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A continuous function x on the unit interval is a generic Brownian motion when
every probabilistic event which holds almost surely with respect to the Wiener
measure is reflected in x, provided that the event has a suitably effective description.
We show that a generic one-dimensional Brownian motion can be computed from
an infinite binary string which is complex in the sense of Kolmogorov�Chaitin.
Conversely, one can construct a Kolmogorov�Chaitin random string from the values
at the rational numbers of a generic Brownian motion. In this way, we construct
a recursive isomorphism between encoded versions of generic Brownian motions
and Kolmogorov�Chaitin random reals. � 2000 Academic Press

1. INTRODUCTION

In this paper, we explore the two notions of a ``generic'' point on the unit
interval and a ``generic'' Brownian motion. We show how the process of
identifying a generic point of the unit interval can be unfolded, as it were,
or blown up, to a generic Brownian motion and, conversely, how a generic
Brownian motion can be enfolded, or contracted, to a generic point of the
unit interval. We shall make this dual process very explicit and it will be
depicted in an algorithmic manner.

With a point of [0, 1] one can associate an infinite binary string : in the
standard manner. The string : encodes the process of locating the point
through repeated bisections. We call the point generic if the binary string
:, when it is considered as a sequence of outcomes of a fair coin-tossing
experiment, meets all the recursive statistical tests in the sense of Martin-
Lo� f [16]. In a similar vein, a Brownian motion is said to be generic if it
meets all recursive tests, now expressed in terms of the statistical events
associated with Brownian motion on the unit interval. (See Section 3 for
precise definitions.) We shall refer to a generic Brownian motion as a
complex oscillation. This terminology is suggested by the following fact
[2, 7]: One can characterise a Brownian motion which is generic (in the

doi:10.1006�aima.2000.1945, available online at http:��www.idealibrary.com on

317
0001-8708�00 �35.00

Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.



sense just stated) as an effective and uniform limit of a sequence (xn) of
``finite random walks,'' where, moreover, each xn can be encoded by a finite
binary string sn of length n, such that the Kolmogorov complexity, K(sn),
of sn satisfies, for some constant d>0, the inequality K(sn)>n&d for all
values of n. In the following, we shall denote the set of complex oscillations
by C. It was shown by Asarin and Prokovskiy [2] that the set C has
Wiener measure 1. In [7] one finds a recursive characterisation of the
almost sure events, with respect to Wiener measure, which are reflected in
every complex oscillation. (For details, see Section 3.)

It is well-known that that the notion of an infinite binary string meeting
all the recursive statistical tests of Martin-Lo� f can also be expressed in
terms of Kolmogorov�Chaitin complexity. Indeed, for such a string :, there
is a constant d>0, such that, writing :� (n) for the first n bits of :, it is the
case that K(:� (n))>n&d for all n, and conversely. We call a string : with
this property a KC-string (KC for Kolmogorov�Chaitin). (See, for example,
[3] and [14] for early work on this notion. Extensive treatments of this
theory can be found in [4] and [22]. A philosophical analysis of descriptive
complexity versus randomness appears in [21].)

In this paper, we shall show that, in a recursion-theoretic sense, the class
of complex oscillations can be identified with the class KC consisting of
the infinite binary strings which are complex in the sense of Kolmogorov�
Chaitin. We construct a bijection 8: KC � C which is effective in the
following sense: If : # KC and m<|, one can effectively construct from the
first m bits of : a function pm , where pm is a finite linear combination of
piecewise linear functions such that, for some absolute positive constant C,
the complex oscillation 8(:) is approximated by the sequence ( pm) as

sup
t # [0, 1]

|8(:)(t)& pm(t)|�C log m�- m,

for all m>M, where M is a constant that depends on : only. Conversely,
if x # C, then one can compute, relative to an infinite binary string which
encodes the values of x at the dyadic rational numbers in the unit interval,
the KC-string : such that 8(:)=x.

Consider any effective enumeration t0 , t1 , ..., without repetition, of the
dyadic rationals in the unit interval. To every x # C[0, 1] one can associate
the |_| array having the dyadic expansion of x(ti) as its i th row. By
using any recursive bijection between |2 and |, one can represent the
array associated to the continuous function x as a single binary string,
E(x), say. Set E=[E(x): x # C]. It will be shown that the map 8 induces
a partial recursive ,: [0, 1]| � [0, 1]| which maps KC bijectively to E in
such a way that for some partial recursive �: [0, 1]| � [0, 1]|, the restric-
tion of � to E is the inverse to ,. In this sense the sets KC and E are
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recursively isomorphic. This has the immediate implication that , defines
a homeomorphism between KC and E, when both these spaces are viewed
as subspaces of the Baire space [0, 1]|. The mapping 8 is also a measure-
theoretic isomorphism in the following sense: Write * for the Lebesgue
measure on the space [0, 1]| and write W for the Wiener measure on
C[0, 1]. Then, for any Borel subset A of C[0, 1] with the uniform norm
topology, we have

*(8&1(A))=W(A).

It follows from the theory in [7] that many of the local properties of
Brownian motion, such as almost sure nowhere differentiability and Levy's
modulus of continuity theorem, are reflected in every complex oscillation.
Moreover, each complex oscillation has interesting recursive properties.
For example, it is shown in [7] that if x # C and t # (0, 1) is a recursive real
number, then x(t) is not recursive. In [8] it is shown that for each x # C

there is a dense subset D of [0, 1] which consists of the so-called rapid
points of x, i.e., if t # D then

lim
h � 0

|x(t+h)&x(t)|

- |h| log 1�|h|
>0.

Moreover, all the points in D are not recursive real numbers.
The large extent to which each complex oscillation is representative of

Brownian motion opens the way towards introducing descriptive com-
plexity as an additional explanatory metaphor to situations where the
theory of Brownian motion has proven successful in leading to an under-
standing of the phenomena involved. This means that one can explore the
implications of the assumption that some basic processes in physics, for
example, have descriptions which are intrinsically complex. In particular,
one can study the stochastic dynamical approach to quantum theory by
Fe� nyes [5] and Nelson [17] from this point of view. This leads to the
problem of representing Gaussian white noise in terms of Kolmogorov�
Chaitin complexity. The main result of this paper can be viewed as a first
step towards constructing such a theory. This line of thought will be
elaborated upon in a sequel to this paper. It would also be interesting to
study the functional integration approach to quantum theory as exposed in
[10], for example, from this point of view.

