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Abstract The aromatic character of the region 66ywYWW7° ending at 66Y fused to residues 67SCSQAC72 coming from a 
of the l l -kDa  subunit VIII of ubiquinol-cytochrome c oxido- stop-oligonucleotide [5]. Note that this fused sequence com- 
reductase (bcl complex) of the yeast Saccharomyces cerevisiae prises two cysteine residues, while the original yeast subunit 
has previously been demonstrated to be important for assembly VIII does not contain any. 
of a functional complex [Hemrika et al. (1994) FEBS Lett. 344, Recently, a highly aromatic domain at the C-terminal re- 
15-19]. Especially the aromatic nature of residue 66 appeared to gion of subunit VIII was reported to be important for the 
be relevant, as the very low level (5%) of bcl complex in the assembly and catalytic function of the bcl complex [3,4]. First, 
mutant 66SASAA7° was restored to nearly 70% of the wild-type the residues 69Vv'~cVKNG 73 were replaced by a cysteine (69C) 
level in a phenotypic revertaot with the sequence ~FASAA 7°. In in a mutant obtained by random mutagenesis [2]. This mutant 
the present study, three other site-directed mutants (66SAYAA7°, showed a reduced enzymic activity and alterations in the bind- 
66SASAWT° and ~ S W Y W W  7°) were constructed and analysed, ing of the Qout inhibitor myxothiazol, implying that this re- 
The data indicate that the presence of one aromatic residue is 
enough for a substantial level of assembly and that its position gion of the yeast 11-kDa protein contributes to the Qout bind- 
modulates the level of both assembly and electron transfer ing site. Additionally, the region 66ywYw~V7° in the S. 
activity. The results also confirm the relevance of this region of cerevisiae subunit VIII was replaced by non-aromatic residues 
subunit VIII for the formation of the Qout reaction domain, as (66SASAA7°) by site-directed mutagenesis, resulting in the 
reported by Hemrika et al. [(1993) Eur. J. Biochem. 215, 601- nearly complete absence of assembled complex III [4]. Based 
609]. It is further shown that the lowered specific activity of the on the occurrence of a spontaneous second mutation, the 
mutant described by these authors is not due to the introduction 66FASAAT° mutant, which had a 60-70% recovery of the 
of a cysteine in the sequence of subunit VIII. wild-type activity, it was suggested that the aromatic nature 

of residue 66 was important for assembly of a functional en- 
Key words." Ubiquinol-cytochrome c oxidoreductase; 11-kDa 
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Turnover number; Saccharomyces cerevisiae The homologue of the yeast 11-kDa subunit VIII in bovine 

heart is the 9.5-kDa subunit VII [6], shown to be photo-affin- 
ity labelled with a quinone derivative [7,8]. This so-called 
'small ubiquinol-binding protein of cytochrome c reductase 

1. Introduction (QPc)' most likely forms part of one of the two ubiquinol/ 
ubiquinone reaction sites: the oxidation (center o) or the re- 

The 11-kDa subunit VIII of the Saccharomyces cerevisiae duction site (center i). The Q-binding domain is located close 
complex III (bCl complex or the ubiquinol-cytochrome c oxi- to the interface between the inner membrane and the inter- 
doreductase) is encoded by QCR8, a single-copy nuclear gene membrane space (residues 48-57 of the bovine sequence) and 
located on chromosome X [1]. Analysis of a QCR8 disruption is adjacent to the conserved aromatic region (see Fig. 1). Re- 
mutant showed that this subunit is essential for the assembly cently, the cloning, sequencing and expression of QPc (9.5- 
of a functional complex. The mutant lacks holo-cytochrome b kDa subunit) were reported [9]. 
and displays severely reduced levels of apo-cytochrome b, the One modification of the originally reported amino acid se- 
Rieske Fe-S protein and the 14-kDa subunit VII [1]. quence [6] was noted: residue 61 is tryptophan instead of 

