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1. INTRODUCTION 

In [l, 21, Dipper and James studied the representation theory of a 
Hecke algebra for the finite general linear group, and derived a close 
analogue of the representation theory of the symmetric groups. Their 
derivation, however, involves considerable computational difficulties; in 
this article we shall present a rather different approach which largely avoids 
these. The symmetric group algebra can be considered as a special case 
of the Hecke algebra, and this the simplifications can be extended to that 
case also. We shall be primarily interested in what may be termed the 
ordinary representations, that is the case where the algebra is semisimple; 
however, this restriction is not applied until Section 5, until which stage the 
treatment is “characteristic-free.” 

In order to set the stage, it is useful to review the methods used for the 
symmetric group U’ on n letters over a domain K. The Specht module is 
defined, either as a polynomial module [S] or as a left ideal in the group 
algebra [3]; this is a cyclic module generated by a single element, corre- 
sponding to a fixed Young tableau, whose annihilator ideal is generated by 
the “Garnir elements” [ 111 together with elements of the form 1 + z, where 
5 is a transposition in the column stabiliser of the tableau. Using this, the 
standard basis for the module, indexed by standard Young tableaux, can 
be derived. Finally, this basis can be appropriately orthogonalised to give 
the “seminormal basis,” with respect to which the matrices representing 
transpositions take a particularly simple form (“Young’s seminormal 
representation”). In [9, lo], this last step was simplified by the demonstra- 
tion that the seminormal basis constitutes a complete set of eigenfunctions 
of a certain set of commuting elements of the group algebra, denoted {L,,}; 
moreover, the corresponding projection operators comprise a complete set 
of primitive idempotents. These idempotents were not new, they coincide 
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with those constructed by Thrall (see, for example, [ 13 ] ), and were cast by 
Jucys [S-S] into a form equivalent to that of [lo]. 

In [ 1, 21, this prescription is applied largely unchanged to the Hecke 
algebra 2. However, the computation is much more difficult, primarily 
due to the increased complexity of algebraic operations, and the Garnir 
relations take a particularly awkward form. We shall show that these dif- 
ficulties can be avoided by working with the algebra itself, rather than with 
an ideal; the Specht module only appears at the end of Section 3 and in 
Section 6: This has the further advantage that it is not necessary to prove 
additionally the completeness of the representations obtained. We rely on 
material from [ 1.21, particularly in the combinatoric properties of per- 
mutations and tableaux; this is described in Section 2 and in the final part 
of Section 3. In Section 3 we derive a basis for 2, indexed by pairs of 
standard tableaux; its importance derives from the fact that, suitably 
ordered, it defines a sequence of subspaces which constitute a flag of 2, 
which we shall later show to be stabilised by (L,,,)~ The Garnir elements 
do have an analogue here, in Lemma 3.5, and indeed Lemma 3.8 shows 
how they may be constructed. In Section 4 {Ln> is introduced, the basis 
remodelled in terms of this set, and its action on the basis is demonstrated. 
In Sections 5 and 6, a seminormal basis is derived for X0, and its properties 
explored; this analysis may be compared to the derivation of the “semi- 
normal units” in [13]. Finally, we shall derive expressions for the dimen- 
sions of the irreducible representations of .p, the well-known “Hook 
Theorem,” and the corresponding expressions for the dimensions of the 
unipotent irreducible representations of GL,( 4 j. 

2. BASIC COMBINATORICS 

Our notation is essentially that of [l, 21, with some modifications. Let 
IZ be a positive integer. W is the symmetric group acting on ( 1, 2, ...9 n) on 
the right; IVY is the subgroup which permutes {i, i + 1, . ..? j}, and leaves all 
other elements of { 1, 2, . . . . 11) fixed. The set of basic transpositions, that is 
permutations of the form (i, i + l), 1 d i < n, is denoted by 9. Each II’ E W 
can be expressed in the form \V = u I a2 . . ux-, vi E 8’; if k is minimal, then this 
is a reduced expression for w, whose length I()+>) is k. 

