq 2 \), now consider the use of the mixed edges corresponding to the edges in \(F_{r+1}, \ldots, F_{\beta} \). If \(\varepsilon = 0 \) then let \(D \) be the \(C_4 \)-factor formed by the corresponding mixed edges to those in \(F_{\beta} = F_{r+1} \) together with the horizontal mixed edges. Then \(B \cup D \) is a \(C_4 \)-factorization of \(rK_a \cup \cdots \cup rK_a \). If \(\varepsilon = 1 \) then \(B \) is a \(C_4 \)-factorization of the graph formed from \(rK_a \cup \cdots \cup rK_a \) by removing the edges in the 1-factor consisting of the horizontal edges. If \(\varepsilon = 3 \) then let \(D \) be the \(C_4 \)-factor formed by the corresponding mixed edges to those in \(F_{\beta} \) together with the horizontal mixed edges. Then \(B \cup D \) is a \(C_4 \)-factorization of the graph formed from \(rK_a \cup \cdots \cup rK_a \) by removing the edges in the 1-factor consisting of the corresponding mixed edges to those in \(F_{\beta-1} \).

Finally, consider the case where \(\varepsilon = 2 \). As stated above, all pure edges still need to be used once, as do the horizontal mixed edges. But, as in the proof of Lemma 1, \(\mathcal{F} (S_{\beta}) \) covers precisely these edges. So \(B \cup \mathcal{F} (S_{\beta}) \) is a \(C_4 \)-factorization of \(rK_a \cup \cdots \cup rK_a \).
There is one glaring omission in what we have proved so far, namely the case in Lemma 3 where \(r = 0 \), so there are no pure edges; but that is easily handled by the following lemma.

Lemma 4. Let \(a \) be even. There exists a \(C_4 \)-factorization of the complete bipartite graph \(K_{a,a} \).

Proof. Let \(V \) be partitioned into parts in \(\mathbb{Z}_2 \times \mathbb{Z}_2 \). Define the parallel class \(C_i = \{(2j,0),(2j+2i,1),(2j+1,0),(2j+2i+1,1)\} \) \(j \in \mathbb{Z}_{a/2} \) for each \(i \in \mathbb{Z}_{a/2} \). Then \(\{C_1, \ldots, C_{a/2}\} \) is the required decomposition. \(\square \)

Finally, we easily handle the case where there are no mixed edges.

Lemma 5. Let \(a = 4n \). There exists a \(C_4 \)-factorization of \(\lambda_1 K_a - E(F) \), where \(F \) is a 1-factor when \(\lambda_1 \) is odd if and only if \(F \) has no edges when \(\lambda_1 \) is even.

Proof. Let \(K_a \) have vertex set \(\mathbb{Z}_{2n} \times \mathbb{Z}_2 \). Let \(\{F_0, \ldots, F_{2n-2}\} \) be a 1-factorization of \(K_{2n} \) on the vertex set \(\mathbb{Z}_{2n} \). Define \(C(i) = \{(u,0),(v,1),(u,1),(v,0)\} \) \(i \in \mathbb{Z}_{2n-1} \). Then \(C(i) \) is a parallel class in \(K_a \), and \(C = \bigcup_{i \in \mathbb{Z}_{2n-1}} C(i) \) is a \(C_4 \)-factorization of \(K_a - F \).

Define \(C'(0) = \{(u,0),(u,1),(v,1),(v,0)\} \) \((u,0),(v,1),(v,0),(u,1)\} \) \(i \in \mathbb{Z}_{2n} \). Then

\[
\lambda_1 \bigcup_{i=1}^{2n-2} C(i) \cup \lfloor \lambda_1/2 \rfloor C(0) \cup \lfloor \lambda_1/2 \rfloor C'(0)
\]

is a \(C_4 \)-factorization of \(\lambda_1 K_a - F \), where \(F \) is the 1-factor \(\{(u,0),(u,1)\} u \in \mathbb{Z}_{2n} \) if \(\lambda_1 \) is odd, and \(F \) is empty if \(\lambda_1 \) is even. \(\square \)

3. The main result

Theorem 2. Let \(\lambda_1, \lambda_2 \geq 1, a \) be even and \(p \geq 2 \). Let \(G = K(a,p; \lambda_1,\lambda_2) \).