The author has made every effort to make this paper reasonably self-
contained. In particular, all the results from its predecessor [7] are stated
in such a way that this paper can be read independently from [7] in a
coherent manner.
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2. PRELIMINARIES

The set of non-negative integers is denoted by | and we write N for the
product space [0, 1]|. The set of words over the alphabet [0, 1] is denoted
by [0, 1]*. If a # [0, 1]*, we write |a| for the length of a. If :=:0 :1 } } } is
in N, we write :� (n) for the word > j<n :j . We use the usual recursion-
theoretic terminology 70

r and 6 0
r for the arithmetical subsets of |k_Nl,

k, l�0. (See, for example, [12].) We write * for the Lebesgue probability
measure on N. For a binary word s of length n, say, we write [s] for the
``interval'' [: # N : :� (n)=s]. A sequence (an) of real numbers converges
effectively to 0 as n � � if for some total recursive f : | � | it is the case
that |an |�(m+1)&1 when n�f (m). A subset A of N is of constructive
measure 0 if there is a total recursive ,: |2 � [0, 1]* such that A/
�n �m[,(n, m)], where *(�m[,(n, m)]) converges effectively to 0 as n � �.

For any binary word a we denote its Kolmogorov complexity by K(a).
One can think of K(a) as the shortest self-delimiting program for a univer-
sal Turing machine U which will output a from an empty input. We assume
that U accepts self-delimiting programs only. It is well-known that if K1 , K2

corresponds to universal Turing machines U1 , U2 , then K1(a)=K2(a)+
O(1) for all a. (See [3] or [21] for a discussion.) In the following, we shall
regard our choice of K as fixed. An infinite binary string : is Kolmogorov�
Chaitin complex if

_d \n K(:� (n))�n&d.

In the following, we shall denote this set by KC and refer to its elements
as KC-strings.

Remark. Algorithmic descriptive complexity is now usually referred to
as Kolmogorov complexity. With the early developments from the 1960s in
mind, Solomonoff�Chaitin�Kolmogorov complexity is perhaps the most
appropriate term for the notion. Our terminology is closer to what is found
in the standard references [4, 22] for the subject.

The core result of the theory of Kolmogorov�Chaitin complexity is the
following:

Theorem 1. If : # N, then : # KC iff : is in the complement of every
subset of N which is of constructive measure 0.

For a discussion, see [3, 15, 16, 20, 21].
The mean, or expected, value of a random variable X will be denoted by

E(X ). Two random variables X and Y on possibly different probability
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spaces are said to be similar when they have the same probability distribu-
tions. We write XtY in this case. A random variable X with mean + and
variance _2 is normal if it has a density function

1

- 2? _
e&(t&+) 2 �2_ 2

.

We say in this case that X has a N(+, _2) distribution. A sequence (!n) of
random variables is called a normal sequence when the sequence is statisti-
cally independent and if each !n has an N(0, 1) distribution. A random
variable X is called Gaussian when Xt*! where ! is an N(0, 1) variable
and *�0. A random vector X=(X1 , ..., Xn) is said to be a Gaussian vector
if every linear combination of the Xi is a Gaussian random variable. One
can show that a random vector X # Rn is Gaussian iff there is a finite
normal sequence !1 , ..., !m such that each of the components Xi of X
is similar to a linear combination of the components !j of the normal
sequence. (See, for example, pp. 169�170 of [13].) If X is Gaussian, its
characteristic function is given by

E(eiu .X )=e&�(u)�2,

where � is the quadratic form

�(u)=:
j

E(X 2
j ) u2

j +2 :
i> j

E(X iXj ) u iuj .

(See p. 170 of [13].) This has the implication that the distribution of a
Gaussian vector X is fully and uniquely determined by its correlation matrix
which is, by definition, the matrix (E(XiXj): 1�i, j�n).

A Brownian motion on the unit interval is a real-valued function (|, t) [
X|(t) on 0_[0, 1], where 0 is the underlying space of some probability
space, such that X|(0)=0 a.s., and for t1< } } } <tn in the unit interval the
random variables X|(t1), X|(t2)&X|(t1), ..., X|(tn)&X|(tn&1) are statisti-
cally independent and normally distributed with means all 0 and variances
t1 , t2&t1 , ..., tn&tn&1 , respectively. We say in this case that the Brownian
motion is parametrised by 0. Alternatively, a map X : 0_[0, 1] � R
defines a Brownian motion iff for t1< } } } <tn in the unit interval the
random vector (X|(t1), ..., X|(tn)) is Gaussian with correlation matrix
(min(ti , tj): 1�i, j�n).

It is a fundamental fact that any Brownian motion has a ``continuous
version.'' This means the following: Write 7 for the _-algebra of Borel sets
of C[0, 1] where the latter is topologised by the uniform norm topology.
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There is a unique probability measure W on 7 such that for 0�t1< } } } <
tn�1 and for a Borel subset B of Rn we have

P([| # 0 : (X|(t1), ..., X|(tn)) # B])

=W([x # C[0, 1] : (x(t1), ..., x(tn)) # B]).

(See, for example, pp. 46�50 of [11].) The measure W is known as the
Wiener measure. We shall usually write X(t) instead of X|(t).

For the purposes of this paper, it will be useful to think of Brownian
motion on the unit interval as a continuous curve in some real Gaussian
Hilbert space H. This approach to the theory was probably inspired by
Kolmogorov's notion of what he called ``Wienersche Spiralen'' in [14]. For
a classic overview of later developments, see [18]. All the background for
the purposes of this paper can be found in Chapter 16 of the book [13].

In order to construct a Gaussian Hilbert space, one requires a probability
space (0, P, A) on which a normal sequence (!n) of random variables can be
defined. It is then clear that, with respect to the (real) Hilbert space L2(0), the
sequence (!n) is an orthonormal sequence. The real Hilbert subspace H of
L2(0) spanned by the orthonormal sequence (!n) is an example of a Gaussian
Hilbert space. In fact, any Gaussian Hilbert space can be obtained in this
manner. If X # H, it has an expansion in H of the form X=�n an !n . In this
case Xta! where a is the l2 norm of the sequence (an) and ! is an N(0, 1)
random variable. This follows immediately from computing the charac-
teristic function of X. Note that a=&X&. An important consequence of this
remark is that for any X1 , ..., Xn # H, the vector (X1 , ..., Xn) is Gaussian.