Since these pleiotropic effects prevent further analysis of the cysteine [9], increasing the aromatic nature of this domain. 
role of the 11-kDa subunit in the mechanism of action of the The sequence conservation amongst the protein family that 
bcl complex, studies were performed in which in vitro-muta- contains the yeast 11-kDa subunit VIII, the bovine 9.5-kDa 
genised QCR8 genes were transformed to a qcr8 null (DLL80) subunit VII and other homologous proteins, referred to here 
strain [2-4]. as the 11-kDa protein family, is quite low [10]. However, all 

Previous experiments with a truncated version of the 11- these proteins have a strikingly similar secondary structure 
kDa subunit VIII revealed that the C-terminal 26 amino acids [5,11], including a hydrophobic area close to the C-terminal 
are dispensable for the enzymatic activity of the protein corn- domain. This region is just long enough to span the mem- 
plex, although the assembly of the complex was markedly brane and comprises 3-5 aromatic residues present in all se- 
affected [2]. This mutant has the original amino acid sequence quences reported so far. The subunit IV from R. sphaeroides, 

which is a ubiquinol-binding protein [12], thought to fulfil the 
same role as the bovine 9.5-kDa subunit, also has a large *Corresponding author. E.C. Slater Institute, BioCentrum, University 

of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The hydrophobic area at the C-terminal domain comprising 3 aro- 
Netherlands. Fax: (31) (20) 5255124. matic residues located in the segment labeled by azido-Q [13]. 

0014-5793/96/$12.00 © 1996 Federation of European Biochemical Societies. All rights reserved. 
PII SOO14-5 79 3( 96)O l O40-X 



200 G. Lobo-Hajdu et al./FEBS Letters 395 (1996) 199-203 

This might  indicate a role of  the a romat ic  domain  in the Site-directed mutagenesis of the pSelect-HllS plasmids was per- 
s t ructure of  the Q-pocket  or  even in Q-binding.  formed with the following l l-kDa substitution oligonucleotides: 

66SAYAA70 (5'-CTCGTTACCGTTCTTAGCAGCATAAGCAG- 
Here  we report  the results of  a fur ther  study of  the a romat ic  AAATTCCCGCAGGTAT-3');  66SASAW70 (5'-CTCGTTACC- 

domain  of  S. cerevisiae subuni t  VIII,  using three o ther  site- GTTCTTCCAAGCAGAAGCAGAAATTCCCGCAGGTAT-3 ' ) ;  
directed mutan t s  with scattered a romat ic  residues. We also 66SWYWW70 (5'-GTTCTTCCACCAGTACCAAGAAATTCCCG- 
investigated the fate of  the bc~ complex when  a cysteine res- CAGG-3'); 66YWYWC70 (5'-CTCGTTACCGTTCTTGCACCAG- 
idue is in t roduced  into the sequence of  the 1 l - k D a  subuni t  TACCAATAAATTCC-3') according to the pSelect manufacturer's 

protocol (Altered Sites in vitro Mutagenesis System/Promega). 
VIII  wi thou t  any fur ther  deletion. Single-copy and multi-copy shuttle plasmids YCplac33 and YE- 

plac195 [15] and the centromeric E. coli/S, cerevisiae shuttle vector 
pRS316 [16] were used as carriers of the wild-type or the mutated 

2. Materials and methods QCR8 genes. 
Doubling times were determined by inoculating 50 ml lactate med- 

Escherichia coli strain DH5a (recA, (rk-, mk--) 1-) was used for the ium (0.5% yeast extract, 0.2% (w/v) magnesium sulphate, 0.6% (w/v) 
propagation of recombinant DNA constructs, strain BMH71-18 was ammonium phosphate, 2% sodium lactate (70% w/v) and 1.3% lactic 
employed for plasmid transformation after site-directed mutagenesis acid (75% w/v) pH 4.5) with yeast cells from an overnight culture in 
and strain JM109 was used for the generation of single-stranded the same medium to give a starting .4600 of about 0.2. Growth pro- 
DNA. E. coli transformants were grown in YT medium (1% (w/v) ceeded at 28°C to stationary phase. At different time points samples 
yeast extract, 1.6% (w/v) bactotryptone and 0.5% (w/v) NaC1) con- were taken to measure the optical density at 600 nm on a Zeiss 
taining 100 ~tg/ml ampicillin for normal transformations or 100 lxg/ml spectrophotometer. 
tetracycline for the transformation of the pSelect plasmids. Mitochondria were isolated as described earlier [17]. Spectral meas- 

