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Abstract

We give some new criteria to determine the stability of a non-hyperbolic fixed point of the scalar
difference equation

Xpp1=fl) (=0,12..),

wherex;, € R and f is a sufficient smooth function. Our results are based on higher order derivative
F® (%) at a fixed point ofx.
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1. Introduction

The purpose of this paper is to give some new criteria to determine the stability of a
fixed point of the scalar difference equation

Xp41=f(xy) =0,1,2,...), (1.2)

wherex, € R and f is a sufficient smooth function.
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Consider the higher dimensional difference equation
Xpp1=F(X,) (n=0,12..), (1.2)

where X, € R" and F is a sufficient smooth function. Here we [Etto be a fixed point
of (1.2), thatisX = f(X). The following is a well-known criterion to see if the fixed point
X is stable.

Theorem 1.1. Let DF(X) denote the Jacobian matrix &f at X .

(i) If all the eigenvalues of DEX) have moduli less than one, théhis asymptotically
stable.

(ii) If at least one of the eigenvalues of DF) has modulus greater than one, th&nis
unstable.

The fixed pointX is said to behyperbolicif the Jacobian matriDF(X) has no eigen-
values with modulus one. Otherwise, it is said tontma-hyperbolic Theorem 1.1 can be
applied to the hyperbolic fixed point to determine the stability.

For the stability of the non-hyperbolic fixed point, we need further analysis. In some
cases, the center manifold theory is useful to investigate the stability of the non-hyperbolic
fixed points [1]. This theory allows us to reduce the dimension of system near the fixed
point. Suppose thdDF (X) hasc eigenvalues of modulus one, and all other eigenvalues
having modulus less than one. Then the dynamics of (1.2) near the fixed point can be
described by the-dimensional difference equation. Particularlye = 1, the stability of
the fixed point of (1.2) can be determined by the stability of the fixed point of the scalar
difference equation.

For example, consider the stability of the zero solution of

xn+1 = yl’l’

(1.3)
Yntl=—3Xn+ 3 — Y3

The Jacobian matrix of (1.3) at the origin has two eigenvaluesl, % Thus Theorem 1.1
cannot be applied to (1.3). By the center manifold theory, we can reduce (1.3) to the scalar
difference equation

Uns1 =ty —2u3+O0(u) (n=0,1,2,...), (1.4)

whereu, € R. For detailed computations, see Section 3.2. Then the stability of the zero
solution of (1.3) can be determined by (1.4). Figure 1 shows a solution of (1.3) by numeri-
cal computation. In the figure, the dotted line represents one-dimensional center manifold.
We see that the dynamics of (1.3) can be approximated by the dynamics on the center
manifold.

For another example, we consider the difference equation

Xn4+1= —Xn + YnZn,
Yntl=—3yn +x2, (1.5)

1
Zn+1=%%n — XnYn-
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Fig. 1. The solution of (1.3). The dotted line represents the center manifold.

The Jacobian matrix of (1.5) at the origin has three eigenvalues-1, —%, % In this
case, the stability of the zero solution of (1.5) can be determined by the scalar difference
equation

8
Uppl = —Up — 2—714,5;—1— O(ug) n=0,12,..), (1.6)
whereu,, € R. For computations, see also Section 3.2.

Now our problem is to find some criteria to determine the stability of the fixed point
of the scalar difference equation such as (1.4) and (1.6). The following results partially
answer to this problem [2].

Theorem 1.2. Letx to be a fixed point of1.1). Suppose thaf € C3(R) and f/(¥) = 1.

@) If f”(x) #0, thenx is unstable.
(i) If f7(x)=0and f"”(x) > 0O, thenx is unstable.
(i) If f”(x)=0and /" (x) < 0, thenx is asymptotically stable.

Theorem 1.3. Letx to be a fixed point of1.1). Suppose thaf € C3(R) and f’(x) = —1.

(i) If =3{f"(x)}% —2f"(x) <0, theni is asymptotically stable.
(i) If =3{f"(x)}> —2f"(x) > 0, thenx is unstable.

Theorem 1.2 implies that the zero solution of (1.4) is asymptotically stable. So the
zero solution of (1.3) is asymptotically stable, too. On the other hand, the stability of the
solution of (1.6) cannot be determined by the above theorems. These theorems use the
values of f”(x) and f"’(x) to determine the stability of, whereas such values vanish
for (1.6).
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The goal of this paper is to extend the above theorems. In the next section, we give
some new criteria based on more higher order derivatif&x). Using our results, we can
determine the stability of the fixed points for more general cases. To illustrate our results,
we give some applications in the last section.

