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Abstract

The authors present both the specification and a performance analysis of the MPEG–
2 algorithm for video encoding, by using the Stochastic Process Algebra ROSA.
This process algebra is a very general framework for describing and analyzing more
complex Real Time Systems than the one presented. Some interesting results about
the temporal behaviour of the algorithm and an immediate estimation of benefits
when having a twin-processors platform have been obtained.
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1 Introduction

In the eighties, fundamentals in process algebras were firmly established, but
the proliferation of distributed, real-time and fault-tolerant systems has gen-
erated a great interest in the definition of timed and probabilistic extensions
of these models.

A first approach to incorporate probabilities in process algebras can be
found in [3]. A pioneer work on a probabilistic extension of CCS is PCCS
[9], where the non-deterministic choice is replaced by a probabilistic choice
operator. Later, TPCCS is defined in [10], Timed Probabilistic Calculus of
Communicating Systems, which extends CCS with probabilities and time.
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There are also some extensions of CSP [6,7], but in general, the under-
lying idea in all these probabilistic models is to replace a non-deterministic
behaviour by a probabilistic one, in which every possible behaviour of the
system is quantified by means of a probability. But obviously, this requires a
quantitative knowledge of all the possible behaviours of the system to model
[14]. Unfortunately, it is not always possible to have such a knowledge.

Thus, part of the recent work of the authors has been to define a model
that combines both kind of choices, non-deterministic and probabilistic ones.
PNAL is an algebraic language which extends Hennessy’s EPL by means of a
probabilistic choice; This language is presented in [4,5], where an operational, a
denotational and a testing semantics have been defined for that language. The
language used by the authors, ROSA (Reasoning On Stochastic Algebras),
has some functional similarities with PNAL.

However, it is also desirable to take into account performance aspects in the
design of concurrent systems. It is true that often efficiency considerations are
forgotten until the system works properly from the functional point of view,
i.e., once it has been fully functionally tested. But, it becomes obvious that
there are some systems (real-time systems) in which we need to know a priori
if the system will fulfil with its restrictions. Then, a model for describing con-
current systems should also include some capabilities to determine efficiency
considerations.

Some stochastic process algebras considering these capabilities are pre-
sented in [12,8,11,2]. We can find in [2] the language EMPA Extended Marko-
vian Process Algebra, which has two kinds of actions and the race policy is
applied to decide the actions to be executed. However, a syntactic restriction
is introduced in order to define the behaviour of synchronizations, because
one of the actions involved in a synchronization must be always a passive one,
which makes hard to be able to model a synchronization between two ac-
tions which have both a certain temporal cost. Even more, a problem which
could appear in this language is that higher priority actions always prevent
the execution of lower level ones. For instance, if we consider a server which
offers two services a and b, having a a greater priority than b, we find that
a client that only wants to execute a b could not be served, since the EMPA
process (< a,∞l,w > . 0 + < b,∞l′,w′ > . 0 ) ||{a} ||{a} < b, ∗ > . 0 , taking
l > l′, cannot execute any actions at all.

ROSA [18] follows some ideas that the authors presented in [17]. It does
not impose any syntactical restrictions on the components of a parallel op-
erator. Thus, the parameter λ associated to any action does not limit its
capabilities for a synchronization.

ROSA is a Markovian Process Algebra which is able to capture non-
determinism, probabilities and time aspects; in the case study here presented
only has been exploited the last feature because the authors have no proba-
bilistic information about the behaviour of the encoder yet, such as probability
of components failure . . . which could be captured by the probabilistic choice
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operator provided by this language.

ROSA has been used in order to analyze the performance of a real video
encoding algorithm, the MPEG–2. This video encoder is the most extended
version within the MPEG standards. The MPEG–2 video encoder was de-
signed with two requirements in mind, namely, need for high compression,
and need for random access capability. The first requirement is achieved by
exploiting the spatial and temporal redundancy within an image sequence.
The latter by considering a special kind of pictures (I pictures) which are
coded with no reference to other frames, exploiting only spatial correlation in
a frame.