The basic idea of the Hilbert space approach to Brownian motion is to
start with a helical curve (or spiral) in L2[0, 1] and to transform this curve
to the real Gaussian Hilbert space H/L2(0) by means of a linear isometry
from L2[0, 1] to H. In this way, one obtains a Brownian motion parametrised
by 0. To be more precise, let T : L2[0, 1] � H be any linear isometry and
set, writing /t for the characteristic function of the interval [0, t], for each
t in the unit interval, X(t)=T(/t). Note that for t, s # [0, 1], we have that
E(X(t) X(s))=(/t , /s)=min(t, s). It follows that the stochastic process
(X(t): t # [0, 1]) is a Brownian motion. For future reference we note that
for a Borel set A in C[0, 1], the measure W(A) is related to the probability
measure P on 0 as follows:

W(A)=P([| # 0 : the function t [ X|(t) is in A]). (1)

This approach to Brownian motion results in very explicit analytic repre-
sentations of X(t) which are most suitable for the recursive analysis of
Brownian motion in this paper. Indeed, let (en) be an orthonormal basis of
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L2[0, 1] and set !n=T(en), where T is the linear isometry from L2[0, 1]
to the real Gaussian space H. Then writing

/t=:
n

an(t) en

(the sum in L2[0, 1]), it follows that we have the explicit representation

X(t)=:
n

an(t) !n

(the sum now in H ), where

an(t)=(/t , en)=|
t

0
en(s) ds.

Note that the sequence (!n) is orthonormal.

3. COMPLEX OSCILLATIONS

We next survey the results from [2] and [7] which will play an important
role in this paper. The key idea in these papers is that of a so-called complex
oscillation, which is a limit of a sequence of finitary random walks of growing
Kolmogorov complexity, which is in a definite sense also a generic Brownian
motion. We first introduce some notation. For n�1, we write Cn for the class
of continuous functions on the unit interval that vanish at 0 and are linear with
slopes \- n on the intervals [(i&1)�n, i�n], i=1, ..., n. With every x # Cn ,
one can associate a binary string a=a1 } } } an by setting ai=1 or ai=0 accord-
ing to whether x increases or decreases on the interval [(i&1)�n, i�n]. We
call the sequence a the code of x and denote it by c(x). The following
notion was introduced by Asarin and Prokovskiy in [2].

Definition 1. A sequence (xn) in C[0, 1] is complex if xn # Cn for each
n and there is a constant d>0 such that K(c(xn))�n&d for all n. A func-
tion x # C[0, 1] is a complex oscillation if there is a complex sequence (xn)
such that &x&xn& converges effectively to 0 as n � �.

The class of complex oscillations is denoted by C. It was shown by
Asarin and Prokovskiy [2] that the class C has Wiener measure 1.

For the results in this paper, we shall require a recursive characterisation
of the almost sure events, with respect to Wiener measure, which are reflected
in each complex oscillation. In order to describe this characterisation, we use,
as in [7], an analogue of a 6 0

2 subset of C[0, 1] which is of constructive
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measure 0. We introduce some notation. If F is a subset of C[0, 1], we denote
by F� the topological closure of F in C[0, 1]. For =>0, we let O=(F ) be the
set [ f # C[0, 1] : _g # F & f& g&<=]. For convenience sake, we write F 0 for
the complement of F and F 1 for F.

Definition 2. A sequence F0=(Fi : i<|) in 7 is an effective generating
sequence if

1. for F # F0 , =>0, and $ # [0, 1], we have, for G=O=(F $) or
G=F $, that W(G� )=W(G);

2. there is an efffective procedure that yields, for each sequence 0�i1

< } } } <in<| and k<|, a binary rational number ;k such that

|W(Fi1
& } } } & F in

)&;k |<2&k ;

3. for n, i<|, a strictly positive rational number = and x # Cn , both
the relations x # O=(F i) and x # O=(F 0

i ) are recursive in x, =, i, and n.

If F0=(Fi : i<|) is an effective generating sequence and F is the
algebra generated by F0 , then there is an enumeration (Ti : i<|) of the
elements of F (with possible repetition) in such a way, for a given i, that
one can effectively describe Ti as a finite union of sets of the form

F=F $1
i1

& } } } & F $n
in

where 0�i1< } } } <in and $i # [0, 1] for each i�n. We call any such
sequence (Ti : i<|) a recursive enumeration of F. We say in this case that
F is effectively generated by F0 and refer to F as an effectively generated
algebra of sets. A sequence (An) of sets in F is said to be F-semi-recursive
if it is of the form (T,(n)) for some total recursive function ,: | � | and
some effective enumeration (Ti ) of F. (Note that the sequence (Ac

n), where
Ac

n is the complement of An , is also an F-semirecursive sequence.) In this
case, we call the union �n An a 7 0

1(F) set. A set is a 6 0
1(F) set if it is the

complement of a 7 0
1(F) set. It is of the form �n An for some F-semirecur-

sive sequence (An). A sequence (Bn) in F is a uniform sequence of 7 0
1(F)

sets if, for some total recursive function ,: |2 � | and some effective
enumeration (Ti ) of F, each Bn is of the form

Bn=.
m

T,(n, m) .

In this case, we call the intersection �n Bn a 6 0
1(F) set. If, moreover, the

W-measure of Bn converges effectively to 0 as n � �, we say that the set
given by �n Bn is a 6 0

1(F) set of constructive measure 0.
The proof of the following theorem appears in [7].
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Theorem 2. Let F be an effectively generated algebra of sets. If x is a
complex oscillation, then x is in the complement of every 6 0

1(F) set of
constructive measure 0.

We shall also make frequent use of the following result from [7].

Theorem 3. If B is a 7 0
1(F) set and W(B)=1, then C, the set of

complex oscillations, is contained in B.

The analogue of this result, for Lebesgue measure, appears in [6]. The
following result from [7] is an effective version of the Borel�Cantelli lemma
for the Wiener measure. The analogue, for Lebesgue measure, appears in [19].

Theorem 4. If (Ak) is a uniform sequence of 7 0
1(F) sets with �k W(Ak)

<�, then, for each complex oscillation x, it is the case that x � Ak for all
large values of k.