S. cerevisiae strain DLL80 (a, his3, ura3, LEU2::qer8) [2] was used urements were carried out at room temperature in an Aminco dual- 
for the transformation of plasmids carrying the wild-type or mutated wavelength spectrophotometer model DW2000. Concentrations of cy- 
QCR8 genes (see below for further details). Transformation of yeast tochromes were determined using the following absorbance coeffi- 
was performed according to [14]. Transformants were selected on cients and wavelength pairs for the reduced minus oxidized proteins: 
minimal media containing 0.67% (w/v) yeast nitrogen base (Difco), 21.3 mM -1 cm -1 at 605-625 nm for cytochrome aa3 [18], 20.1 mM -1 
2% (w/v) glucose, 2% (w/v) agar supplemented with histidine (20 p.g/ cm -1 at 550-540 nm for cytochromes c+cl [19] and 28.5 mM -1 cm -1 
ml). The respiratory capacity of the transformants was checked on at 562-575 nm for cytochrome b [20]. 
solid media containing 1% (w/v) yeast extract, 1% (w/v) bactopeptone, The ubiquinol-cytochrome c oxidoreductase assay was performed 
2% (w/v) glycerol and 2% (w/v) ethanol, spectrophotometrically at 30°C by measuring the reduction of 18 p.M 

Plasmid pSelect-H11S was constructed by isolating the 840 bp Hin- horse-heart ferricytochrome c at 550-540 nm by 25 /aM 2,3-di- 
dlII-Sa/I fragment carrying the QCR8 gene from plasmid pUC18- methoxy-5-methyl-6-geranyl-l,4-benzoquinol (Q2H2). The buffer 
H l l S  [3] and ligating this into the pSelect plasmid digested with the used contained 2 mM EDTA, 0.5 mM potassium cyanide and 20 
same enzymes, mM potassium phosphate pH 7.4 in order to obtain maximal activity 

S.tuberosum ........................... MGK QPVKLKAVV. 
O.sativa ........................... MGK TPVRMKAW. 

A.thaliana ........................... MGK QPVKXKAW. 
B.tauris ....................... GRQFGHL TRVRH..VIT 

H.sapiens ...................... MGREFGNL TRMAM..XIS 
K.lactis ........... MGGPHAK.. AYMGW.WGSI GSPAQKGITT 

S.cerevisiae ........... MGPPSGK.. TYMGW.WGHM GGPKQKGITS 
S.pombe .......... MGGAAGGK.. TYLGW.WGHL GGPKQKGIIT 

N.crassa MRPTQTMLGG GGGAPIGKHN HYLGG.WGNF GGMKQRGIIS 
Consensus G---G ....... K .... 

S.tuberosum YAISPFQQKI MPGLWKDLPG KIHHKVSENW ISATLLLGPL 
O.sativa YALSPFQQKV MPGLWKDITT KIHHKVSENW ISATLLLAPI 

A.thaliana YALPPFQQXI XTGLWKXLPE KIHHKVSXNW XSATLLVTPV 
B.tauris YSLSPFEQRA FPHYFSKGIP NVLRRTRACI L...RVAPPF 

H.sapiens YSLSPFEQRP YPHVFTKGIP NVLRRIRESF F...RWPQF 
K. lactis YTVSPYAQKP LNNIFHNAVF NTFRRVKSQI L...YMALPA 

S.cerevisiae YAVSPYAQKP LQGIFHNAVF NSFRRFKSQF L...YVLIPA 
S.pombe YSLSPFQQRP MAGFFKTSTQ NMFRRVMTEG L...YVAIPF 

N.crassa YGISPNRQNP LAGTAHDAVF NTFRRVSSQF L...YWAPSL 
Consensus Y--SPF-Q .... G N--RRV .... P- 

S.tuberosum VGTYSYVQHF LEKEKLEHRY ........... 
O.sativa VGTYEYAMYY KEQEKLSHRY ........... 

