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Abstract

We give some new criteria to determine the stability of a non-hyperbolic fixed point of the s
difference equation

xn+1 = f (xn) (n = 0,1,2, . . .),

wherexn ∈ R andf is a sufficient smooth function. Our results are based on higher order deriv
f (k)(x̄) at a fixed point ofx̄.
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1. Introduction

The purpose of this paper is to give some new criteria to determine the stability
fixed point of the scalar difference equation

xn+1 = f (xn) (n = 0,1,2, . . .), (1.1)

wherexn ∈ R andf is a sufficient smooth function.
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Consider the higher dimensional difference equation

Xn+1 = F(Xn) (n = 0,1,2, . . .), (1.2)

whereXn ∈ R
m andF is a sufficient smooth function. Here we letX̄ to be a fixed point

of (1.2), that isX̄ = f (X̄). The following is a well-known criterion to see if the fixed po
X̄ is stable.

Theorem 1.1. Let DF(X̄) denote the Jacobian matrix ofF at X̄.

(i) If all the eigenvalues of DF(X̄) have moduli less than one, then̄X is asymptotically
stable.

(ii) If at least one of the eigenvalues of DF(X̄) has modulus greater than one, thenX̄ is
unstable.

The fixed pointX̄ is said to behyperbolicif the Jacobian matrixDF(X̄) has no eigen
values with modulus one. Otherwise, it is said to benon-hyperbolic. Theorem 1.1 can b
applied to the hyperbolic fixed point to determine the stability.

For the stability of the non-hyperbolic fixed point, we need further analysis. In s
cases, the center manifold theory is useful to investigate the stability of the non-hype
fixed points [1]. This theory allows us to reduce the dimension of system near the
point. Suppose thatDF(X̄) hasc eigenvalues of modulus one, and all other eigenva
having modulus less than one. Then the dynamics of (1.2) near the fixed point c
described by thec-dimensional difference equation. Particularly, ifc = 1, the stability of
the fixed point of (1.2) can be determined by the stability of the fixed point of the s
difference equation.

For example, consider the stability of the zero solution of{
xn+1 = yn,

yn+1 = −1
2xn + 3

2 − y3
n.

(1.3)

The Jacobian matrix of (1.3) at the origin has two eigenvaluesλ = 1, 1
2. Thus Theorem 1.1

cannot be applied to (1.3). By the center manifold theory, we can reduce (1.3) to the
difference equation

un+1 = un − 2u3
n + O

(
u4

n

)
(n = 0,1,2, . . .), (1.4)

whereun ∈ R. For detailed computations, see Section 3.2. Then the stability of the
solution of (1.3) can be determined by (1.4). Figure 1 shows a solution of (1.3) by nu
cal computation. In the figure, the dotted line represents one-dimensional center ma
We see that the dynamics of (1.3) can be approximated by the dynamics on the
manifold.

For another example, we consider the difference equation


xn+1 = −xn + ynzn,

yn+1 = −1
2yn + x2

n, (1.5)

zn+1 = 1

2zn − xnyn.
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Fig. 1. The solution of (1.3). The dotted line represents the center manifold.

The Jacobian matrix of (1.5) at the origin has three eigenvaluesλ = −1, −1
2, 1

2. In this
case, the stability of the zero solution of (1.5) can be determined by the scalar diffe
equation

un+1 = −un − 8

27
u5

n + O
(
u6

n

)
(n = 0,1,2, . . .), (1.6)

whereun ∈ R. For computations, see also Section 3.2.
Now our problem is to find some criteria to determine the stability of the fixed p

of the scalar difference equation such as (1.4) and (1.6). The following results pa
answer to this problem [2].

Theorem 1.2. Let x̄ to be a fixed point of(1.1). Suppose thatf ∈ C3(R) andf ′(x̄) = 1.