2. Main result

2.1. Thecas¢'(x)=1

Theorem 2.1. Let x to be a fixed point of1.1). Suppose thaf € C¥(R) (k > 2) and

f@=1  fP®=0 (j=23....k=-1, [P0
(i) If k is even, thert is unstable.
(ii) If kis odd andf® (x) > 0, thenx is unstable.
(iii) If k is odd andf® (x) < 0, thenx is asymptotically stable.

Proof. From Taylor's theorem, we have

J" (@)

S — () 4 (R 2 fEY&® o fPE+on)
fE+=fE)+ f(Dh+— h+"~%@?57h +
® (5
=i+h+£—91f@hk(0<9<n

k!

for sufficient smalls. Sincef € C* and f® () # 0, there existsg > 0 such that

® (5 +0h
o<me|[LEE g

for all |h| < eg. Herem and M are positive constants.
Defineh, =x, —x n=0,1,2,...). Then we have
Xn+1 =X + hyt1
and

®(x +0n
FO) = £+ ) =5y 4 RO
Sincex, satisfies (1.1), we have

N FOG +6h,) e

hn-i—l =hy k!

() Assume thak is even. We only consider the case thf& () > 0. Then we have

®(x +0h
%Mﬂ)
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for |h| < &g. Also we havehﬁ > 0 for h, # 0. If we chooséig to be positive, then we have
hpy1 2 hy + mh]:l > hy

wheneverh, | < eg. Hence there existsg > 0 such thatl’,,| > 9. We can chooség to
be arbitrary small. Thus we conclude thats unstable. In case of ®)(x) < 0, we may
chooseéig to be negative.

(i) Assume that is odd andf® (x) > 0. Then we have

® (7
w%n

for |h| < &o. Also we haveh’;, > 0 forh, >0, andhf; < 0 for h, < 0. If we chooséig to
be positive, then we have

>0

hni1 = hy +mhjy, > hy

wheneverh,| < gg. Hence there existsg such thatih,,| > eg. We can chooség to be
arbitrary small. Consequently we have tlids unstable.

(i) Assume that is odd andf ® (x) < 0. Then we have
*®) (%
F®x +0n) <
k!

for || < eo. Also we havehX > 0 for i, > 0, andhX < 0 for i, < 0. Moreover, we can
find § > 0 such that

FoE 4+ Zm
k!
for |h| < 8. Thus we have thadt, has definite sign and

F®E +0hy,)
+ | < Il

-m <0

<Mnk < |h|

|hn+1| = |hy,

whenevelih,| < 8. Soh, has a limit. Let lim,_, o h, = &, then we have

_ _ ®(x +6h) -
h=h+%hk.

Thus we have that = 0. Hence we conclude th#tig| < § implies that|4,| < |ho| and
lim,_ o 1, = 0. This shows that is asymptotically stable. O

Remark 2.1. In case ofk =2 ork = 3, Theorem 2.1 coincides with Theorem 1.1. More-
over, Theorem 2.1 guarantees that the zero solutions of

Xn4l = Xp — x,? + O(x,?),
Xp4l=Xp — xZ + O(XS)

are asymptotically stable, and that the zero solutions of
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Xn41 = Xp +x3 + O(x,?),
Xp4l =Xp — xfll + O(x,‘?),
Xn+1=Xp + x,? + O(XS)
are unstable.

2.2. The cas¢’(¥) = —1

Consider the difference equation
ynt1=2g(m), Whereg(y) = f(f (). (2.1)

Lemma 2.2. Suppose thaf (x) € C(R).

() If x is a fixed point of1.1), then it is the fixed point qB.1).
(i) If the fixed pointx of (1.1) is asymptotically stable with respect (8.1), then it is
asymptotically stable with respect {b.1).
(i) If the fixed pointc of (1.1) is unstable with respect t2.1), then it is unstable with
respect tq(1.1).

Proof. Let x, be a solution of (1.1), and, be a solution of (2.1). In the following, we
assume thatg = yo. Then we have,, = x2,.

(i) We can easily see that
g = f(f(®)=f&x =x.