Permutations are partially ordered by the strong Bruhat order. Let 
u I vZ . . vk be a reduced form for 1%’ E ul; then for any u E W, ~1 F w if and 
only if u=u~~v~,... vi, for some sequence l<i,<i,< ... <ij<k, j<k. 

A composition A of n, written A. l= n, is a sequence A,, AZ, . . . of non- 
negative integers whose sum is n; if the sequence is non-increasing, then 
A is a partition, A+- n. We shall think of the sequence as infinite, but if 
the last non-zero element is Ai, we shall say that /1. has i parts. The result 
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of sorting the parts of J into non-increasing order is of course always a 
partition, which we shall denote by 1. 

Let a + n; the Young diagram [A] is the set of ordered pairs 
((i,j) : 1 <j,<Aj, i= 1,2, . ..I. a A-tableau is a bijection t: [A] t, 
{ 1, 2, .--, II}. If 1 is a partition, then the diagram conjugate to [A] is C/z]‘= 
((i j) : (j, i) E CW; similarly, the conjugate of a l-tableau t is t’, where 
t’(i, j) = t(j, i). Note that [A]’ = [A’] . 1s a Young diagram for a partition A’, 
the partition conjugate to A, and t’ is a I’-tableau. It is possible to define 
the conjugate when ,l is not a partition, but we shall not need this. 
A A-tableau t is row-standard if the sequence t(i, l), t(i, 2), . . . is strictly 
increasing for each i; it is standard if I is a partition and both t and t’ are 
row-standard. 

Compositions are partially ordered by the dominance order. For ;1 k n, 
let 1: =A,+&+ ... + ;ii; then J a p, p + 11, if and only if, for each i, 
2: < p:. It is useful to embed this in a total order; we define 2 < p if, for 
some i, Ai < pi and for each j < i, lj = .D~ We shall extend both orderings to 
row-standard tableaux. If t is a row-standard l-tableau, 1 + n, then the 
restriction of t to { 1, 2, . . . . m}, m en is a row-standard tableau for some 
composition t, of m. We now order tableaux s and t, of arbitrary shapes, 
as follows: s d t if, for each i, s,_a ti. If S, t are respectively a A- and a 
p-tableau, then s < t if s 4 t or if A <p; < is not total here, of course. We 
shall extend both orders to pairs of tableaux in a natural way; thus, we set 
(s, t) s (u, tl) if s a u and t d v, and (s, t) < (u, v) if s < II and t < v. It 
should be noted that while our definition of 9 accords with that of [l] for 
tableaux, it differs for compositions; in that article, J ZSI ,D means, in our 
notation, 2 d fi. However, if p is a partition then x d ii =S J g p, which is 
all that we shall need. 

The nodes of a Young diagram can be ordered lexicographically, (i, j) 
preceding (k, m) if i < k or if i = k and j < m. We shall say that numbers 
i, i + 1, . . . . j occur by rows in a tableau t if they are the images of a 
lexicographically increasing sequence of nodes. For each 1 k IZ there is 
a unique tableau t” in which 1, 2, . . . . n occur by rows; t” dominates all 
A-tableaux. 

W acts naturally on tableaux, the action being defined by 
(tw)(i, j) = t(i, j)~,, \V E W. The row-stabiliser of t’ is denoted by W,; it is 
the direct product of the subgroups W,,, where k= A,?, + 1, m = A,?, 
i= 1, 2, . . . . The element M’E W such that the elements of t’b are entered by 
columns is denoted by MI i; thus if 2 is a partition, t’bl, is the transpose 
of t”‘. Let 9A = (1~ E W: t’w is row-standard}; then g1 is a set of coset 
representatives of W, in W. If t is row-standard, we shall denote the 
element dEgA for which t = t”d by d(t). Lemma (1.5) of [l] is of crucial 
importance, since it relates the two partial orders; it may be paraphrased 
thus: 
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LEMMA 2.1. Let A k II, d,, d, E gi,; then t*d, Q t”dz* d, 4 d: 

LEMMA 2.2. Let t be a standard A-tableau, A. +- n, aud s an arbitrary rail- 
standard A-tableau such that t Q s; then l(d(s)) f(d(t’) -‘) < I(bv;.). 