A.thaliana VGTYWYAQYF KEQEKLLHRF ........... 
B.tauris VAF~LVYTWG TQ..EFEKSK RKNPAAYEND R 

H.sapiens VVFYLIYTWG TE..EFERSK RKNPAAYEND K 
K.lactis ALYWAWWVNC RDYNAYLYTK AGREELERVN V 

S.cerevisiae GIYW~wwKNG NEYNEFLYSK AGREELERVN V 
S.pombe GIAYYIYCWG KERNEFLNSK HGRHLVEE.. 

N.crassa VAGYYIMNWA IERNHYLNSK AGRAEFAGQE 
Consensus V--Y ....... E ....... K 

R.sphaeroides VWKYRYRLGG 87 

Fig. h Multiple sequence alignment of the l l-kDa protein family. Sequences were aligned using t ~  GCG Pile Up program (gap weight, 3.00; 
gap length, 0.10) [34]. Amino acids appearing in at least 75% of the sequences are listed in the consensus line. ~ tuberosum (potato) [11], O. sa- 
tiva (rice) [1~, A. ~aliana ~lant)  [10], ~ ~ u r ~  (bo~ne) [~, ~ sapiens (human) [GenBank accession no. T47406], K ~ c t ~  (yeast) [35], X cere- 
vB~e (yeas0 [1], X pombe ~east) [5], ~ crassa (~ngus) [3~, R. ~haeroides (bacterium) [37]. The residues underlined in the bovine sequence 
correspond to the ones labelled by azido-Q [8]. 
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Fig. 2. Inhibitor titration of wild-type and mutant mitochondria: 101 p,g of wild-type (D-D), 148 ktg of SASAW (©-©) and 146 p,g of SWYWW 
mitochondria (I-I)  were incubated for 5 min in 2.0 ml of the bCl complex assay buffer, with different concentrations of the specific inhibitors. 
Thereafter, first KCN (0.5 mM) and cytochrome c (18 ~tM) were added and after the subsequent addition of 25 IxM Q2H2 the reduction of cy- 
tochrome c was measured at 550-540 nm. The values given on the x-axis are calculated from the spectrally determined concentrations of anti- 
mycin, myxothiazol and cytochrome b, assuming 2 mol heme b/mol bCl complex. (A) Titrations with antimycin. (B) Titrations with myxothia- 
zol. 

with horse-heart cytochrome c as acceptor [21]. Spectral and kinetic 3.2. Properties of  the mutants 
data were analysed, using the DW2000 software. Table 2 shows the results of the spectral and kinetic analysis 

Protein concentrations were determined according to Lowry et al. 
[22]. Published procedures were used for DNA manipulation and of the different yeast mutants. Calculation of the turnover 
sequencing [23]. Restriction and other enzymes used in DNA manip- number based on the amount of holo-cytochrome b and the 
ulation were purchased from Boehringer, Biolabs and Sigma and used specific be1 complex activity in mitochondria isolated from the 
as recommended by the manufacturers. Radioactive chemicals w e r e  different yeast mutants shows that this is approximately the 
obtained from Amersham. All other chemicals were of the highest 
purity available, same in the wild-type and the LTN3/f6FASAA 7° transfor- 

mant; it is slightly lower in the LTN2/66SASAA 7°, 
66SAYAAT° and 66ywYwc TM transformants and is 50-60% 

3. Results reduced in the 66SASAW 7°, 66SWYWW7° and LTNI trans- 
formants. 

3.1. Production of  the mutants The cytochrome c+cl and cytochrome a+a3 levels are also 
Fig. 1 shows the amino acid sequence of all known mem- different (lower or higher) in most of the transformants as 