In the literature we can found several works on performance improving of
MPEG standards. Most of these works focus their improvements on paral-
lelizing the distribution of data among the processors by either distributing
different partitions of the same frame (spatial parallelism) or different GoPs
to the various processors (temporal parallelism) [1,15,16].

Formal Methods (Process Algebras, Petri Nets, Markov Chains) try to
analyze the potential improvement obtained when parallelizing algorithms,
thus in [19] the authors presented a formal study of the MPEG–2 with Petri
Nets. Indeed, a stochastic process algebra like ROSA allows to obtain some
possible improvements by parallelizing either the encoding process of each
B-frame within the GoPs or the encoding code itself.

The paper is structured as follows: in Section 2 the syntax of ROSA is de-
fined, the operational semantics for this language is briefly described in Section
3, and in Section 4 the MPEG–2 Video Encoder Algorithm is presented. The
performance evaluation algorithm is shown in Section 5. Section 6 presents a
case study, the analysis of the MPEG–2 algorithm. Finally, some conclusions
are presented in Section 7.

2 Syntax of the Language

Let ∆ = {a, b, c, ..} be a set of action types. We will denote by letters r, s, t
probabilities, and by greek letters time parameters for actions.

Terms of ROSA are defined by:

P ::= 0 | X | a.P | 〈a, λ〉.P | P ⊕ P | P + P | P ⊕r P | P ||AP | recX.P

where r ∈ (0, 1), λ ∈ R
+ − {0}, A ⊆ ∆, a ∈ ∆, P is a process of ROSA and

X is a variable of process.

The standard operators are interpreted as usual in classical process alge-
bras, i.e., a.P stands for the prefix operator, ⊕ and + are respectively the
internal and the external choices, ||A is the parallel operator (synchronizing
on actions which types belong to A) and recX.P is the recursion operator.

The informal interpretation of the new operators follows:

• 〈a, λ〉.P stands for a timed prefix operator, where the action labelled with a

187



Pelayo et al

has a duration following a Negative Exponential random distribution with
parameter λ.
Let us observe that a.P is now a particular case of this operator, when we
take λ = ∞, which means that E[Exp[∞]] = 0, i.e. this action has an
average duration 0, which means that it is immediate.

• P ⊕r Q denotes the probabilistic choice with the classical generative
meaning: with probability r the process behaves like P , and with prob-
ability 1− r it behaves like Q (the external environment has no influence in
this choice).

3 Operational Semantics

The operational semantics is defined in the Plotkin and Milner style by using
a labelled transition system with three kinds of transitions:

• Non-deterministic transitions:

P −→ Q

which represent the internal decisions that the system makes for resolving
the non-deterministic choices. These evolutions do not take any time at all,
see Table 1.

(ND-Def) P ⊕ Q −→ P (ND-Def) P ⊕ Q −→ Q

(ND-Ext) P −→ P ′
P + Q −→ P ′ +Q

(ND-Ext)
Q −→ Q′

P + Q −→ P +Q′

(ND-Pro) P −→ P ′
P ⊕r Q −→ P ′ ⊕r Q

(ND-Pro)
Q −→ Q′

P ⊕r Q −→ P ⊕r Q
′

(ND-Par) P −→ P ′
P ||AQ −→ P ′||AQ (ND-Par)

Q −→ Q′

P ||AQ −→ P ||AQ′

(ND-Rec)
recX.P −→ P [recX.P/X]

Table 1
Non-Deterministic Transition Rules

• Probabilistic transitions:

P −→r Q

this rule represents that the process P can evolve with probability r to
process Q.
· Action is a boolean function defined on the set of ROSA processes which
gives TRUE for those processes that can only evolve by means of Action
transitions and FALSE otherwise.