(i) If f ′′(x̄) �= 0, thenx̄ is unstable.
(ii) If f ′′(x̄) = 0 andf ′′′(x̄) > 0, thenx̄ is unstable.

(iii) If f ′′(x̄) = 0 andf ′′′(x̄) < 0, thenx̄ is asymptotically stable.

Theorem 1.3. Let x̄ to be a fixed point of(1.1). Suppose thatf ∈ C3(R) andf ′(x̄) = −1.

(i) If −3{f ′′(x̄)}2 − 2f ′′′(x̄) < 0, thenx̄ is asymptotically stable.
(ii) If −3{f ′′(x̄)}2 − 2f ′′′(x̄) > 0, thenx̄ is unstable.

Theorem 1.2 implies that the zero solution of (1.4) is asymptotically stable. S
zero solution of (1.3) is asymptotically stable, too. On the other hand, the stability o
solution of (1.6) cannot be determined by the above theorems. These theorems
values off ′′(x̄) andf ′′′(x̄) to determine the stability of̄x, whereas such values vani

for (1.6).
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The goal of this paper is to extend the above theorems. In the next section, w
some new criteria based on more higher order derivativef (k)(x̄). Using our results, we ca
determine the stability of the fixed points for more general cases. To illustrate our re
we give some applications in the last section.

2. Main result

2.1. The casef ′(x̄) = 1

Theorem 2.1. Let x̄ to be a fixed point of(1.1). Suppose thatf ∈ Ck(R) (k � 2) and

f ′(x̄) = 1, f (j)(x̄) = 0 (j = 2,3, . . . , k − 1), f (k)(x̄) �= 0.

(i) If k is even, then̄x is unstable.
(ii) If k is odd andf (k)(x̄) > 0, thenx̄ is unstable.

(iii) If k is odd andf (k)(x̄) < 0, thenx̄ is asymptotically stable.

Proof. From Taylor’s theorem, we have

f (x̄ + h) = f (x̄) + f ′(x̄)h + f ′′(x̄)

2! h2 + · · · + f (k−1)(x̄)

(k − 1)! hk−1 + f (k)(x̄ + θh)

k! hk

= x̄ + h + f (k)(x̄ + θh)

k! hk (0< θ < 1)

for sufficient smallh. Sincef ∈ Ck andf (k)(x̄) �= 0, there existsε0 > 0 such that

0< m �
∣∣∣∣f (k)(x̄ + θh)

k!
∣∣∣∣ � M

for all |h| < ε0. Herem andM are positive constants.
Definehn = xn − x̄ (n = 0,1,2, . . .). Then we have

xn+1 = x̄ + hn+1

and

f (xn) = f (x̄ + hn) = x̄ + hn + f (k)(x̄ + θhn)

k! hk
n.

Sincexn satisfies (1.1), we have

hn+1 = hn + f (k)(x̄ + θhn)

k! hk
n.

(i) Assume thatk is even. We only consider the case thatf (k)(x̄) > 0. Then we have

f (k)(x̄ + θh)
k! � m > 0
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for |h| < ε0. Also we havehk
n > 0 for hn �= 0. If we chooseh0 to be positive, then we hav

hn+1 � hn + mhk
n > hn

whenever|hn| < ε0. Hence there existsn0 > 0 such that|hn0| � ε0. We can chooseh0 to
be arbitrary small. Thus we conclude thatx̄ is unstable. In case off (k)(x̄) < 0, we may
chooseh0 to be negative.

(ii) Assume thatk is odd andf (k)(x̄) > 0. Then we have

f (k)(x̄ + θh)

k! � m > 0

for |h| < ε0. Also we havehk
n > 0 for hn > 0, andhk

n < 0 for hn < 0. If we chooseh0 to
be positive, then we have

hn+1 � hn + mhk
n > hn

whenever|hn| < ε0. Hence there existsn0 such that|hn0| � ε0. We can chooseh0 to be
arbitrary small. Consequently we have thatx̄ is unstable.