We introduce a class of effective generating sequences which is most
useful for reflecting local properties of one-dimensional Brownian motion
into complex oscillations. Let G0 be a family of sets in 7 each having a
description of the form

a1 X(t1)+ } } } +anX(tn)�L (2)

or of the form (2) with � replaced by <, where all the aj , tj (0�t j�1) are
rational numbers, L is a recursive real number, and X is one-dimensional
Brownian motion. If =>0 and G # 7 is described by (2), we have that
O=(G) is described by the inequality

a1 X(t1)+ } } } +anX(tn)<L+= :
j

|aj | (3)

while O=(G0) is given by

a1 X(t1)+ } } } +anX(tn)>L&= :
j

|aj |. (4)

We require that it be possible to find an enumeration (Gi : i<|) of G0 such
that, for given i, if Gi is given by (2), we can effectively compute the sign,
the denominators, and the numerators of the rational numbers aj , tj and,
moreover, that recursive real L can be computed up to arbitrary accuracy.
This has the implication that there is an effective procedure, 6, such that,
for given i, =, m with i, m<| and = a positive rational, the validity of (3)
and (4) can be decided by 6 when Gi is given by (2) and X # Cm .
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We now show that under these conditions G0=(Gi : i<|) is an effective
generating sequence in the sense of Definition 2. It is clear that condition
(3) of Definition 2 is met. The topological closures of events having
descriptions of the form (3) or (4) have similar descriptions with the strict
inequality signs replaced by weak (� and �) inequality signs. Now we can
effectively rewrite the left-hand side Y, say, of (2) as a linear combination
of X(t1) and the differences X(t j)&X(t j&1) for j=2, ..., n. Indeed,

:
n

i=1

ai X(t i)=\ :
n

i=1

a i+ X(t1)+ :
n&1

j=1
\ :

j<i�n

ai+ (X(t j+1)&X(tj)).

Hence Y has the same distribution as a sum of the form {1!1+ } } } +{n!n

where the {i are reals and !1 , ..., !n are independent N(0, 1) random
variables. It follows that the distribution of Y is absolutely continuous with
respect to Lebesgue measure. Consequently, for =�0 and G # G0 , it is the
case that for $ # [0, 1] and H=G$ the W-measure of O=(H) and O=(H) are
the same. It follows that condition (1) of Definition 2 is met. Finally, for
G of the form Gi1

& } } } & Gim
, we can write W(G) as the probability of an

event of the form A! # H where A is a finite matrix and ! is a vector whose
components are independent N(0, 1) random variables; moreover H is
an intersection of halfspaces in some finite dimensional Euclidean space.
The entries in the matrix A and the description of the halfspaces can be
effectively retrieved from the description of G. If ! has n components, say,
then ! has a density function given by

(2?)&n�2 e&( y2
1+ } } } + y2

n)�2.

It follows that W(G) can be computed up to arbitrary accuracy. This takes
care of the second condition of Definition 2. This concludes the proof that
G0 is an effective generating sequence. In the following, we call a sequence
G0 meeting with these requirements a Gaussian sequence and the algebra G

generated by G0 , a Gaussian algebra.
As an illustration of how one can reflect almost sure properties of

Brownian motion in each complex oscillation, we now prove the following

Proposition 1. If x # C and if C>1, then

|x(t+h)&x(t)|�- 2C |h| log(1�|h| )

for all t in the unit interval and all sufficiently small values of h.

Proof. For n�1 and a fixed rational number C>1, write K C
n for the

event over C[0, 1] defined by

\ |h|<1�n \t # [0, 1] |x(t+h)&x(t)|�- 2CF(h),
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where F(h)=|h| log(1�|h| ). It is quite easily shown that W(K C
n )�s(n),

where

s(n)=exp \&2 \1
n+

C&1

+ ,

provided that C>1. (See pp. 97�98 of [1], for example.) Write D for the
set of dyadic rationals in the unit interval. Let LC

n be the set in C[0, 1]
defined by the predicate

_h _t # D( |h| # D) 7\ |h|<
1
n+7 ( |x(t+h)&x(t)|>- 2CF(h)).

Note that (LC
n ) is a uniform sequence of 7 0

1(G) sets for a suitable Gaussian
algebra G. Moreover, a simple continuity argument shows that the comple-
ment of LC

n in C[0, 1] is given by K C
n . It follows that

W(LC
n )�1&s(n).

Consequently, �n LC
n is a 6 0

2(G) set of constructive measure 0. We conclude
from Theorem 2 that, if x # C, then x # K C

n for some n, which concludes the
proof of the proposition.

Remark. It follows that if x # C, then the modulus of continuity around
a point t is <<- |h| log(1�|h| ). This result is the best possible. Indeed, one
can show that there is a dense set of points t in the unit interval such that

lim
h � 0

|x(t+h)&x(t)|

- |h| log(1�|h| )
>0.

These are the so-called rapid points of x. The rapid points of a complex
oscillation are all non-recursive reals, for one can show that if t is a recursive
real, then

lim
h � 0

|x(t+h)&x(t)|

- 2 |h| log log(1�|h| )
=1.

These results are discussed in [8].

4. KC STRINGS VIEWED AS COMPLEX OSCILLATIONS

In this section we show how one compute a complex oscillation from
any KC-string. Our argument is based on the so-called Franklin�Wiener
representation of Brownian motion. Such a representation is obtained by
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mapping the Haar functions in L2([0, 1]) to a normal sequence in a real
Gaussian Hilbert space by means of a linear isometry.

For a subset I of the unit interval, we write /(I ) for the characteristic
function of I. The Haar system in L2([0, 1]) is defined by

e0=1, e1=/([0, 1�2))&/([1�2, 1))

and

ejn=[/([n2& j, n2& j+2&( j+1)))&/([n2& j+2&( j+1), (n+1) 2& j))] 2 j�2,

where 0�n<2 j and j�1. Let 20(t), 21(t), 2jn(t) be the (zig-zag) functions
obtained by integrating e0 , e1 , ejn from 0 to t. It follows that each 2jn has
support on the dyadic interval (n2& j, (n+1) 2& j) and satisfies

&2jn&�2 j�2_2&( j+1).

Let (0, P, A) be a probability space on which a normal sequence
(!0 , !1 , !jn : j�1, 0�n<2 j ) is defined. The curve X : [0, 1] � L2(0) given
by

X(t)t!020(t)+!1 21(t)+ :
j�1

:
n<2 j

!jn 2jn(t)

(the expansion in L2(0)) defines a version of Brownian motion. The series
on the right is called the Franklin�Wiener series.

The idea that a version of Brownian motion can be defined which is
parametrised by N goes back to Wiener. (See [23], for a discussion.) This
idea will play an important role in what follows. We first introduce some
notation. We define a function b: (0, 1) � N by requiring that for : # (0, 1)
and n�1, if s is the dyadic rational encoded by the first n bits of b(:), then
s�:<s+2&n. In the sequel we shall identify : # (0, 1) with its binary
representation.

Let g: [0, 1] � R be the function defined by

:=|
g(:)

&�

e&t 2�2

- 2?
dt, : # (0, 1). (5)

Note that g is a recursive function, i.e., there is a uniform computation that
outputs g(:) up to arbitrary accuracy using only a finite number of bits of
:. Since the function e&t 2 �2 is invariant under the transformation t [ &t,
we have

g(:)=&g(1&:)

for all 0<:<1.
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We fix a recursive bijection ( , ) from |2 to |. To any : # N, we
associate a sequence B=(;0 , ;1 , ;jn : j�1, 0�n<2 j ), where the sequence
(;jn) is lexicographically ordered with respect to the double indices jn, in
such a way that the kth term of the sequence B is given by

:k0:k1 } } } .