(i) Suppose thatc is stable with respect to (2.1). Then for any > 0 there exists
81(e1) > 0 such thatlyg — x| = |xo — x| < 81 implies that|y, — x| = |x2, — X| < €1
for all n > 0. From the continuity off (x) at x, we have that for any, > 0 there ex-
ists 82(e2) > 0 such thatx — x| < 82 implies that| f(x) — f(x)| < e2. Now we choose
g1 ase1 = 82(e2) > 0, then there exist8;(52(e2)) > 0 such thatxg — x| < 81 implies
that | f (x2,) — f(X)] = |x244+1 — X| < &2 for all n > 0. Hence, for anyg > 0, if we let
8 =min(§1(e), 81(82(¢))), then|xg — x| < § implies that|x,, — x| < ¢ for all n > 0. This
shows thaf is stable with respect to (1.1).

Suppose that there exists> 0 such thatyg — x| < n implies that lim_ « y, = x.
Then for anye1 > 0 there existVy(e1) such thaty, — x| = |x2, — X| < &1 foranyn > Ni.
From the continuity off (x) at x, we have that for any, > 0 there exist$(e2) > 0 such
that|x — x| < 8 implies that| f (x) — f(x)| < e2. Now we choose ase; = §(e2) > 0,
then there existd/1(8(e2)) such that f (x2,) — f(X)| = |x2,4+1 — X| < &2 for anyn > Ni.
Hence, for anye > 0, if we let N = max(N1(¢e), N1(8(¢))), then|x, — x| < ¢ for any
n > N. Consequently is asymptotically stable with respect to (1.1).

(i) Assume thatx is unstable with respect to (2.1). Then there existsO such that for
anysé > 0, there existsg (Jxo — x| < §) andn > 0 such thaty, — xg| > ¢. Sincey, = x2,,
we can conclude that is unstable with respect to (1.1).O
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Theorem 2.3. Letx to be a fixed point of1.1). Suppose thaf € C%~1(R) and
fo=-1 fP®=0 (=23...k-1, [fP@#0

(i) If kis odd andf® (x) > 0, thenx is asymptotically stable.
(ii) If kis odd andf® (x) < 0, thenx is unstable.
(iii) Assume that is even, and there exists an intedet k such that

@) =0 (j=k+1k+3,...,20—3), @) £0.

(@) If f@-D(x) > 0, thenx is asymptotically stable.
(b) If £@-D(%) <0, thenx is unstable.
(iv) Assume that is even, and

i@ =0 (j=k+1,k+3,...,2—3).

© (= 2%—1) =

(@) If &(L280)? 4 f((zzc )15),‘) > 0, thenx is asymptotically stable.
= %

(b) If §(L59)% 1 L2 75 _ 0, thens is unstable.

Proof. From Taylor’s theorem, we have

f(x)=f(i)+f’(f)(x—i)+f *x )< %y
F&D(x) _
+ -+ 2% — 1)1 (x—x)Zk 1~|—0()c )2]‘ 1
2k—1

=i-(-0D+ Y a@-3) +ox -0,
i=k

. Then we have

FO@E)
|

whereqy, =

gx) = f(f(x))

1

2k—1
=i (f@) =%+ Y a(f0) —3) +o(f(x) —5)*
i=k

2k—1 ‘
T — :—(x—i)—i— Zai(x—i)l}

i=k
2k—1 2k—1 i
+y (a,-{—(x —H+ Y ajx —i)j} ) +o(x —8)%1
i=k =k

2k—1

=x+ Y (a{-1+(D}x - D))

i=k
+ka?(-)F L x —)F T4 o(x — )% L.
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If k is odd, then we have
g) =x — 2ar(x — ) + o(x — DX,
Thus we have
dE®=1 gP@®=0 ((=23....k-1, gP@®=-2fPx £0.

Therefore Theorem 2.1 and Lemma 2.2 imply that (i) and (ii) are valid.
Assume that is even. Then we have

k/2
gx)=x— ZZaHZi,l(x - )E)k+2i_l - ka,?(x — )E)Zk_l +o(x — )E)Zk_l.
i=1

In case (iii), we have
g)=x —2ay_1(x — )% 14 ox — )2 L.
Thus we have
d®=1  ¢P@®=0 ((=23,...,2-2), g% V) =-2r2D).

From Theorem 2.1 and Lemma 2.2, we can conclude that (iii) are valid. In case (iv), we
have

g(x) =x — (2ag—1 + kad)(x — HF* 4 o(x — H)F L.
Thus we have

gdE@ =1 ¢P@ =0 (i=23,...,2k—2),

¢ V) =22k - 1)!(%,3 + a2k1>.

From Theorem 2.1 and Lemma 2.2, we can conclude that (iv) are vatid.