bers of the 11-kDa protein family, displaying in bold the compared to the levels in the wild type. Since it was shown 
position of the aromatic residues in the aromatic domain, that also in the qcr8 null mutant the levels of these cyto- 
The part of the bovine sequence labelled with azido-Q [8] is chromes are comparable to those of the wild type [1,2] and 
underlined. In S. cerevisiae the residues 66y'v~Y~I~W/7° cor re -  these levels tended to vary slightly between different mito- 
spond to the ones substituted in this study. The QCR8 gene chondrial preparations of the transformants, we prefer not 
was liberated as an 840 bp HindIII-SalI fragment from plas- to speculate on the significance of the minor differences ob- 
mid pUC18-HllS [3] and ligated into the pSelect plasmid served. 
digested with the same enzymes. Site-directed mutagenesis The presence of a wild-type level of complex III, and there- 
was performed on single-stranded DNA with the substitution fore full assembly, in the mutants SASAW and SWYWW was 
oligonucleotides as given in Section 2. After mutagenesis, additionally shown by titrations of isolated mitochondria with 
plasmid DNA was isolated from 12 ampicillin-resistant colo- antimycin (Qin-site inhibitor) and myxothiazol (Qout-site in- 
nies from each mutant to check for the presence of the 840 bp 
HindIII-SaII insert and DNA-sequence analysis was per- 
formed on l0 of these plasmids containing the correct insert. Table 1 

List of the different mutants 
The desired substitution was present in 50-75% of these plas- 
mids depending on the mutant. The mutated QCR8 genes Mutant name and vector Amino acid sequence Reference 

were ligated as a HindlII-SalI fragment into the single-copy Wild- type /pRS316 66YWYWWT° this study 
shuttle vectors YCplac33 or pRS316, and the 66SASAA70/ LTN2/YCplac33 66SASAA7° [4] 

LTN2/YEplac 195 66 SASAA70 [4] 
LTN2 mutant also into the multi-copy vector YEplac195 [ 4 ] .  LTN3/YCplac33 66FASAA7° [4] 

The plasmids containing the different mutants were used to SAYAA/pRS316 66SAYAA7° this study 
transform DLL80 to uracil prototrophy and the uracil proto- SASAW/pRS316 66SASAWT° this study 
trophs from either transformation were subsequently replica S W Y W W / p R S 3 1 6  66SWYWWT° this study 
plated to ethanol/glycerol (EG) plates to monitor their res- YWYWC/pRS316 66ywYWC7° this study 

LTN1/YCplac33 69WWKNGrZ/69C [3] 
piratory capacity. Table 1 lists the different mutants. 
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Table 2 
Doubling time, enzymatic activity and spectral analysis of wild-type and mutant cells and mitochondria 

Mutant Doubling time Specific activity c+cl b aa3 Turnover number 
(min) (nmol/mg per s) (nmol/mg) (nmol/mg) (nmol/mg) (s -1) 

Wild-type 281 (3) 12.7 (2) 0.20 0.14 0.04 181 
YCpLTN2 - 1.7 (2) 0.14 0.02 0.05 170 
YEpLTN2 - 4.7 (1) 0.24 0.06 0.06 157 
LTN3 514 (1) 6.4 (1) 0.19 0.07 0.04 183 
SAYAA 700 (1) 5.1 (1) 0.07 0.06 0.04 170 
SASAW 624 (1) 5.6 (2) 0.25 0.13 0.05 86 
SWYWW 470 (2) 7.3 (2) 0.19 0.13 0.07 112 
YWYWC 312 (2) 11.0 (2) 0.21 0.14 0.07 157 
LTNI 676 (1) 6.0 (1) 0.10 0.11 0.06 109 

The number of measurements on individual isolates is given in parentheses. See Section 2 for experimental conditions. 

hibitor) (see Fig. 2). The lowered turnover of the assembled Recent studies suggest that membrane-integrated segments 
enzyme in these mutants was confirmed. The titration curves do have specific features, one of these being a clustering of 
show that the affinity for myxothiazol is unaffected in both aromatic residues at the polar/non-polar interface, observed in 
mutants, despite the lowered turnover, but that the affinity for the reaction centers, porins, prostaglandin H synthase and in 
antimycin is lowered in the SASAW mutant (see Fig. 2). The the peptide ionophore gramidicin A [29]. In this latter case, 
LTN1 mutant, on the other hand, displayed a decreased af- the four boundary tryptophans may form hydrogen-bonds 
finity for myxothiazol [3], while for the LTN2/66SASAA 7° and with the lipid headgroups or water and are likely to play a 
LTN3/66FASAA TM no differences in the affinities for either role in anchoring the peptide in a correct orientation within 
inhibitor was observed [4]. The affinities of the 66SAYAAT° the bilayer [30]. Tryptophan is a large, aromatic, and polar 
and  6 6 y w Y W C  70 mutants for either myxothiazol or antimy- but neutral residue. Depending on the environment, it can 
cin were not changed (not shown), either contribute to the hydrophobicity of a protein region 