These evolutions have not any temporal cost, see Table 2.
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(P-Def) P ⊕r Q −→r P
(P-Def) P ⊕r Q −→1−r Q

(P-Ext)
P −→r P

′ ∧ Action[Q]
P + Q −→r P

′ +Q
(P-Ext)

Q −→t Q
′ ∧ Action[P ]

P + Q −→t P +Q′

(P-Par)
P −→r P

′ ∧ Action[Q]
P ||AQ −→r P

′||AQ (P-Par)
Q −→t Q

′ ∧ Action[P ]
P ||AQ −→t P ||AQ′

(P-BothExt)
P −→r P

′ ∧Q −→t Q
′

P + Q −→r·t P ′ +Q′ (P-BothPar)
P −→r P

′ ∧Q −→t Q
′

P ||AQ −→r·t P ′||AQ′

Table 2
Probabilistic Transition Rules assuming DS[P ] ∧ DS[Q]

• Action transitions:

P
a,λ−→ Q

which represent that P can evolve by executing the action labelled by a, tak-
ing a time described by an Exponential random distribution with parameter
λ, to process Q. Three auxiliary functions are needed:
· Available is a function defined on the set of ROSA processes giving for
every process its multiset of available actions.

· Type is a function defined on the set of multisets of actions giving for
every multiset, the set consisting of their action types.

· DeterministicStability,DS is a boolean function defined on the set
of ROSA processes which gives TRUE for those processes that can not
evolve by means of Non-deterministic transitions and FALSE otherwise.

(A-Def)
a.P

a,∞−→ P
(A-Def)

〈a, λ〉.P a,λ−→ P

(A-Ext)
P

a,λ−→ P ′ ∧ a /∈ Type[Available[Q]]

P + Q
a,λ−→ P ′ (A-Ext)

Q
a,λ−→ Q′ ∧ a /∈ Type[Available[P ]]

P + Q
a,λ−→ Q′

(A-Par)
P

a,λ−→ P ′ ∧ a /∈ Type[Available[Q]] ∪ A
P ||AQ a,λ−→ P ′||AQ

(A-Par)
Q

a,λ−→ Q′ ∧ a /∈ Type[Available[P ]] ∪ A
P ||AQ a,λ−→ P ||AQ′

(A-RaceExt)
P

a,∞−→ P ′ ∧Q a,λ−→ Q′ ∧ λ �= ∞
P + Q

a,∞−→ P ′ (A-RaceExt)
P

a,λ−→ P ′ ∧Q a,∞−→ Q′ ∧ λ �= ∞
P + Q

a,∞−→ Q′

(A-RacePar)
P

a,∞−→ P ′ ∧Q a,λ−→ Q′ ∧ λ �= ∞∧ a /∈ A
P ||AQ a,∞−→ P ′||AQ

(A-RacePar)
P

a,λ−→ P ′ ∧Q a,∞−→ Q′ ∧ λ �= ∞∧ a /∈ A
P ||AQ a,∞−→ P ||AQ′

(A-RaceExtCoop)
P

a,λ1−→ P ′ ∧Q a,λ2−→ Q′ ∧ (λ1 = ∞ = λ2 ∨ λ1 �= ∞ �= λ2)

P + Q
a,λ1+λ2−→ P ′ ⊕ Q′ (A-Syn)

P
a,λ1−→ P ′ ∧Q a,λ2−→ Q′ ∧ a ∈ A
P ||AQ a,min[{λ1,λ2}]−→ P ′||AQ′

(A-RaceParCoop)
P

a,λ1−→ P ′ ∧Q a,λ2−→ Q′ ∧ (λ1 = ∞ = λ2 ∨ λ1 �= ∞ �= λ2) ∧ a /∈ A
P ||AQ a,λ1+λ2−→ P ′||AQ ⊕ P ||AQ′

Table 3
Action Transition Rules assuming DS[P ] ∧ DS[Q]
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A detailed description of the operational semantics of ROSA can be found
in [18]

4 MPEG–2 Digital Video Coding Standard

The ISO/IEC 13818–2 standard [13], commonly known as MPEG–2, is a stan-
dard intended for a wide range of applications, including Video–on–Demand
(VoD), High Definition TV (HDTV) and video communications using broad-
band networks.

The MPEG digital video coding techniques are statistical in nature. Video
sequences usually contain statistical redundancies in both temporal and spatial
directions. The basic statistical property upon which MPEG compression
techniques rely is inter–pixel region correlation. The contents of a particular
pixel region can be predicted from nearby pixel regions within the same frame
(intra–frame coding) or from pixel regions of a nearby frame (inter–frame
coding).