Here we have written kl instead of (k, l). (We point out that we shall later
impose further restrictions on the recursive bijection ( , ) ). For 1� j<|,
0�n<2 j, set !jn= g(;jn); in addition, set !k= g(;k), for k=0, 1. We can
view !0 , !1 , !jn as functions defined on N and, with respect to the
Lebesgue measure * on the latter, they are independent N(0, 1)-random
variables. In this way one can associate a Franklin�Wiener series x: to
each infinite binary string :, namely

x:(t)=!0 20(t)+!1 21(t)+ :
j<|

:
n<2n

!jn 2jn(t). (6)

At this stage, x: is a formal series. However, the association : [ x: induces
a map from N into L2[0, 1] and defines a version of Brownian motion
parametrised by N. Moreover, we shall soon see that for almost all :, the
series converges and defines a continuous function in t on the unit interval.

Note that it follows from equation (1) that for any Borel subset A of
C[0, 1], we have:

W(A)=*(: # N : x: # A),

where * is the Lebesgue measure on N.
Our first aim is to show that if : # KC, then x: will be a complex oscilla-

tion. Thereafter, we shall show precisely how one can compute finitary
approximations to x: from finite initial segments of : when : # KC. In the
following section we shall show that : [ x: defines a bijection from KC
onto C in such a way that we obtain a recursive isomorphism between KC
and a set E, which is an ``encoded version'' of C. As a first step, we prove
the following lemma.

Lemma 1. If : # KC, then the associated Franklin�Wiener series x:

converges and represents a continuous function on the unit interval.

Proof. Associate with : the sequence !0 , !1 , !jn and set, for j�1,

aj= sup
t # [0, 1] } :

n<2 j

! jn 2jn(t)} .
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Since for each fixed j, the functions 2jn have disjoint supports, we have

aj�2&( j�2)&1 sup[ |!jn |: n<2 j]. (7)

We claim that, if : # KC, then, for all j� j: , we have

sup[ |!jn |: n<2 j]�2 - j. (8)

This will suffice for the proof of the lemma, for it will follow from (8) that

aj�- j 2& j�2

for all large values of j and hence that the series x: converges uniformly
in t # [0, 1].

Define the event Xj by

Xj=[ sup
n<2 j

|!jn |>2 - j].

Here we view each !jn as a function on N. This event holds with a prob-
ability (as measured by the Lebesgue measure) which is at most

2 j |
�

2 - j

e&t 2 �2

- 2?
dt�

2 j

- 2? |
�

2 - j

t

2 - j
e&t 2 �2 dt.

It follows that

Prob[aj>- j 2& j�2]�Prob(Xj )�
1

2 - 2?j
(2�e2) j. (9)

Fix again : # KC and assume that the inequality (8) does not hold for all
but finitely many j. Then : # Xj infinitely often, i.e.,

: # ,
m<|

.
j>m

Xj .

Since the relation ; # Xj is 7 0
1 in ; and j, it follows from the previous

estimates that : is in a set of constructive measure 0��which is impossible.
This concludes the proof of the lemma.

We note that it follows from the proof of the lemma that for some
absolute positive constant C, if : # KC, there is some n0=n0(:), such that
for all m�n0 , we have

}x:(t)&\!020(t)+!121(t)+ :
j<m

:
n<2 j

!jn2 jn(t)+}�C
- m
2m�2 (10)
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uniformly in t. Indeed, in the notation in the proof of the previous lemma,
for m sufficiently large, the left-hand side is bounded from above by

:
j�m

a j� :
j�m

- j
2 j�2 .

Proposition 2. If : # KC, then x: is a complex oscillation.

Proof. Suppose there is some : # KC such that x: is not a complex
oscillation. It follows from the proof of Theorem 5.3 in [7] that

x: # ,
n

.
m

Tn, m (11)

where each Tn, m can be written as

,
i<k

[Ai<X(t i)<Bi], (12)

the numbers Ai , Bi and ti being dyadic rationals, in such a way that one
can retrieve an effective description of the parameters k, Ai , Bi and t i from
n and m. In addition, W(�m Tn, m) converges effectively to 0 as n � �. We
may assume, without loss of generality, that

W \.
m

Tn, m+�2&n.

Write, for ; # N and N<|,

xN
; (t)=!0(;) 20(t)+!1(;) 21(t)+ :

j<N

:
n<2 j

! jn(;) 2jn(t).

For given n, m, we define the set Sn, m /N as follows: If Tn, m is given by
(12), then Sn, m is defined by

; # Sn, m W \ i<k _N>n+m+1 (Ai+2&N�3<xN
; (ti )<Bi&2&N�3). (13)

Note that the relation ; # Sn, m is 7 0
1 (i.e. semirecursive) in ;, n and m.

For a given : # KC, choose n0=n0(:), such that (10) holds for all
m�n0 . We also require that n0�n1 , where n1 is some absolute constant to
be determined below. Our first aim is to show that

: # ,
n�n0

.
m

Sn, m .
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For given n�n0 , choose m such that x: # Tn, m . If Tn, m is given by (12),
say, then, for some L>0 and all i<k, we have

Ai+
1
L

<x:(t i)<Bi&
1
L

.

Note that n+m+1>n0 . Choose N>n+m+1 such that C - N 2&N�2+
2&N�3<L&1, where C is the constant that appears in (10). Then, since
N>n0 , we have, by (10), that

x:(t i)&C
- N
2N�2�xN

: (ti )�x:(ti )+C
- N
2N�2 .

It now follows from our choice of N that

Ai+2&N�3<xN
: (t i )<Bi&2&N�3

for all k<i. We conclude that : # Sn, m , as required.
We now claim that, if ; # Sn, m where n�n0 and, in the notation used in

the proof of Lemma 1, if aj�- j 2& j for all j�n+m+1, then x; # Tn, m .
Suppose Sn, m is given by (13). For given i, choose N>n+m+1 such that
Ai+2&N�3<xN

; (ti )<Bi&2&N�3. Since a j�- j 2& j�2 for all j�N, we have

|x;(ti )&xN
: (t i )|� :

j�N

- j
2 j�2�C

- N
2N�2

and, consequently, writing

F(N)=2&N�3&C - N 2&N�2,

we have

Ai+F(N)�x;(ti )�Bi&F(N).