Proof. Either t = t”ttl, or there is some D E W such that tu is standard 
and t 4 tz.1, so that any reduced form for d(t) can be extended by a 
sequence of right multiplications to a reduced form for iv,; in particular, 
d(t) d(t’)-’ = w’~, and l(d(tj) l(d(t’)-‘) = I(w;,). By the previous lemma, 
d(r) 4 d(s), whence /(d(s)) < /(d(t)), and the result follows. E 

3. THE HECKE ALGEBRA 

Let K be a principal ideal domain and q an invertible element of K. 
&?=&&[W] is the Hecke algebra defined in [2]. It has K-basis 
{ T,. : M’ E W>; multiplication rules for w E IV, 2’ E &? are given by [2, 
Lemma 2.11 

T if 
T,,. T, = 

{ 
““I 

I = /(iv) -t 1, 

qT,w + (q - 1) T, otherwise, 

T,. T,,. = 
1 

TLW if I(W) = /(IV) + 1, 

qT,,v + (4 - 1) Tw otherwise. 

The unit element T, of X we shall normally write simply as 1. For each 
WE IV, T,,. is invertible; in particular, 

T,l=q-l(T,-(q-l)) for all u E 9J. 

Observe that, for any pair of elements u and D of IV, T, T, is a linear com- 
bination of elements T,,, WE U’, such that I/(u) - 1(r?)l d /(w:) d I(u) + I(o). 
For XC W, define 

In particular, E( Wj and E( IV) are the elements x and y of [2]. Let 1 < i <.j; 
then 

z( W,) T,, = q”‘%( W,), 

a( Wq) T,, = ( - l)““‘)s( WV), for all w E W,, 
(3.1) 

&(Wi,) TM+ I ,..., m) = TV++ I .._.. m) E(W_,.~-~) for lbk<i<jdm, 
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k=i 

( 

j-l 

=l(wi,j-l) 1 +q c qk-jTcj,k) 
k=i > 

> 

E(W~)=E(Wt,j-l) i (-q)k-iT~k,k+l,...,j) 
k=i 

(3.3) 

( 
j-l 

=&(wi,jpl) 1- c qkpjTcj.kj ) 
k=i > 

j-l 

T(i,i+I ..__. j)T(j,j-l ,.... iJ=q’-’ .+ (q- 1) 1 qk-iT~j,&;). 
kzj 

(3.4) 

Let h* denote the image of h ES-? under the antiautomorphism of Z 
induced by the map T,,,H T,,-I, WE IV. The role of h* is akin to that of a 
Hermitian conjugate, and we shall call it the *-conjugate of h. Note that if 
X is a product of subgroups of the form W, then r(X) and E(X) are self- 
conjugate. 

Let A k n; for any pair of row-standard I-tableaux s and t we define 
-G = T&4 WA) Let, and yst = TGs,&( W,) Tdcr,. Note that X: = X, and 
JJ$= J’~~. To simplify notation, we adopt the convention that if a subscript 
is t” we may replace it by A; note that a subscript A’ stands for t”‘, not (t”)‘. 
Our definitions of 3cAA and ~~~~ coincide with those of xi. and yi in [2]. Let 
u = (i, i + 1) E 98 and let u = to; then t 4 u if i is in an earlier row of t than 
i + 1 and t D u if it is in a later row. If i - 1 and i are in the same row of t, and j- 1, j occupy the same position in t’ then (j- 1,j) d(t)= d(t)(i- 1, i), and clearly I((j,j- l)d(t))=l(d(t))+ 1, since (j-1,j)~ W,, 
so that xxrTcjp I,j) = qxxt, ysrT,jp, i) = -jrsr. Therefore (cf. [ 1, Lemma 3.21) 
we have 