Remark 2.2. In case ofk = 2, Theorem 2.3(iv) coincides with Theorem 1.2. Moreover,
Theorem 2.3 guarantees that the zero solutions of

Xn4l=—Xp + x,? + O(x,?),

Xnl = —Xny + X + X0+ O(X,?),
Xp4l = —X, + x,‘f + 3xZ + O(X,?)

are asymptotically stable, and that the zero solutions of
Xn+1l= —Xn — x;? + O(XS)’
_ 4_ 5 6

Xnt1=—Xn + X, —x7 4+ O(x,),
Xppl=—Xg 4+ x4 =3+ O(x,?)

are unstable.
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3. Application
3.1. Scalar case

We consider the stability of the zero solution of
Xppl=Xpe ™ (1=1,23,..), (3.1)
wherex,, € R andk is a positive integer.

Theorem 3.1. If k is even, then the zero solution &.1) is asymptotically stable. If k is
odd, then the zero solution (8.1)is unstable.

Proof. Let f(x) = xe=*". Then we have
1 1
£ :x(l+ (=xh) + 5 (x4 (=) 4 )

1 1
. k1 2k+1 3+l
BT 3t +
Thus we have

£(0) =1, FP0)=0 (j=23,...,k), FEDO0) = —(k+ 1! <O.

Using Theorem 2.1, we complete the proofa
3.2. Higher dimensional case

We consider the stability of the zero solution of the higher dimensional systems
Xpr1=AX, + F(X,) (n =0,1,2,..), (32)

whereX, e R” andF(x) = O(]| X||?).
First of all we prepare the center manifold theory. Wellee a simple eigenvalue df,
and the corresponding eigenvectorsbe R andg e R™ which satisfy

Ag =g, PA=Ap, rqg=1
ThenX € R™ can be decomposed by
X=qu+v,
whereu = pX € R andv = X — qu. Also, (3.2) can be decomposed as

Upy1l = Auy + pF(quy, + vy),

(3.3)
Uny1=Av, + (I — gp)F(quy + vy).

Assume thafir| = 1, andA has no other eigenvalues with modulus one. Then there
exists a functiornv = h(u) whereh(0) = 0, Dh(0) = 0 such that the dynamics of (3.2) can
be described by

Uptl = Aly + pF(qun + h(”n)) (3.4)



K. Murakami / J. Math. Anal. Appl. 310 (2005) 492-505 501

We let the center manifold as
v:h(u)=C2u2+C3u3+~-~
and assume that
F(qu+h(u)) = Fou? + Fau® + -+,
whereC;, F; € R™. We note thatF; depends orC; (j =2,3,...,i — 1). Using the first
equation of (3.3), we have
Unt+1 = h(n+1)
= h(kun + pF(qun + h(u,,)))
= Co(0aty + p(Fau + Faud + - )
+ C3(hun + p(FouZ + Faus + -+ ))3 +--
= )\ZCQM,% + (ZAszCz + A3C3)u2 + -
On the other side, the second equation of (3.3) implies that
Un+1 = Ah(up) + (I — gp) F (qun + h(uy))
= A(Cou? + Caud + ) + (I — qp) (Fou? + Faul + Faujp +---)
= (AC2+ (I — qp)F2)u? + (AC3+ (I — qp) Fa)us + - - -.

Comparing the coefficients af, (i =2, 3, ...) of the above equations, we can compdte
such as

C2 = 321 =AM —qp)F2,
C3 = (31 — AN — qp)F3 — 2pF2C), (3.5)

Now we give some concrete examples. First, we consider the equation
Xn41 = —X + 3YnZn,
Yn+l= _%)’n + 3x37 (3.6)

1
Zn+1 = 5Zn — XnYn-

Z 0 0

Then we can write (3.6) as
Xn41=AX, + F(X,).

The matrixA has eigenvalues= —1, —%, % and eigenvectors associated with the eigen-
valuei = —1 are given by

1
q=<0), p=(100.
0

Let

3yz
, F(X)=<3x2).
—xy

NI O o
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We let the expression of the center manifald) as

az as
v=h(x) = (bz)x2+ (b3>x3+-~~.
c2 c3

In this case, we have thdt— gp = (39). Then (3.5) implies that; = 0. Thus, on the
center manifold, the solution can be expressed by