For n1 sufficiently large, F(N)>0 for all n�n1 . If we have chosen n0�n1

for such a choice of n1 , we find that x; # Tn, m , as required. Consequently,
if n�n0 , then

\; # .
m

Sn, m+� _m[(x; # Tn, m) 6 ; # Un, m],

where

; # Un, m W _ j>n+m+1(aj (;)>- j 2& j�2).
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But by (9), for each m,

*(Un, m)�
1

- 2?
:

j>n+m+1
\2

e+
j 1

e j
- j

<<\2
e+

n+m+1

.

Finally, since

* \.
m

Sn, m+�* \.
m

[: : x: # Tn, m]++:
m

*(Un, m)

for n�n0 and

* \.
m

[: : x: # Tn, m]+=* \_: : x: # .
m

Tn, m&+=W \.
m

Tn, m+ ,

we can conclude that

* \.
m

Sn, m+<<
1
2n+\2

e+
n

which converges effectively to 0 as n � �. We have shown that : is in a
6 0

2 set of constructive measure 0 �which contradicts the fact that : # KC.
We conclude that x: is a complex oscillation, as required.

In the following theorem, we show how one can compute finitary
approximations to the complex oscillation x: from finite initial segments of
: when : # KC.

Theorem 5. Let : be an infinite binary string which is complex in the
sense of Kolmogorov-Chaitin. Then one can effectively associate to : a
complex oscillation x: . Indeed, there is an oracle computation that computes,
for given m>0, by using the first m bits of : only, a natural number N and
a sequence g0 , g1 , gjn , where j<N, n<2 j, of dyadic rationals such that, if
we set

pm= g0 20+ g1 21+ :
j<N

:
n<2 j

g jn2jn ,

then

&x:& pm&<<
log m

- m
,

for all m�M: .
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Proof. Fix : # KC. For the proof of this theorem we require a more
explicit construction of the numbers ;0 , ;1 , ;jn from a given # # N than
was the case in the preceding results. This means essentially we need to
place additional restrictions on the recursive bijection ( , ) from |2 to |.
For k�1, set Lk=2k+1. This is the number of elements in the sequence
Bk :=(;0 , ;1 , ; jn : 1� j�k, 0�n<2 j ). We define the array B from the
bits of # in stages as follows: At stage 1 we use the first 4L1 bits of # to
define the first 4 bits of ;0 , ;1 , ;10 , ;11 , respectively, in some fixed
systematic manner. At the end of the k th stage the first 4kLk bits of # have
been placed in the first 4k positions of each of the elements of the sequence
Bk . At stage k+1, take the next 4(k+1) Lk&4kLk bits of # to fill up
positions 4k+1, ..., 4k+4 of each of the elements of Bk together with the
first 4k+4 positions of (;k+1, n : n<2k+1). For our purposes, any systematic
procedure that leads to a recursive computation of the array B from # in
such a way that, for all k�1, the initial segment of size 4kLk of # will be
used to determine the first 4k positions of all the elements of the sequence
Bk , will suffice for the arguments that follow. In the sequel, we sometimes
write ;jn(#) when we wish to emphasise that ;jn has been constructed from
the binary string #. For the fixed : # KC, we shall always write ;jn in stead
of ;jn(:). A similar convention will be followed for the other constructions
!jn from infinite binary strings #.

We begin by showing that there is a natural number N0=N0(:), such
that, for all N�N0 , we have ;� 0(2N){0, ;� 1(2N){0 and ;� jn(2N){0 for all
j, n with 1� j<N and 0�n<2 j.

To see this, let AN be the event defined by

# # AN W [;0(#)(2N)=0]6 [;1(#)(2N)=0]6_ j<N _n<2 j [;jn(#)(2N)=0].

This event holds with a probability which satisfies

Prob(AN)�
2

22N+ :
j<N

2 j

22N<<2&N.

It follows that the set �N � j>N Aj is of constructive measure 0 so that, :
being in KC, we have : # AN for at most finitely many N.

Choose N1=N1(:) such that for all j�N1 , we have |!jn |�2 - j, for all
n<2 j. The existence from N1 follows from the proof of Lemma 7. Next
choose a natural number L=L(:) such that the function g2 (where g is
given by (5)) assumes values all of which are �L on the finite set, Y,
consisting of the points ;0 , ;1 , ; jn , where j<N1 , n<2 j. (Note that none of
the elements in Y equals zero or one, since they are all themselves KC-strings
for it is well-known that any infinite recursive subsequence of a KC-string
is itself a KC-string.)
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The approximations pm to x: are constructed as follows: For m�16, let
N be the largest natural number such that 4NLN�m. Next compute,
relative to :, the first N bits of g(;� k(4N)), k=0, 1 and of g(;� jn(4N)) j<N,
n<2 j. Denote these dyadic rationals by g0 , g1 , gjn . (It follows from the
enumeration scheme introduced in the first paragraph of the proof that we
can compute these numbers from �m bits of :). Set

pm= g0 20+ g1 21+ :
j<N

:
n<2 j

g jn2jn .

We shall show that

&x:& pm&<<log m�- m,

for all m�M0 , where M0 is a natural number depending on : only. As a
first step, we show that, for N�N0(:), we have, for ;=;k , k=0, 1 and
;=;jn , where j<N, n<2 j, that

| g(;)& g(;� (4N))|<<: 2&N. (14)

We consider two cases:

Case 1. e&t 2 �2�e&g2 (;)�2, for all g(;� (4N))�t�g(;). This is the same
as to say that g(;)>0 and g(;� (4N)>& g(;). In this case

|;&;� (4N)|=
1

- 2? |
g(;)

g(;� (4N))
e&t 2 �2 dt�

e&g2 (;)�2

- 2?
| g(;)& g(;� (4N))|.

If ;=; jn , where j�N1 , then g(;)=!jn�2 - j�2 - N and, therefore,

| g(;)& g(;� (4N)|<<e2N |;&;� (4N)|<<(e2�24)N<<2&N

since e2<23. If ;=;0 , ;1 or ;jn with j<N1 , then

| g(;)& g(;� (4N))|�eL�2 |;&;� (4N)|<<: 2&2N.

Case 2. e&t 2 �2�e&g2 (;� (4N))�2, for all g(;� (4N))�t�g(;). This is the
same as to say that either g(;)>0 but g(;� (4N))<&g(;) or g(;)�0.
Note that for u�1 and ! a N(0, 1) random variable,

Prob(!�u)<<e&u 2�2.

(For a proof one can use the same argument leading to the final inequality
in (9).) It follows that for 0<#<1, we have, when g(#)�1,

1&#=Prob(!�g(#))<<e&g 2 (#)�2
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and hence, since g(1&#)=&g(#), it follows, when g(#)�&1, that

e g2 (#)�2<<#&1.