Perhaps the ideal method for reducing temporal redundancy is one that
tracks every pixel from frame to frame. However, this extensive search is com-
putationally expensive. Under the MPEG standards, this search is performed
by tracking the information within 16× 16 pixels regions, called macroblocks.
Given two contiguous frames, frame(t) and frame(t − 1), for each mac-
roblock in frame(t), the coder determines the best matching macroblock in
frame(t−1) and calculates the translation of the picture macroblock between
frames, obtaining the motion vector, see Fig. 1. Using the corresponding
macroblock from frame(t− 1), the temporal redundancy reduction processor
generates a representation for frame(t) that contains only the motion vector
and the prediction error (changes between the two frames). This technique is
called motion compensated prediction.

MvMv

MhMh

Search area

Motion
Vectors

Frame(t-1) Frame(t)

e(x,y,t)=I(x,y,t) - I(x+Mh,y+Mv,t-1)

Prediction
error

Macroblock

I(x,y,t)

I(x+Mh,y+Mv,t-1)

Best match
macroblock

Fig. 1. Block diagram of the MPEG–2

In order to reduce spatial redundancy a coding method, DCT (Discrete
Cosine Transform), is used. A major objective of this transform domain coding
is to make small enough as many transform coefficients as possible, so that
they are insignificant and need not to be coded for transmission. Low DCT
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coefficients are related to low spatial frequencies within image blocks and
high DCT coefficients to higher frequencies. This property is used to remove
subjective redundancies contained in the image data, taking into account the
human visual systems criteria. Since the human viewer is more sensitive to
reconstruction error related to low spatial frequencies than to high ones, a
frequency adaptive weighting (quantization) of the coefficients, according to
the human visual perception is often employed to improve the visual quality
of the decoded images.

The combination of the two techniques described above, temporal motion
compensated prediction and transform domain coding, are the key elements
of the MPEG coding.

The MPEG–2 has to achieve the requirement of random access and high
compression, thus this standard specifies three types of compressed video
frames/pictures: I pictures, P pictures and B pictures. I pictures (intracoded
pictures) are coded with no reference to other frames, exploiting only spatial
correlation in a frame. They allow fast random access but offer moderate
compression. P pictures (predictive coded pictures) are coded by using mo-
tion compensated prediction of a previous I or P picture. The compression for
P pictures is higher than for I pictures. Finally, B pictures (bidirectionally–
predictive coded pictures) are obtained by motion compensation from both
past and future reference frames (I or P pictures), and provide the highest
degree of compression.

A group of consecutive I, P and B pictures form a structure called Group
of Pictures (GoP). A video sequence may be seen, then, as a sequence of
GoPs. The pictures may be arranged in a sequence with a high degree of
flexibility depending on the applications requirements. Thus, a video sequence
coded using only I pictures allows the highest degree of random access, but
achieves the lowest compression. A sequence code with I and P pictures (e.g.
IPPPIPPP. . . ) achieves moderate compression and certain degree of random
access. Finally, a sequence that incorporates the three kinds of pictures (e.g.
IBBPBBP. . . ) may achieve high compression and reasonable random access,
but also increases the coding delay significantly.

In order to understand how the MPEG–2 encoder works we will consider
a GoP consisting of the frames IBBP, see Fig. 2 Despite B pictures appear
before P pictures, the coding order is IPBB because B pictures require both
past and future frames of the original video sequence as references.

I B B P

Fig. 2. Encoding order for an IBBP GoP
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First, for every kind of frame, an elementary compression technique which
makes use of specific physiological characteristics of human eye may be used:
the human eye is more sensitive to changes in brightness than to changes
in chromaticity. Therefore the MPEG–2 coding schema first divide images
into YUV components (one luminance and two chrominance components).
Then the chrominance components are subsampled relative to the luminance
component with a ratio specific to particular applications (e.g. 4:1:1).