X 1 0 0
(y) =gx+hx) = (0)x+ <b2>x2+ <b3>x3+...,
z 0 c2 c3

Therefore we can reduce (3.6) to
Xn+1=—Xp +3ypzn = —xn + 3(b2x3 + ng,::’ + .- )(czx,% + chf +-- )

on the center manifold.
We compute the coefficients of the center manifold. From

3yz 3(bax? + bax3 + - )(cox? + cax3 4+ )
Fgx+h(x)=| 32 | = 3,2

—Xy —x(bpx? 4 bax3+ -1

0 0
=|3]|x°+ 0 |£3+---,
0 —bo
we have
az 0
<b2>=(1—A>—1<1—qp)<3>=
) 0
as 0 0 0 O 0 0
<b3>=(—1—A)—1(1—qp)(o> 0 -2 0 <o)=<o>.
c3 —b> 0 0 -3/\-2 =

Consequently we have the equation on the center manifold as

o oOnNik
owiNn O

and

Xng1 = —Xn + 3(boxZ + baxS + ) (coxZ + caxd 4 )

=—xn+3(2x3+---)<gx§+~-->

= —x, +8x° + O(x,?). (3.7)
Let f(x) = —x + 8x® 4+ 0(x8), then we have
£'(0) = —1, FP0) =0 (j=234), £®0)=8-5!>0.

Thus Theorem 2.3(i) implies that, = 0 of (3.7) is asymptotically stable. Hence the zero
solution of (3.6) is asymptotically stable. Figure 2 shows a solution of (3.6) by numerical
computation.
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Fig. 2. The solution of (3.6). The dotted line represents the center manifold.

Next we consider the equation

Xn+l= —Xn — ny%yn,
Ynb1 = =3V + 317, (3:8)

1
Zn+1= %%n — XnYn-

Except for the non-linear term-2x2y, of the first equation, (3.8) is much the same as
(3.6). In the same way, we let

—2x2y
F(X):( 3x?2 )
—xy

and the expression of the center manifbld) as

0 0 0 0
v="h(x)= (bz)x2+ (b3>x3+ (b4>x4+ <b5>x5+---_
c2 Cc3 C4 c5

Then we can reduce (3.8) to
Xn4l = —Xp — Zx,f(bzx,? + b3x3 + bax* + b5x5 +-- )

Usingh(Ax + pF(gx + h(x))) = Ah(x) + (I —gp)F(gx + h(x)), we compute the coef-
ficients of the center manifold. Form
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F(gx +h(x)) = (

|

AX + pF(qx + h(x))

0
3
0

we have

Thus we have

—x(bax? 4 bax3 + bax* + - )

—2x2(bpx® + b3x® + 1)
3x?

0 —2b>
X2+ 0 x4+ 0
—by —b3

—Xx — 2b2x4 — 2b3x5+ ceel

h(Ax + pF(qx + h(x)))

az
by
c2

|
{5

Therefore we have

az
by
2

)(—x—2b2x4+-~)2+(
IRREIER

as

b3
c3

as
b3
c3
as
by
ca

o

X

az 0 $ 0 0\ /0
b |=U-AU-gqp|3]=|0 2 0]|3]=
€2 0 o0 0 2/\o
as 0 0O O 0
bs|=-I-A*U-gqp)| 0 |=(0 -2 ©
c3 —b> 0 O —%
as —2by 00
by |=U-MH'-gp)[ O |=|0 % 0
ca —b3 0 0 2
as —2b3 a
bs |=(-1-A)7 T —gp)| 0O |-4b2] b2
c5 —by c2

0 0 O 0 0

—|lo -2 o —16 = 32].
0o 0 -3 0 0

Consequently the equation on the center manifold is given by

Xn+l= —Xp — 2)63(172)63 —+ b3x3 + b4x4 + b5x5 + - )

—Xn — 4xf —

—xp — 202 (262 + 320 +---)

64, + O (x,?).

K. Murakami / J. Math. Anal. Appl. 310 (2005) 492-505

|

—2b3
0
—bg

)x5+...’

)(—x—2b2x4+~-~)3+~-~

3.9)
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Fig. 3. The solution of (3.7). The dotted line represents the center manifold.

Let f(x) = —x — 4x* — 64x” + 0 (x®), then we have
£1(0)=—1, FP0)=0 (j=273), F@0)=—-4-4£0.

Also we have

@0 =0, —2(—4)2 —64=—-32<0.

2 4 7!

Thus Theorem 2.3(iv) implies that, = 0 of (3.9) is unstable. Hence the zero solution
of (3.8) is unstable. Figure 3 shows a solution of (3.9) by numerical computation.

(] 2 (N
ﬂ(f <0>> A
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