There exists a \(C_4 \)-factorization of \(G \) (of \(G - F \), where \(F \) is a 1-factor of \(G \)) if and only if

1. \(4 \) divides \(ap \);
2. \(\lambda_1 \) is even (for \(G \)); \(\lambda_1 \) is odd (for \(G - F \));
3. if \(a \equiv 2 \pmod{4} \) then \(\lambda_2 a(p-1) \geq \lambda_1 \), unless \(a = 2 \) and \(\lambda_1 \) is odd, in which case \(\lambda_2 a(p-1) \geq \lambda_1 - 1 \).

Proof. Let the vertex set \(V \) of \(G \) be partitioned into parts \(V_1, \ldots, V_p \), each of size \(a \). We begin by proving the necessity of conditions (1)–(3).

Condition (1) follows because each parallel class naturally induces a partition of \(V \) into sets of size 4. Condition (2) holds because each vertex has degree \(\lambda_1(a-1) + \lambda_2 a(p-1) \) in \(G \), which must clearly be even for a \(C_4 \)-factorization of \(G \), and odd for a \(C_4 \)-factorization of \(G - F \). Notice that conditions (1)–(2) imply that \(\lambda_1 a(p-1)/2 + \lambda_2 a^2 p(p-1)/2 \), the number of edges in \(G \), is divisible by 4. Similarly, conditions (1)–(2) imply that the number of edges in \(G - F \), namely, \(\lambda_1 (a-1)/2 + \lambda_2 a^2 p(p-1)/2 \), is also divisible by 4.

To see that condition (3) is necessary, note that when \(a \equiv 2 \pmod{4} \), \(p \) must be even so that the number of vertices in each parallel class is divisible by 4. Also, each parallel class \(P \) must contain at least two vertices in each part that are incident with a mixed edge in \(P \), so \(P \) must contain at least \(p \) mixed edges. Since each parallel class contains \(ap \) edges altogether, the number of parallel classes in \(G \) is \(\lambda_1 (a-1)/2 + \lambda_2 a(p-1)/2 \), the total number of edges divided by \(ap \). Similarly, the number of parallel classes in \(G - F \) is \(\lambda_1 (a-1)/2 + \lambda_2 a(p-1)/2 \). So the number of mixed edges in \(G \) satisfies

\[
\lambda_2 a^2 p(p-1)/2 \geq \lambda_1 (a-1)/2 + \lambda_2 a(p-1)/2 \quad \text{so}
\]

\[
\lambda_2 a(a-1)(p-1) \geq \lambda_1 (a-1) \quad \text{and so}
\]

\[
\lambda_2 a(p-1) \geq \lambda_1.
\]
Similarly, the number of mixed edges in \(G - F \) satisfies \(\lambda_2 a (p - 1) \geq \lambda_1 - 1 / (a - 1) \). Since the left-hand side of this inequality is an integer, this inequality is the same as the one for \(G \) unless \(a = 2 \), so condition (3) is necessary.

To prove the sufficiency of conditions (1)–(3), we begin by assuming that \(a \equiv 0 \pmod{4} \). Let \(a = 4n \). Then by Lemma 5 there exists a \(C_4 \)-factorization \(C(i) \) of \(\lambda_1 K_a \) (if \(\lambda_1 \) is even) or of \(\lambda_1 K_a - E(F) \) where \(F \) is a 1-factor of \(K_a \) (if \(\lambda_1 \) is odd) on the vertex set \(V_i \) for \(a \leq i \leq p \). So clearly \(\bigcup_{1 \leq i \leq a} C_i \) can be used to form a set \(C \) of parallel classes of \(G \) (or \(G - F \)) which uses each pure edge \(\lambda_1 \) times.