or act as a hydrogen bond donor through its nitrogen free 
4. Discussion doublet. Studies with model compounds mimicking the side 

chain of a tryptophan show that the indole ring partitions 
As deduced from mutant studies [24,25], the assembly of the spontaneously to the lipid headgroup region of a bilayer 

yeast bCl complex involves the formation of a subcomplex [31]. The driving force of this process has a substantial en- 
between cytochrome b, the 14-kDa subunit VII and the 11- thalpic component, implying that factors other than the hy- 
kDa subunit VIII. Both the 14-kDa and 11-kDa subunits are drophobic effect, for example van der Waals interactions or 
closely associated with cytochrome b and the mitochondrial hydrogen bonding, are also involved in stabilizing the inter- 
inner membrane [26]. facial location of tryptophans [31]. Inspection of the structure 

The bovine heart 9.5-kDa subunit is assumed to span the of reaction centers shows that many tryptophans participate 
inner membrane [6,9]. This protein and the subunit IV from in hydrogen bonds with distant main chain carbonyls, which 
R. sphaeroides show no significant amino acid sequence simi- may contribute to the stability of the tertiary structure [32]. 
larity, although their structural features, such as hydrophobi- Site-directed mutagenesis studies with bacteriorhodopsin and 
city and topological arrangements of the quinone binding do- with another protein of the rhodopsin family indicate that 
mains with respect to the membrane look alike. Both have tryptophans in transmembranous segments, while not essen- 
only one transmembrane helix and their supposed quinone tial for function, participate in ligand binding and also con- 
binding domains, as derived from azido-quinone binding tribute to the stability of the protein [33]. 
data, are located in the transmembrane helix near the surface The previously described LTN1 mutation [3] showed both a 
of the membrane [6,8,9,27]. decreased level of assembly and a decreased turnover number, 

Also the yeast 11-kDa subunit VIII shows little sequence the latter being caused by a decreased rate of reduction of the 
similarity with the bovine 9.5-kDa subunit VII, but shares the low-potential cytochrome b, implying that this region of the 
same structural features [5]. It has been shown recently [28] yeast 11-kDa protein contributes to the Qout reaction center. 
that this polypeptide, although not extractable with carbo- It is tempting to speculate that not only a site of interaction 
nate, is not transmembranous. We may assume that this between the 11-kDa subunit VIII and cytochrome b resides at 
also holds for the homologous bovine 9.5-kDa subunit, the aromatic domain, resulting in a decreased level of assem- 
although in this polypeptide the hydrophobic domain shows bly in the LTN1 mutant, but that this domain is also part of 
a larger hydrophobic moment [5]. The association of such a the reaction site of the Qout semi-quinone with the low-poten- 
protein with the membrane will be achieved via interaction of tial cytochrome b. While the SASAA mutant showed only 
the hydrophobic region of this protein with phospholipids and very little assembly, a substantial, but still decreased level of 
probably with hydrophobic residues of cytochrome b. The assembly, without an effect on the turnover number, is found 
domain 66ywYWWKNG73, including 5 consecutive aromatic in FASAA and SAYAA, so an aromatic residue at a position 
residues, is just on the interface between the inner membrane between 66 and 68 improves the assembly drastically, but for 
and the intermembrane space. The results obtained in the full assembly it seems that the presence of a tryptophan at 
study of several in vitro mutants [3,4] show that this region positions 69 or 70 is required, as is the case in the SASAW 
is crucial both for stable interaction (via aromatic stacking?) and SWYWW mutants. A decreased level of assembly was 
with other subunits of the complex, supposedly cytochrome b, also observed in the LTN1 mutant, in which the two trypto- 
and for the electron transfer activity of center o. phans at positions 69 and 70 are absent. 
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