(iii) Assume thatk is odd andf (k)(x̄) < 0. Then we have

f (k)(x̄ + θh)

k! � −m < 0

for |h| < ε0. Also we havehk
n > 0 for hn > 0, andhk

n < 0 for hn < 0. Moreover, we can
find δ > 0 such that∣∣∣∣f (k)(x̄ + θh)

k! hk

∣∣∣∣ � M|h|k < |h|

for |h| < δ. Thus we have thathn has definite sign and

|hn+1| =
∣∣∣∣hn + f (k)(x̄ + θhn)

k! hk
n

∣∣∣∣ < |hn|

whenever|hn| < δ. Sohn has a limit. Let limn→∞ hn = h̄, then we have

h̄ = h̄ + f (k)(x̄ + θh̄)

k! h̄k.

Thus we have that̄h = 0. Hence we conclude that|h0| < δ implies that|hn| < |h0| and
limn→∞ hn = 0. This shows that̄x is asymptotically stable. �
Remark 2.1. In case ofk = 2 or k = 3, Theorem 2.1 coincides with Theorem 1.1. Mo
over, Theorem 2.1 guarantees that the zero solutions of

xn+1 = xn − x5
n + O

(
x6
n

)
,

xn+1 = xn − x7
n + O

(
x8
n

)

are asymptotically stable, and that the zero solutions of
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xn+1 = xn + x4
n + O

(
x5
n

)
,

xn+1 = xn − x4
n + O

(
x5
n

)
,

xn+1 = xn + x5
n + O

(
x6
n

)
are unstable.

2.2. The casef ′(x̄) = −1

Consider the difference equation

yn+1 = g(yn), whereg(y) = f
(
f (y)

)
. (2.1)

Lemma 2.2. Suppose thatf (x) ∈ C(R).

(i) If x̄ is a fixed point of(1.1), then it is the fixed point of(2.1).
(ii) If the fixed pointx̄ of (1.1) is asymptotically stable with respect to(2.1), then it is

asymptotically stable with respect to(1.1).
(iii) If the fixed pointx̄ of (1.1) is unstable with respect to(2.1), then it is unstable with

respect to(1.1).

Proof. Let xn be a solution of (1.1), andyn be a solution of (2.1). In the following, w
assume thatx0 = y0. Then we haveyn = x2n.

(i) We can easily see that

g(x̄) = f
(
f (x̄)

) = f (x̄) = x̄.

(ii) Suppose thatx̄ is stable with respect to (2.1). Then for anyε1 > 0 there exists
δ1(ε1) > 0 such that|y0 − x̄| = |x0 − x̄| < δ1 implies that |yn − x̄| = |x2n − x̄| < ε1
for all n � 0. From the continuity off (x) at x̄, we have that for anyε2 > 0 there ex-
ists δ2(ε2) > 0 such that|x − x̄| < δ2 implies that|f (x) − f (x̄)| < ε2. Now we choose
ε1 as ε1 = δ2(ε2) > 0, then there existsδ1(δ2(ε2)) > 0 such that|x0 − x̄| < δ1 implies
that |f (x2n) − f (x̄)| = |x2n+1 − x̄| < ε2 for all n � 0. Hence, for anyε > 0, if we let
δ = min(δ1(ε), δ1(δ2(ε))), then|x0 − x̄| < δ implies that|xn − x̄| < ε for all n � 0. This
shows that̄x is stable with respect to (1.1).

Suppose that there existsη > 0 such that|y0 − x̄| < η implies that limn→∞ yn = x̄.
Then for anyε1 > 0 there existsN1(ε1) such that|yn − x̄| = |x2n − x̄| < ε1 for anyn � N1.
From the continuity off (x) at x̄, we have that for anyε2 > 0 there existsδ(ε2) > 0 such
that |x − x̄| < δ implies that|f (x) − f (x̄)| < ε2. Now we chooseε1 asε1 = δ(ε2) > 0,
then there existsN1(δ(ε2)) such that|f (x2n) − f (x̄)| = |x2n+1 − x̄| < ε2 for anyn � N1.
Hence, for anyε > 0, if we let N = max(N1(ε),N1(δ(ε))), then |xn − x̄| < ε for any
n � N . Consequentlȳx is asymptotically stable with respect to (1.1).