By using this inequality, we see, whenever g2(;� (4N)�1, that

| g(;)& g(;� (4N)|<<e g 2(;� (4N))�2 |;&;� (4N)|

<<
1

;� (4N)
2&4N.

But since N�N0 , we have that ;� (2N){0 and consequently

;� (4N)�;� (2N)�2&2N.

We conclude that the left-hand side of (14) is <<2&2N. This estimate
trivially holds when g2(;� (4N))�1. This concludes the proof of (14).

Finally, for N�max(N0 , N1),

&x:& pm &=&x:&xN
: &+&xN

: & pm&

� :
j�N

aj+O: \2&N :
j<N

2 j

2 j�2+
� :

j�N

- j 2& j�2+O:(2&N�2).

The final expression clearly is <<- N 2&N�2, for all N sufficiently large
(depending on :). But N is the largest integer such that

4NLN=4N .2N+1�m.

This means that m is large enough that the dyadic rationals g0 , g1 , gjn for
j<N, n<2 j can be computed from the first m bits of :. Moreover,
m>>N2N and N<<log m, so we have:

N
2N<<

N2

m
<<

log2 m
m

.

This concludes the proof of the theorem.

5. COMPUTING KC STRINGS FROM COMPLEX OSCILLATIONS

We write 8: KC � C for the mapping which associates with : the complex
oscillation x: given by (6). Let t0 , t1 } } } be an effective enumeration, without
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repetition, of the dyadic rationals in the unit interval. With every x # C[0, 1],
we associate the |_| array A(x) such that the i th row of A(x) is a binary
representation of x(ti). The binary representation is as follows: If x(t)=n+:,
where n is an integer and where 0�:<1, we encode x(t) as 1m0b(:) where
m=2n when n�0 and m=2 |n|&1 when n<0; moreover, b(:) is the
dyadic representation of :. By using any recursive bijection between |2 and
| we can effectively represent A(x) as a single binary string which we
denote by E(x). Set

E=[E(x): x # C].

The set E is topologised as a subspace of N. In order to investigate the
continuity of maps from and to E, it will be useful to have the following
fundamental systems of neighbourhoods of points in the space E available.
For x # C and n, m�1, let Enm be the subword of E(x) corresponding to
the first m bits of x(t j) for 0� j<n. These correspond to the bits in the
n_m matrix at the northwestern corner of the |_| array A(x). Set

[Enm(x)]=[E( y) # E : Enm( y)=Enm(x)].

This is all the codes of all the complex oscillations y such that the binary
representations of y(tj) agree with those of x(tj) in the first m positions for
all j=1, ..., n. It is clear that the family [Enm(x): n, m�1] is a fundamental
system of neighbourhoods in E of x.

Define &: E � C by E(x) [ x. This is a bijection since a continuous
function is uniquely determined by its values at the dyadic rationals. Our
next aim is to show that the sets KC and E are recursively isomorphic.

Theorem 6. There are partial recursive functions ,, �: N � N such that
,�=id on E and �,=id on KC. In particular, , defines a homeomorphism
from KC to E where these spaces are viewed as subspaces of N. The map
, induces a bijection 8: KC � C which is nowhere continuous even though its
converse 8&1: C � KC is everywhere continuous.

Proof. In the proof we use the same recursive bijection from |2 to
| which was defined in the beginning of the proof of Theorem 5. Let
(0, P, A) be a probability space on which an infinite sequence (!0 , !1 , !jn :
j�1, n<2 j ) of independent N(0, 1)-variables is defined. Then for almost
all | # 0 the associated Wiener�Franklin series defines a Brownian motion
x|(t). Moreover, for almost all |,

!0=x(1), !1=2x( 1
2)&x(1) (15)
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and

!jn=2 j�2(2x(t jn)&x(tjn+$ j)&x(tjn&$j)), (16)

where t jn=(2n+1)�2 j+1 and $j=2&( j+1). These equalities hold whenever
the Franklin-Wiener series converges uniformly. In particular, if we let
(0, P, A)=(N, *, B), then we see that these equalities define !0(:), !1(:),
!jn(:) uniquely from x: # KC, where the !(:) are defined from : as in the
proof of Theorem 5. By construction, the association : [ (!0 , !1 , !jn) is
a bijection. We conclude that 8: : [ x: is an injective mapping from KC
to C.

We can look at 8 in a different way: Beginning with :, we construct
!0 , !1 , !jn , j�1, 0�n<2 j as in Theorem 5, whereafter we recursively find
x(n�2 j ) from the ! by solving first (15) and then (16) for increasing values
of j. Indeed, we must solve the equations

x(1)=!0 , 2x( 1
2)=!0+!1 ,

and

2x \2n+1
2 j+1 +=2& j�2!jn+x \n+1

2 j ++x \ n
2 j+ .

In this way, one can effectively compute any finite initial segment of E(x:)
from some initial segment of :. The association : [ E(x:) induces a partial
recursive map ,: N � N whose restriction to KC defines a mapping,
which we shall denote by ,, from KC into E. In particular, , is continuous
on KC. Note that we can factorise 8 as

KC w�
,

E w�
&

C.

If we let (0, P, A)=(C[0, 1], W, 7 ) and if we define !0 , !1 , !jn by (15)
and (16) for x # C[0, 1], we can conclude that !0 , !1 , !jn is a sequence of
independent N(0, 1)-variables on (C[0, 1], W, 7 ). As a first step to con-
structing a KC-string from a complex oscillation, we shall show that, if
x # C, then

x=!020+!121+ :
j�1

:
n<2 j

!jn2jn ,

for all t # [0, 1], where !0 , !1 , !jn are given by (15) and (16). For this
purpose, consider the event X$j in 7 defined by the condition [supn<2 j |!jn |
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>2 - j]. By using the fact that the !jn are N(0, 1) on C[0, 1], we see, as
in (9), that

W(X$j )<<
1

- j \
2
e2+

j

.