-‘cm if i belongs to an earlier row of t than i + 1, 

xs, To = q-ye if i and i + 1 are in the same row of t, 

qx,, + (q - 1) x,, otherwise, 

Ysu if i belongs to an earlier row of t then i + 1, 

~,r T, = -~sr if i and i + 1 are in the same row of t, 
qyxv,, + (q - 1 j y,, otherwise. 

The left action of T, is given by *-conjugation, which simply interchanges 
s with t or u and replaces x,~T, by TUxts. Thus (x,~: s, t are row-standard 
A-tableaux} spans A!x,,X; if 3, = (In) then this is just 2, whence, trivially, 
(x,~: s and t are row-standard tableaux} spans S’. {xSr} and (J’~~} have 
similar properties; when we prove a property of the former we shall state 
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the corresponding property of the latter, but the proof we shall merely 
sketch, since it will be similar, replacing x and z by y and E. 

LEMMA 3.5. Let s und t be row-standard A-tableaux, i /= n; if either s or 
t is nonstandard then x,, (resp. y,,) can be expressed as a lineur combination 
of elements of the form x,, (resp. yuL’) such that (s, t) < (u, v). 

Proof We may consider that t is non-standard, since the corresponding 
case for s may then be derived simply by *-conjugation. If ,? # 2, then we 
may proceed in the manner of [ 1, Lemma 4.31. There is a dE $@i such that 
dW’>. = W;d, so that TdxAI. = x2; Td, from which xii. = T; ‘x1; T,. Conse- 
quently x,, can be expressed as a linear combination of elements x,,, where 
u and v are A-tableaux, and ,J < ,?. 

Now suppose that )b t- n; we shall proceed by induction on Q. Assume 
that the lemma holds for each pair of tableaux (zt, a) such that 
(u, U) D (s, t). Since t is non-standard, there is at least one ~72 such that 171 
occurs in an earlier row of t than nz - 1, and t(m - 1, WZ) D t; if we can 
choose such an in so that t(m - 1, in) is non-standard, then the lemma 
holds for t(m - 1, m) by the inductive hypothesis, and is easily extended to 
t since if t(nz- 1, nz)a z’ then tat and ta U(M- 1, nz) by Lemma 2.1. 
Otherwise there can only be one HZ which occurs in an earlier row of t 
than m - 1, and t(m - 1, m) is standard; this can only happen if 
m = /I .+ I~ 2 $2j - 1 for some i 2 2, j < di and t is constructed by inserting 
1, 2, . . . . m by rows into the subdiagram [A,, A,, . . . . /zi- 2, j- 1, j], then 
inserting m + 1, nl+ 2, . . . . IZ by rows into the remaining nodes of [A]. Let 
v be the composition obtained from J by replacing the subsequence Ai.. f, 
3., by j- 1, ,Jel-j+ 1, j, Ai- j, and let p be the composition obtained 
from 1 by replacing Ai- I, Ai by j- 1, ljP 1 + 1, Ji- j, so that for v we break 
two rows into two pieces and for p we recombine two of the fragments. For 
example, we might have A = (6, 5,4,2), rn = 12, giving i = 3, j= 3 and 

123456 123456 123456 

7 8 12 13 14 7 8 7 8 

9 10 11 15 9 10 11 9 10 11 12 13 14 

16 17 12 13 14 15 

15 16 17 

16 17 

t t’, P 

Let A, be the subset of %?,, which fixes all but rows k and k + 1 of t”, 
and Ak’the set ofinverses ofd,; then W).= CY,di_,d,+,=d;_‘,d,~+~l~~,, 
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so that .~~~=x,,~r(d~~,) ~(d,+,)=~(d~-~)*z(d~+~)*?~~,,, and similarly 

-xw = x,, z(d i). Consequently, 

X,j.Z(dj)= T~s~z(di~l)*Z(di+lj*Xp~. 