The first frame in a GoP (I picture) is encoded in intra mode without
references to any past or future frames. At the encoder the DCT is applied
to each macroblock and then is uniformly quantized (Q). After quantization,
it is coded using a variable length code (VLC) and sent to the output buffer.
At the same time the reconstruction (IQ) of all non–zero DCT coefficients
belonging to one macroblock and subsequent inverse DCT (IDCT) give us a
compressed I picture which is stored temporarily in the Frames Store (FS),
see Fig. 3.
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Fig. 3. Block diagram for I pictures

If the input is coded either as P or B pictures, then the encoder does not
code the picture macroblocks directly. Instead, it codes the prediction errors
and the motion vectors.

With P pictures, for each macroblock in the current picture, the motion
estimation gives us the coordinates of the macroblock in the I picture that best
matches its characteristics and thus, the motion vector may be calculated. The
motion compensated prediction error is obtained by subtracting each pixel in
a macroblock with its motion shifted counterpart in the previous frame. The
prediction error and the motion vectors are coded (VLC) and sent to the
output buffer. As in the previous case, a compressed P picture is stored in
the Frames Store, see Fig. 4.
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Fig. 4. Block diagram for P pictures
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With B pictures, the motion estimation process is performed twice: for
a past picture (I picture in this case), and for a future picture (P picture).
Prediction error and both motion vectors for each macroblock are coded (VLC)
and sent to the output buffer. It is not necessary to store in FS the compressed
B picture since it will never be taken as reference, see Fig. 5.
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Fig. 5. Block diagram for P pictures

Finally, Fig. 6 includes all the information about the encoding process of
every images from a GoP.
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Fig. 6. Block diagram for P pictures

5 Performance Evaluation in ROSA

Starting from the operational semantics, we can construct for each process
a transition graph, which can be used for performance evaluation studies,
according to these steps:

(i) To begin with, non-deterministic transitions are eliminated from this
transition graph, and we split the graph into several new graphs, ac-
cording to Fig.7. Thus, we obtain a set of deterministic transition graphs
which have only labelled transitions.

G

G G

��

��� ���

��� ���

G’ G’’

G’ G’’

Fig. 7. Evaluation Algorithm - Phase 1
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(ii) Now, from each of these deterministic transition graphs, we relabel every

transition:
a,λ−→ with

1,1/λ−→, thus obtaining the so called deterministic tem-
poral graph, which only has information about both the probability and
the average time associated to every transition (Fig.8).
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Fig. 8. Evaluation Algorithm - Phase 2

(iii) Next, for each graph, we remove both the probabilistic transitions and
those with zero average duration by joining the nodes connected by those
transitions in a single one as Fig.9 shows.
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Fig. 9. Evaluation Algorithm - Phase 3

The probability of the outgoing edges are weighted by the probability
of the eliminated one, since they can be considered as independent events
and thus the probability can be multiplied.
Once we have carried out all these steps, we get a set of deterministic

reduced temporal graphs which only contain arcs with non-zero temporal
cost.

(iv) We have to identify the states/nodes from which we are interested in
computing the necessary time in order to evolve from one called initial
state and denoted by S0, to another called final state and denoted by
SF , afterwards we have to prune the brunches which do not connect such
states.
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Fig. 10. Evaluation Algorithm - Phase 4
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We denote by TSi
the expected time to evolve from the state Si to the

final state (SF ), thus we have TSi
=

ni∑

j=1

pj(1/λj + TSij
), where ni is the

number of outgoing edges from the state Si, and the label of the edge
connecting the state Si with Sij is (pj, 1/λj) as Fig. 10 shows.
As a consequence, the average time to reach the final state from the

starting one will be TS0 , which could be computed by unfolding this
recurrent equation.

At this point, we have calculated as many average times as different non-
deterministic ways exist (according to the obtained deterministic reduced tem-
poral graphs) to evolve from the initial state to the final one. Note that this
number is exponential on the number of non-deterministic choices. The high-
est and the lowest average times so obtained provide us with time information
concerning the reachability of the state SF from the state S0.