By using (16), we see that (X$j ) is a uniform sequence of 7 0
1(G) sets in a

suitable Gaussian algebra G. It follows that the set

,
m

.
j>m

X$j

is a 6 0
2(G) set of constructive Wiener measure 0 and, therefore, does not

contain any complex oscillation x. We conclude that, if x # C, then, for
some absolute constant C,

" :
j>m

:
n<2 j

!jn2jn"�C
- m
2m�2 . (17)

Write h(m) for the right-hand side of the inequality and write xm for
the partial sum of the Franklin-Wiener series associated with x with the
summation restricred to j�m. It follows from the preceding that for almost
all x # C[0, 1], it is the case that &x&xm&<h(m), for m sufficiently large.
In particular, for a fixed dyadic rational t, the event AL defined by

_m>L |x(t)&xm(t)|<h(m)

has Wiener measure 1 for all values of L. It is clear that for each dyadic
t and L<|, the event is 7 0

1(G) for a suitable Gaussian algebra G. It
follows from Theorem 3 that x # AL , for all x # C. In particular, if x # C,
and t is a dyadic rational in the unit interval, then xmj (t) converges to x(t),
for some unbounded subsequence mj of natural numbers. It follows from
(17) that xm is a Cauchy sequence in C[0, 1] when x # C. We conclude
that x is the limit of xm when x # C, as required.

It is now an easy matter to find, for a given complex oscillation x, some
: # N, such that x=x: . We first construct the ! from x by equations (15)
and (16), whereafter we define the ; by ;=F(!), where F is the inverse
function of g, i.e.,

F(A)=
1

- 2? |
A

&�
e&t2�2 dt, A # R.
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We will see in the next paragraph that for none of the ! constructed from
the complex oscillation x, will F(!) be a dyadic rational. Hence we can
compute, relative to the values of x at dyadic rationals, for each n�1 and
each associated !, a dyadic rational ;n of length n such that ;n<;<
;n+2&n when ;=F(!). Hereafter, the string : corresponding to the ; can
be retrieved. If we reverse the construction of : from x, we find that x and
: are related by x=x: , where x: is the Franklin�Wiener series associated
with :. In this sense the association x [ : such that x=x: is recursive. In
particular it defines a continuous map from C to N. All that remains to
be shown is that the : thus obtained is a KC-string.

We first show that if x is a complex oscillation, then for each of the
associated !, it is the case that ;=F(!) is a nonrecursive real. For
otherwise, ! itself will be recursive so that there is a recursive sequence !k

of dyadic rationals such that |!k&!|<2&k for all k. Thus, for a suitable
Gaussian algebra G, the complex oscillation will be in the 6 0

1(G) set, A,
described by

: # A W \k ( |!k&!|<2&k).

This set is obviously of W-measure 0, since ! is a normal (hence non-
atomic) variable on C[0, 1]. This is a contradiction for, on the one hand,
x # A, but, on the other hand, the complement B of A is a 7 0

1(G) set of
W-measure 1 which, by Theorem 2 must contain all the complex oscillations.

We must show that if : # N is such that, within our coding scheme, x:

is a complex oscillation, then : # KC. If not, there is a total recursive func-
tion (n, m) [ snm from |_| to [0, 1]* such that

: # ,
n

.
m

[snm]

and

* \.
m

[snm]+�2&n,

for all n. Without loss of generality, we may assume that all the snm have
lenghts of the form 4kLk for some k�1. For if k is the smallest natural
number such that |snm |�4kLk , we may replace [snm] by the union of all
[snm#] with # exactly the size so that |snm#|=4kLk . If |snm |=4kLk , then,
we can construct a sequence (#0 , #1 , #jp : j�k, p<2 j ) of dyadic rationals
each of length 4k, which are the initial segments of (;0 , ;1 , ;jp : j�k,
p<2 j ) which are associated to any # # [snm]. For notational convenience,
we set Bk=[0, 1] _ [ jp: j�k, p<2 j ]. Writing Onm for the set of # in N,
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such that none of the associated ;i=;i (#), with i # Bk , are dyadic rationals,
we have

# # [snm] & Onm W \ i # Bk
(#i<; i (#)<#i+2&4k). (18)

For n, m with |snm |=4kLk , define the subset Vnm of C[0, 1] by

X # Vnm W \i # Bk
_A, B(A<!i (X )<B) 7 (#i<F(A)<F(B)<#i+2&4k),

where A, B ranges over all rational numbers. Note that, by (18), we have
# # [snm] & Onm iff x# # Vnm . Since : # �n �m[snm] and the associated ; i (#)
are non-dyadic, it follows from (18) that x: # �n �m Vnm . The set Vnm is
70

1(G) for some Gaussian algebra G. Moreover,

W \.
m

Vnm+=* \.
m

[snm] & Onm+�* \.
m

[snm]+�2&n,

for all n. Hence the set V=�n �m Vnm is a 6 0
2(G) set of constructive

measure 0. It follows that x: is in V, which is a set of constructive measure 0
wa contradiction.

For x # C, the construction of : from x such that 8(:)=x requires only
the information encoded in E(x). The effective nature of the construction

E(x) [ (!) [ (;) [ :

when x # C ensures that that the association E(x) [ : defines a partial
recursive map �: N � N which maps E to KC. In fact the restriction of
� to E is the inverse of ,: KC � E. In this sense KC and E are recursively
isomorhic. In particular, ,: KC � E is a homeomorphism when we view
KC and E as subspaces of N. Moreover, 8: KC � C is a bijection, since
8=&,.

It is readily seen that &&1 : C � E is continuous, when we view C as a
subspace of C[0, 1]. To see this, we note that for given n, m�1 and x # C,
there is a $>0 such that if &x& y&<$, then x(tj) and y(tj) will agree in
the first m bits for all j<n. (Note that it follows from Theorem 4.2 in [7]
that a complex oscillation assumes non-dyadic values at dyadic rationals.)
This means exactly that all the y in a $-neighbourhood of x will belong to
the neighbourhood [Enm(x)] of E(x). We can conclude that 8&1 is
continuous since 8&1=�&&1.

However, 8 is nowhere continuous on KC. Since 8=&, and , is a
homeomorphism, it suffices to show that &: E � C is nowhere continuous.
For suppose & were continuous at E(x) for some x # C. Then there are
n, m�1 such that, if z # C and Enm(x)=Enm(z), then &z&x&<1. For k<n
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one can find a dyadic rational number such that, if z # C and bk�z(tk)
<bk+2&m, then the binary representations of z(tk) and x(tk) will agree in
the first m bits. For a fixed t0 # (0, 1) with t0{tk for all k<n, let y be the
piecewise linear function such that y(0)=0, y(tk)=bk+2&(m+1) and
y(t0)>x(t0)+2. Set

O=[z # C[0, 1] : z(0)=0 and &z& y&<2&(m+1)].

It follows from Theorem 38 on p. 30 of [9] that W(O)>0. Since W(C)=1,
there is some z # C & O. For such a z we have that Enm(z)=Enm(x).
Moreover, by the construction of the set O,

&z&x&�|z(t0)&x(t0)|>1.

We conclude that & is not continuous at E(x).
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