Note that t E t* A i and that t” A i P t, that is, t is the unique least dominant 
element. Thus the left side of the above equation is the sum of xSr and a 
linear combination of elements x,, where u is a A-tableau such that t Q U, 
while the right side can be expressed as a linear combination of (x,,: U, u 
are j-tableaux}. Obviously A<ji, so that the lemma holds for ?c,~; this 
completes the proof. 1 

Repeated application of th:s lemma will express any element x,, as a 
linear combination of standard element, so that {x,,: s and t are standard} 
spans Z. It is well known that there is a one-one correspondence between 
pairs of standard tableaux and permutations [12, 141, so that by compar- 
ing dimensions we may conclude that we have a basis for &‘. However, this 
is not quite enough, and we can prove linear independence directly, using 
[ 1, Lemmas 4.1 and 5.11. Let A and p be partitions and w  E W; then the 
first of these states that x,,w.JJ~~ is non-zero only if the double coset 
137A~~~WL, has the trivial intersection property, 1,~~’ W, CY n W, = { 1 }, which 
implies that A a p’. In case A= p’, there is only one double coset having the 
trivial intersection property, namely WirwA WA., of which u’A is the unique 
element of minimal length, whence x,,u~~,~, = 0 whenever /(w) < /(MJ~). Let 
s and t be row-standard A-tableaux, t standard, with t 4 s; then by 
Lemma 2.2, /(d(s)) Z(d(t’) ~ ‘) < Z(MJ~), so that xAS ~~~~~~ = xIL TdcS, T&,, yAcl, 
=o. 

On the other hand, the special element 

is not zero; it consists of the sum of T,, and a linear combination of 
elements T,,, where w  runs over the remaining elements of W,\v, WA.. Let 
s and t’ be row-standard II and A’ tableaux, respectively; then we define 
7 ASI = T& -x,u Tco,.~xx Tcicr,j. Now we have (cf. [I, Lemma 5.11) 

LEMMA 3.6. Let ilk n; if t is a standard R-tableau then zi, is linearly 
independent of 

{ zAS : s’ D t’, s’ a row-standard A’-tableau) 

and zzA is linearly independent of 

{zAS : s D t, s a row-standard A-tableau}. 
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ProoJ Since t is standard, ~1’~ d( t’) = d( tj and T,,., Tdfr,) = q’(t’JTd(tj + a 
linear combination of elements T,,, with l(w) > l(d(t j). Since for w  E W>h, 
/(tvd(t)j = I(W) + z(d(t)), z~, has the same form. Now let s’ D t’; then 
Z(s’) < I( t’). Consider the expansion of T,,, T,,.; TCir,,,, where w  E W, ; this con- 
sists of a linear combination of {T,, : I? E W, I(%) > Z(w) + l(wi) - Z(s’) >* so 
that the coefficient of Tdtrj in zls is zero. This proves the lemma for z,.,; z,~ 
is treated in the same way. 1 

LEMMA 3.7. Let s, t be standard I-tableaux; then x,* (resp. J-,*) is linearl~~ 
independent of {x,,: (s, t)< (u, v)> (resp. (yUo: (s, t)< (u, vj}), so that, 
letting E. run over all partitions of n, we have (x,,: s and t are standard 
l-tableaux, 2 t- n} (resp. ( ysr: s, t are standard A-tableaux, 2 t- n]) is a 
linearly independent set. 

Proof Obviously the second statement follows from the first. Suppose 
that the first is false; then we have elements aIcO E K such that 

the sum running over all pairs of row-standard (not necessarily standard) 
tableaux of the same shape. We may annihilate all the terms with v # t by 
multiplying on the right by ylrlZ, and obtain 

? *si = 
{KU ds,uisa/.-tableau) 

which contradicts the last lemma. 1 

LEMMA 3.8. If t’ is a row-standard A’-tableau, d t-n, but not standard, 
then zlr can be expressed as a linear combination of (z~.~: s’ D I’, s’ a row- 
standard A’-tableau 3. 