(iii) Assume thatx̄ is unstable with respect to (2.1). Then there existsε > 0 such that for
anyδ > 0, there existsx0 (|x0 − x̄| < δ) andn � 0 such that|yn − x0| � ε. Sinceyn = x2n,

we can conclude that̄x is unstable with respect to (1.1).�
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Theorem 2.3. Let x̄ to be a fixed point of(1.1). Suppose thatf ∈ C2k−1(R) and

f ′(x̄) = −1, f (j)(x̄) = 0 (j = 2,3, . . . , k − 1), f (k)(x̄) �= 0.

(i) If k is odd andf (k)(x̄) > 0, thenx̄ is asymptotically stable.
(ii) If k is odd andf (k)(x̄) < 0, thenx̄ is unstable.

(iii) Assume thatk is even, and there exists an integerl < k such that

f j (x̄) = 0 (j = k + 1, k + 3, . . . , 2l − 3), f (2l−1)(x̄) �= 0.

(a) If f (2l−1)(x̄) > 0, thenx̄ is asymptotically stable.
(b) If f (2l−1)(x̄) < 0, thenx̄ is unstable.

(iv) Assume thatk is even, and

f j (x̄) = 0 (j = k + 1, k + 3, . . . ,2k − 3).

(a) If k
2

(f (k)(x̄)
k!

)2 + f (2k−1)(x̄)
(2k−1)! > 0, thenx̄ is asymptotically stable.

(b) If k
2

(f (k)(x̄)
k!

)2 + f (2k−1)(x̄)
(2k−1)! < 0, thenx̄ is unstable.

Proof. From Taylor’s theorem, we have

f (x) = f (x̄) + f ′(x̄)(x − x̄) + f ′′(x̄)

2! (x − x̄)2

+ · · · + f (2k−1)(x̄)

(2k − 1)! (x − x̄)2k−1 + o(x − x̄)2k−1

= x̄ − (x − x̄) +
2k−1∑
i=k

ai(x − x̄)i + o(x − x̄)2k−1,

whereak = f (k)(x̄)

k! . Then we have

g(x) = f
(
f (x)

)
= x̄ − (

f (x) − x̄
) +

2k−1∑
i=k

ai

(
f (x) − x̄

)i + o
(
f (x) − x̄

)2k−1

= x̄ −
{

−(x − x̄) +
2k−1∑
i=k

ai(x − x̄)i

}

+
2k−1∑
i=k

(
ai

{
−(x − x̄) +

2k−1∑
j=k

aj (x − x̄)j

}i)
+ o(x − x̄)2k−1

= x +
2k−1∑
i=k

(
ai

{−1+ (−1)i
}
(x − x̄)i

)

+ ka2

k (−1)k−1(x − x̄)2k−1 + o(x − x̄)2k−1.
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If k is odd, then we have

g(x) = x − 2ak(x − x̄)k + o(x − x̄)k.

Thus we have

g′(x̄) = 1, g(i)(x̄) = 0 (i = 2,3, . . . , k − 1), g(k)(x̄) = −2f (k)(x̄) �= 0.

Therefore Theorem 2.1 and Lemma 2.2 imply that (i) and (ii) are valid.
Assume thatk is even. Then we have

g(x) = x − 2
k/2∑
i=1

ak+2i−1(x − x̄)k+2i−1 − ka2
k (x − x̄)2k−1 + o(x − x̄)2k−1.

In case (iii), we have

g(x) = x − 2a2l−1(x − x̄)2l−1 + o(x − x̄)2l−1.