6 Specification and Analysis of the MPEG–2 Encoding
Algorithm

I frame:

I ≡ 〈DCT QI , α1〉.(〈V LCI , α2〉.out ||A 〈IQ IDCTI , α3〉.〈FSI , α4〉.ESTP .COMPP .Θ)

P frame:

P ≡ 〈ESTP , γ1〉.〈COMPP , γ2〉.〈ERRORP , γ3〉.〈DCT Q, γ4〉.(〈V LCP , γ5〉.out ||A 〈IQ IDCT, γ6〉.〈FSP , γ7〉.Θ)
Bi frames:

Bi≡〈ESTBi
, β1〉.〈COMPBi

, β2〉.〈ERRORBi
, β3〉.〈DCT Q, β4〉.〈V LCBi

, β5〉.out

Θ ≡ (ESTB1 .COMPB1 ||AESTB2 .COMPB2)

MPEG−2 ≡ I ||A P ||AB1 ||AB2

A = {ESTP , ESTB1 , ESTB2 , COMPP , COMPB1 , COMPB2}
Table 4

MPEG-2 specification in ROSA
We study the encoding process of a GoP formed by four consecutive images

(frames) which are considered as I, B, B and P images respectively, although
the order of their encoding processes will be IPBB because of the particular-
ities described in Section 4. Albeit the most common GoP is formed of the
sequence IBBPBBPBBPBBPBBP, we have chosen the GoP IBBP since it has
all types of images and the study of the industrial one is quite big, but similar
in essence to the one here presented.

This specification 6 (table 4) lacks of any probabilistic behaviour. As

6 Could be easier for the reader to follow in Fig. 3 the specification of the encoding process
of frame I, and in Figs. 4 and 5 can be followed the specifications of the coding of P and B
frames, respectively
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soon as we have results concerning the probability of failure of any compo-
nent/process this feature will be included in the analysis (in [18] can be seen
an example of how the evaluation algorithm deals with probabilities).

Fig. 11 shows a partial view of the deterministic transition graph corre-
sponding to the MPEG–2 video encoding algorithm, where the initial, the
final and those states in which a frame has been just encoded are marked with
rectangular boxes.

We can observe in this figure that from state 13 there are two possible
evolutions which correspond with the traces of both the quickest and the
slowest ways for encoding the B1-image.

Both evolutions can be seen separately in Fig. 12. Unfortunately these
two evolution graphs have a pure sequential behaviour and will not show the
evaluation algorithm managing with probabilities, as mentioned above.

We can compute the average time for completing the codification of the
GoP in both cases, obtaining the same value, T:

T =
1

α1

+
1

α2

+
1

α3

+
1

γ1

+
1

γ2

+
1

γ4

+
1

γ5

+
1

γ6

+
2

β1

+
2

β2

+
2

β4

+
2

β5

If we compute the average times for encoding the I-image and the P-image,
the values that we get for both graphs coincide:

TI =
1

α1

+
1

α2

TIP =
1

α1

+
1

α2

+
1

α3

+
1

γ1

+
1

γ2

+
1

γ4

+
1

γ5

However, when we compute the average time for encoding the B1-image
we obtain some different results.

We have selected those corresponding with the quickest and the slowest
average encoding times:

TIPB1q =
1

α1

+
1

α2

+
1

α3

+
1

γ1

+
1

γ2

+
1

γ4

+
1

γ5

+
1

γ6

+
1

β1

+
1

β2

+
1

β4

+
1

β5

TIPB1s =
1

α1

+
1

α2

+
1

α3

+
1

γ1

+
1

γ2

+
1

γ4

+
1

γ5

+
1

γ6

+
2

β1

+
2

β2

+
2

β4

+
1

β5

6.1 A Real Codification Experiment

We have encoded a video sequence in order to compare the theoretical results
provided by ROSA with real measurements, specially those results concern-
ing the range of time to encode the first B-frame.
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The experiment was repeated several times. The results being reported
have been condensed in three experiments which summarizes 3 × 10 trials.
During the trials, no other operations were taken place in our experimental
setup.