Proqf Apply Lemma 3.5 to J’~,(, and multiply on the left by x),~ T,,.,; the 
result is immediate. m 

THEOREM 3.9. Each of (x,(: s and t are standard A-tableaux, ;t + n} and 
{ ysI: s and t are standard A-tableaux, A t- n} is a basis for %, and (z,,: t 
is a standard I-tableau) is a basis for the right ideal S” = zIrZ (the Specht 
module of [ 1 ] ). 

ProoJ: The first part follows immediately from Lemma 3.5 and 3.7, the 
second from Lemmas 3.6 and 3.8. 1 
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4. THE ACTION OF I&} ON 2 

Define elements L,, E ~8 by 

L,,=q~‘T(,~~l,,)+q-2T(,,~2,nl)+ ... +crnT(l,m, for 1 <rn<n. 

These are the same as in [2], except that L, =O; the following commuta- 
tion relations are easily checked. Let 2 d i < n, 2 d nz d n; then 

T(i- 1.i) Lm = Lm T(i - 1.i) if i- 1 #nz#i, 

T (,,-,,,,,L,=l+L,-,T,,,~,,,,+(q-l)L,, 

L,T~,~-,,,,=l+T,,~,,,,L,~-,+(q-l)L,,. 

(4.1) 

If we set (m - 1, ~2) = u, the last pair of equations can be rewritten as 

qT,‘L,=l+L,,-IT,, 

TJ,-1 = qL, T,’ - 1. 
(4.2) 

It follows that TC,-I,m) commutes with L,,_ 1 + L, and with m,,- I L,, 
and so with any polynomial in {Li} which is symmetric in L,,r- I and L,,. 
From (3.3) we see that 

4M’) = fi (1 + qL,h E(w)= fi (l-L,). (4.3) 
Wl=l m-1 

For any integer k, define [k], = (1 - qk)/( 1 - q); for positive k we have 
[k],=l+q+ . . . +qkP1, C-k],= -q-l--qP2- . . . -qdk, and [O],=O. 
For q= 1 we take the natural limit, so that [kll = k. The residue or 
content of the node (i, j) of a Young diagram is j-i; in [2] this is 
generalised to [j- i],. We denote the generalised residue of the node 
occupied by nz in a tableau t (not necessarily row-standard) by r,(m). 
A diagonal of [A] is a set of nodes of constant residue; a I-tableau whose 
elements increase strictly from left to right along the diagonals we shall call 
a regular tableau. Obviously a regular tableau is uniquely determined by its 
residues. Let ~(2) = Xi”= 1 iA,; for t a I-tableau, let a(t) = E(A). 

LEMMA 4.4. Let k > 0 and p kn - 1 such that p has k < k parts, and let 
s be a ro+i!-standard p-tableau. Let C, t be the tableaux obtained by adjoining 
n to respectively the first and the kth ~01~s of s; then 
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ProoJ: Let t be obtained by attaching II to the ith row of s, and let v 
be the corresponding composition of II. Suppose that II= nzd( t), so that EV 
occupies the same position in t” as n in t; then d(t) = (n, IZ - 1, . . . . m) d(s). 
Therefore, the left side of each identity has a common left-factor T&, and 
a common right-factor TdCs,; K, and ~3, have, of course, the same factors. 
Since L, commutes with X&[ Wl,n-,], these factors may be cancelled 
throughout, so that it is enough to prove the lemma in the case that s = tl’> 
which we now assume. Let the ith row of t’ be j, j+ 1, . . . . m; we now have 

where d=d(t)=(n,n-l,..., m). Let the entries in some row of tp be 
a, a+ 1, . . . . 6; then this row supplies a factor [( W,,) to xMk,. The corre- 
sponding row supplies the same factor to x,,, if it is not later than the ith, 
in which case the factor commutes with T,; otherwise it supplies a factor 