Thus we have

g′(x̄) = 1, g(i)(x̄) = 0 (i = 2,3, . . . ,2l − 2), g(2l−1)(x̄) = −2f (2l−1)(x̄).

From Theorem 2.1 and Lemma 2.2, we can conclude that (iii) are valid. In case (iv
have

g(x) = x − (
2a2k−1 + ka2

k

)
(x − x̄)2k−1 + o(x − x̄)2k−1.

Thus we have

g′(x̄) = 1, g(i)(x̄) = 0 (i = 2,3, . . . ,2k − 2),

g(2k−1)(x̄) = −2(2k − 1)!
(

k

2
a2
k + a2k−1

)
.

From Theorem 2.1 and Lemma 2.2, we can conclude that (iv) are valid.�
Remark 2.2. In case ofk = 2, Theorem 2.3(iv) coincides with Theorem 1.2. Moreov
Theorem 2.3 guarantees that the zero solutions of

xn+1 = −xn + x5
n + O

(
x6
n

)
,

xn+1 = −xn + x4
n + x5

n + O
(
x6
n

)
,

xn+1 = −xn + x4
n + 3x7

n + O
(
x8
n

)
are asymptotically stable, and that the zero solutions of

xn+1 = −xn − x5
n + O

(
x6
n

)
,

xn+1 = −xn + x4
n − x5

n + O
(
x6
n

)
,

xn+1 = −xn + x4
n − 3x7

n + O
(
x8
n

)

are unstable.
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3. Application

3.1. Scalar case

We consider the stability of the zero solution of

xn+1 = xne
−xk

n (n = 1,2,3, . . .), (3.1)

wherexn ∈ R andk is a positive integer.

Theorem 3.1. If k is even, then the zero solution of(3.1) is asymptotically stable. If k i
odd, then the zero solution of(3.1) is unstable.

Proof. Let f (x) = xe−xk
. Then we have

f (x) = x

(
1+ (−xk) + 1

2! (−xk)2 + 1

3! (−xk)3 + · · ·
)

= x − xk+1 + 1

2!x
2k+1 − 1

3!x
3k+1 + · · · .

Thus we have

f ′(0) = 1, f (j)(0) = 0 (j = 2,3, . . . , k), f (k+1)(0) = −(k + 1)! < 0.

Using Theorem 2.1, we complete the proof.�
3.2. Higher dimensional case

We consider the stability of the zero solution of the higher dimensional systems

Xn+1 = AXn + F(Xn) (n = 0,1,2, . . .), (3.2)

whereXn ∈ R
m andF(x) = O(‖X‖2).

First of all we prepare the center manifold theory. We letλ be a simple eigenvalue ofA,
and the corresponding eigenvectors bep ∈ R

1×m andq ∈ R
m which satisfy

Aq = λq, pA = λp, pq = 1.

ThenX ∈ R
m can be decomposed by

X = qu + v,

whereu = pX ∈ R andv = X − qu. Also, (3.2) can be decomposed as{
un+1 = λun + pF(qun + vn),

vn+1 = Avn + (I − qp)F (qun + vn).
(3.3)

Assume that|λ| = 1, andA has no other eigenvalues with modulus one. Then t
exists a functionv = h(u) whereh(0) = 0, Dh(0) = 0 such that the dynamics of (3.2) c
be described by ( )
un+1 = λun + pF qun + h(un) . (3.4)
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We let the center manifold as

v = h(u) = C2u
2 + C3u

3 + · · ·
and assume that

F
(
qu + h(u)

) = F2u
2 + F3u

3 + · · · ,
whereCi,Fi ∈ R

m. We note thatFi depends onCj (j = 2,3, . . . , i − 1). Using the first
equation of (3.3), we have

vn+1 = h(un+1)

= h
(
λun + pF

(
qun + h(un)