By [7] there exists a 1-factorization \(\{ F_1, \ldots, F_p \} \) of the complete multipartite graph with \(p \) parts, each of size \(2n \) (so \(z = 2n(p - 1) \)). Then \(C(F_k) = \{(u, v, u + 2n, v + 2n)|\{u, v\} \in F_k\} \) is a \(C_4 \)-factor of \(G \) that contains only mixed edges. Furthermore, the multiset \(C' \) consisting of \(\lambda_2 \) copies of \(\bigcup_{1 \leq k \leq p} C(F_k) \) is a \(C_4 \)-factorization of the complete multipartite graph with \(p \) parts and \(4n \) vertices in each part. Then \(C \cup C' \) is a \(C_4 \)-factorization of \(G \) (or of \(G - F \)).

Next suppose that \(a \equiv 2 \pmod{4} \). Let \(a = 4n + 2 \). Then by (1), \(p \) is even, so let \(\{ F_1, \ldots, F_{p-1} \} \) be a 1-factorization of \(K_p \) on the vertex set \(\{1, \ldots, p\} \). If \(\lambda_1 \) is even, by (3), there exist even integers \(l_{i,j} \) for \(1 \leq i \leq \frac{p}{2} \) and \(1 \leq j \leq p - 1 \) such that:

(a) \(0 \leq l_{i,j} < a \) for all \(i, j \), and
(b) \(\sum_{i=1}^{l_{i,j}} \sum_{j=1}^{p-1} l_{i,j} = \lambda_1 \).

And if \(\lambda_1 \) is odd, other than in the special case where \(a = 2 \) and \(\lambda_2 a (p - 1) = \lambda_1 - 1 \), then by (3) there exist integers \(l_{i,j} \) for \(1 \leq i \leq \frac{p}{2} \) and \(1 \leq j \leq p - 1 \) with all but one of the integers \(l_{i,j} \) even, and one odd, so that (a) and (b) above also hold. (Of course in this case, at least one integer \(l_{i,j} \) is strictly less than \(a \), since \(\lambda_1 \) is odd and (3) holds.) If we are in the special case where \(a = 2 \) and \(\lambda_2 a (p - 1) = \lambda_1 - 1 \), then we can instead find a \(C_4 \)-factorization of \(G' = K(a, p; \lambda_1 - 1, \lambda_2) \) (for which (3) is clearly satisfied) as described next, then set \(F \) to be the pure edges in \(G \) that are not in \(G' \).

For \(1 \leq i \leq \frac{p}{2} \) and \(1 \leq j \leq p - 1 \), and for each \(e = \{u, v\} \in F_j \), define a set \(C_{i,j}(e) \) of partial parallel classes of \(G \) formed by applying Lemma 1 if \(l_{i,j} = a \), Lemma 3 if \(1 \leq l_{i,j} < a \), and Lemma 4 if \(l_{i,j} = 0 \), where the vertex sets in the two copies of \(K_a \) are \(V_a \) and \(V_v \). Then \(\bigcup_{e \in F_j} C_{i,j}(e) \) is a \(C_4 \)-factorization of the subgraph of \(G \) formed by joining each pair of vertices in the same part of \(G \) with \(l_{i,j} \) edges, and joining each pair of vertices in parts \(V_a \) and \(V_v \) with one edge, for each \(e = \{u, v\} \in F_j \). Therefore

\[
\bigcup_{1 \leq j \leq p-1} \left(\bigcup_{1 \leq i \leq \frac{p}{2}} \bigcup_{e \in F_j} C_{i,j}(e) \right)
\]

is the required \(C_4 \)-factorization of \(G \), or of \(G - F \) when \(\lambda_1 \) is odd. \(\square \)

References