We have made the experiments with a video sequence representative of
different levels of motion, the “Composed” sequence (format PAL CCIR–
601, 720 × 576 pixels). We have used a completely software-based MPEG–2
video encoder derived from that developed in Berkeley which is freely avail-
able in ftp://mm-ftp.cs.berkley.edu/pub/multimedia/mpeg/encode, other ver-
sions could be obtained from the MPEG Home Page, http://www.mpeg.org.

We have marked some “points” in the source code which correspond with
the beginning and the end of the elementary actions described in the specifi-
cation, in order to obtain the required time measurements for estimating the
temporal parameters of the Negative Exponentials which model the durations
associated with those elementary actions of the specification.

The platform used for the experiments was a Pentium II - 350MHz pro-
cessor with 64MB RAM.

The estimated rates are:

α1 = 1.681 α2 = 3.089 α3 = 1.486

γ1 = 0.847 γ2 = 31.658 γ4 = 1.920

γ5 = 2.600 γ6 = 1.942 β1 = 0.415

β2 = 20.626 β4 = 1.920 β5 = 2.613

The remainder parameters are ∞, i.e. they correspond with immediate
actions.

Once we have estimated the time parameters we can compare the theoret-
ical results obtained with our language ROSA, and the measures obtained in
real codification experiments within the described scenario.

Mainly, we are interested in estimate how much it represents the difference
between the slowest and the quickest traces to be encoded the first B picture
of a GoP and what does it represent with respect to the time for encoding
the whole GoP, specially the relation between the quickest trace and the GoP
trace.

ROSA Experiment 1 Experiment 2 Experiment 3

I-Image 0.918613s 0.909285s 0.953689s 0.893104s

P-Image 3.70923s 3.700998s 3.738053s 3.688503s

B1-Image 7.59s - 10.56s 10.020147s 7.813504s 9.988154s

GoP 10.9475s 11.549177s 10.793488s 11.067721s
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Consequently, according to our ROSA specification, we can obtain the fol-
lowing bounds to the time necessary for encoding the first B-image: [7.58582s
- 10.5648s].

But from the generated graphs it is immediate to conclude that the codi-
fication process of both B images can be done at once, so, provided that we
use a platform with two processors the necessary time for encoding a GoP like
the considered, can be reduced from 10.9s to 7.6s, i.e. about a 30%, with the
only task for one of the processors that, once both I and P frames are in the
Frames Store ready to be taken as reference for the encoding process of the
next pair of B pictures, it just has to encode one of the B frames. In fact,
the processor which only has to encode one of the B pictures could also be
used previously for the task VLC of either I or P pictures for instance, so the
benefit above estimated is a lower bound for the benefit expected when having
a twin-processors platform.

Moreover, since we have used a very simple model of GoP in order to
develop our study and the main advantages came from the simultaneous en-
coding of both B-images; we claim that having a more realistic GoP like
IBBPBBPBBPBBPBBP, we could obtain with a twin-processor platform an
improvement close to a 36%.

It would be very interesting to develop a more complete study of this
algorithm in which the maximum parallelism in the encoding process of a
GoP was considered, and then it can be analyzed both the necessary number
of processors and the profit obtained in such a case. But, Classical Process
Algebras lack of the necessary description capabilities, probably Timed Arc
Petri Nets provide a suitable environment in order to do that.

7 Conclusions and Future Work

We have presented an application of Formal Methods to the primary perfor-
mance analysis of a real algorithm for video compressing, the MPEG–2.

Specifically, a study of some performance features of this video encoding
algorithm which consists of the estimation of the bounds for the time to encode
each type of image and the minimum benefits obtained when having a twin-
processor platform, has shown.

The authors’ current work is mainly focused on:

• Analyzing another version of this algorithm taking into account the possi-
bility of system failures. This would allow to show the benefits of having a
probabilistic choice operator in ROSA.

• Analyzing and comparing two different parallel versions of the MPEG–2
encoding algorithm: Spatial Parallelism vs. Temporal Parallelism.

• Analyzing the potential degree of parallelism of the algorithm, in order to
estimate the best performance which can be obtained under this assumption.
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Fig. 12. The Quickest and the Slowest encoding traces
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