))
= C2

(
λun + p

(
F2u

2
n + F3u

3
n + · · · ))2

+ C3
(
λun + p

(
F2u

2
n + F3u

3
n + · · · ))3 + · · ·

= λ2C2u
2
n + (

2λpF2C2 + λ3C3
)
u3

n + · · · .
On the other side, the second equation of (3.3) implies that

vn+1 = Ah(un) + (I − qp)F
(
qun + h(un)

)
= A

(
C2u

2
n + C3u

3
n + · · · ) + (I − qp)

(
F2u

2
n + F3u

3
n + F4u

4
n + · · · )

= (
AC2 + (I − qp)F2

)
u2

n + (
AC3 + (I − qp)F3

)
u3

n + · · · .
Comparing the coefficients ofui

n (i = 2,3, . . .) of the above equations, we can computeCi

such as


C2 = (λ2I − A)−1(I − qp)F2,

C3 = (λ3I − A)−1((I − qp)F3 − 2λpF2C2),

...

(3.5)

Now we give some concrete examples. First, we consider the equation


xn+1 = −xn + 3ynzn,

yn+1 = −1
2yn + 3x2

n,

zn+1 = 1
2zn − xnyn.

(3.6)

Let

X =
(

x

y

z

)
, A =


 −1 0 0

0 −1
2 0

0 0 1
2


 , F (X) =

( 3yz

3x2

−xy

)
.

Then we can write (3.6) as

Xn+1 = AXn + F(Xn).

The matrixA has eigenvaluesλ = −1, −1
2, 1

2, and eigenvectors associated with the eig
valueλ = −1 are given by

q =
(1

0

)
, p = (1 0 0).
0
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We let the expression of the center manifoldh(x) as

v = h(x) =
(

a2
b2
c2

)
x2 +

(
a3
b3
c3

)
x3 + · · · .

In this case, we have thatI − qp = ( 0 0
0 I

). Then (3.5) implies thatai = 0. Thus, on the
center manifold, the solution can be expressed by(

x

y

z

)
= qx + h(x) =

(1
0
0

)
x +

( 0
b2
c2

)
x2 +

( 0
b3
c3

)
x3 + · · · .

Therefore we can reduce (3.6) to

xn+1 = −xn + 3ynzn = −xn + 3
(
b2x

2
n + b3x

3
n + · · · )(c2x

2
n + c3x

3
n + · · · )

on the center manifold.
We compute the coefficients of the center manifold. From

F
(
qx + h(x)

) =

 3yz

3x2

−xy


 =


 3(b2x

2 + b3x
3 + · · ·)(c2x

2 + c3x
3 + · · ·)

3x2

−x(b2x
2 + b3x

3 + · · ·)




=

 0

3
0


x2 +


 0

0
−b2


x3 + · · · ,

we have(
a2
b2
c2

)
= (I − A)−1(I − qp)

(0
3
0

)
=


 1

2 0 0
0 2

3 0
0 0 2


(0

3
0

)
=

(0
2
0

)

and (
a3
b3
c3

)
= (−I − A)−1(I − qp)

( 0
0

−b2

)
=


 0 0 0

0 −2 0
0 0 −2

3




( 0
0

−2

)
=

( 0
0
4
3

)
.

Consequently we have the equation on the center manifold as

xn+1 = −xn + 3
(
b2x

2
n + b3x

3
n + · · · )(c2x

2
n + c3x

3
n + · · · )

= −xn + 3
(
2x2

n + · · · )(4

3
x3
n + · · ·

)
= −xn + 8x5

n + O
(
x6
n

)
. (3.7)

Let f (x) = −x + 8x5 + O(x6), then we have

f ′(0) = −1, f (j)(0) = 0 (j = 2,3,4), f (5)(0) = 8 · 5! > 0.

Thus Theorem 2.3(i) implies thatxn = 0 of (3.7) is asymptotically stable. Hence the ze
solution of (3.6) is asymptotically stable. Figure 2 shows a solution of (3.6) by nume

computation.
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Fig. 2. The solution of (3.6). The dotted line represents the center manifold.

Next we consider the equation




xn+1 = −xn − 2x2
nyn,

yn+1 = −1
2yn + 3x2

n,

zn+1 = 1
2zn − xnyn.

(3.8)

Except for the non-linear term−2x2
nyn of the first equation, (3.8) is much the same

(3.6). In the same way, we let

F(X) =
(−2x2y

3x2

−xy

)

and the expression of the center manifoldh(x) as

v = h(x) =
( 0

b2
c2

)
x2 +

( 0
b3
c3

)
x3 +

( 0
b4
c4

)
x4 +

( 0
b5
c5

)
x5 + · · · .

Then we can reduce (3.8) to

xn+1 = −xn − 2x2
n

(
b2x

2
n + b3x

3 + b4x
4 + b5x

5 + · · · ).
Usingh(λx + pF(qx + h(x))) = Ah(x) + (I − qp)F (qx + h(x)), we compute the coef

ficients of the center manifold. Form
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(
qx + h(x)

) =

 −2x2(b2x

2 + b3x
3 + · · ·)

3x2

−x(b2x
2 + b3x

3 + b4x
4 + · · ·)




=

 0

3
0


x2 +


 0

0
−b2


x3 +


 −2b2

0
−b3


x4 +


 −2b3

0
−b4


x5 + · · · ,

we have

λx + pF
(
qx + h(x)

) = −x − 2b2x
4 − 2b3x

5 + · · · .
Thus we have

h
(
λx + pF

(
qx + h(x)

))
=


 a2

b2
c2


(−x − 2b2x

4 + · · · )2 +

 a3

b3
c3


(−x − 2b2x

4 + · · · )3 + · · ·

=

 a2

b2
c2


x2 −


 a3

b3
c3


x3 +


 a4

b4
c4


x4 +


−


 a5

b5
c5


 + 4b2


 a2

b2
c2





x5 + · · · .

Therefore we have
 a2

b2
c2


 = (I − A)−1(I − qp)


 0

3
0


 =


 1

2 0 0
0 2

3 0
0 0 2





 0

3
0


 =


 0

2
0


 ,


 a3

b3
c3


 = (−I − A)−1(I − qp)


 0

0
−b2


 =


 0 0 0

0 −2 0
0 0 −2

3





 0

0
−2


 =


 0

0
4
3


 ,


 a4

b4
c4


 = (I − A)−1(I − qp)


 −2b2

0
−b3


 =


 1

2 0 0
0 2

3 0
0 0 2





 0

0
0


 =


 0

0
0


 ,


 a5

b5
c5


 = (−I − A)−1


(I − qp)


 −2b3

0
−b4


 − 4b2


 a2

b2
c2







=

 0 0 0

0 −2 0
0 0 −2

3





 0

−16
0


 =


 0

32
0


 .

Consequently the equation on the center manifold is given by

xn+1 = −xn − 2x2
n

(
b2x

2
n + b3x

3 + b4x
4 + b5x

5 + · · · )
= −xn − 2x2

n

(
2x2

n + 32x5
n + · · · )( )
= −xn − 4x4

n − 64x7
n + O x8

n . (3.9)
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Fig. 3. The solution of (3.7). The dotted line represents the center manifold.

Let f (x) = −x − 4x4 − 64x7 + O(x8), then we have

f ′(0) = −1, f (j)(0) = 0 (j = 2,3), f (4)(0) = −4 · 4! �= 0.

Also we have

f (5)(0) = 0,
4

2

(
f (4)(0)

4!
)2

+ f (7)(0)

7! = 2(−4)2 − 64= −32< 0.

Thus Theorem 2.3(iv) implies thatxn = 0 of (3.9) is unstable. Hence the zero solut
of (3.8) is unstable. Figure 3 shows a solution of (3.9) by numerical computation.
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