4wa+1.6+1) and 4n/h+I,b+l ) T,= T,z( W,,) by (3.2). The ith row supplies 
an extra factor to x,,,, which by (3.3) is 

m  ~ I 

l+ 1 qC-n7+1T@,), 
C=j 

whence, since I(d) = IZ - m and i = M(V) - a(p), we have, for i < R, 
m-l 

4 -a(r)-I(d(fl),~ylj=qm-n-jT~ 1 + c q-“+lT,c~,,j Tdq-u~~)x~Lp 
c = j > 

( 
,1 ~ 1 

=q-i 1 + c qC-“+lTc,,,, 
> 

q-crr+xv~t 
C = j 
n-1 

-q -i--l c qc-‘~+1T~,,,,,q-5L(~)~~~. 
c=m 

If i > E then d is the identity, and we have 

Observe that when i is decreased by 1, the previous j becomes the new nz, 
so that summing over i from 1 to k leads to partial cancellation between 
alternate terms and gives. 

c q -a(tJx,r=(q-k+q-k+l+ ~.. +q-l+L,,jq-a(PJXJtp 

(CiSfSU) 

= (L,,- C-k],) q-a(?xh,v. 
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For y we have 

( 
m-1 

4 -l(d(+rt = qm-n+iTd* 1 _ c q’-“T(c,,) Td9WYPP 

C=j 

H-l 

l- c q”-“Tir,n) 

c=j > 

n-1 

-cl-’ 1 9C-nT(c,,j4a(p)Ypp, 
c=m 

for i<k!, and 

( 

il - 1 
4”‘I”Y”” = qi 1 - 1 q”~“T,c,,, q+)ypo 

c=j > 

otherwise. Collecting terms now gives 

c 9 m(r) -Qd(r))J,lt = tqk + qk- 1 + . . . + q - qL,) qa(p)Xpp {f:7~t~cT} 

For i + n, let pi(m) be the number of the row occupied by m in t”, 
1 d m <n. We define 

ljin = q-a(L) lJl 4( CPAm)l, - LA 

and tst = T&j  tii Td(r,, "Is, = T&j  4~ Tdt,, for any row-standard l-tableaux 
s and t. A simple induction on the last lemma gives 

TJXEOREM 4.5. For any 1 k n, 

‘IM = c 9 -a(A) + m(f)-/(d(t)) 
Yrtv 

(f:t~~r} 

where the sum runs over row-standard tableaux. 

If s and t are standard, then by Lemma 3.7, t,, is the sum of x,, and a 
linear combination of (x,,: (u, v) D (s, t)}, and similarly for yl,,; conse- 
quently, { tIr: s, t standard) and {v,~: S, t standard} are both bases for ~6, 
being derived by linear transformations of unit moduli from known bases. 
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THEOREM 4.6. Let s, t be row-standard i-tableaux; then, for 
1 G m 6 n, each of 4,A-L - r,(nz)), W, - r,(m)) L, (rev. v~~(L,,~ - rAm)h 
(L, - r,.(m)) qSr) is a linear combination of elements <,, (resp. qOr) such that 
c and T are row-standard tableaux with (s, t) 4 (0, Tj, or, equivalently, CJ and 
T are standard tableaux with (s, t) < (0, T). 

ProoJ: Note that t,,(L,,--r,(m)) is the *-conjugate of (L,- r,(m)) t,,, 
so that we need only consider the former case; similarly for qst. Moreover, 
we need only consider the case where s = tl, since the general result is then 
obtained by multiplying on the left by T&,. Observe also that we might 
have written x instead of 5; indeed, these are interchangeable throughout, 
since x,, and c,, differ only in terms (,&or x,,) with (u, V) D (s, t), and 
similarly for y, g. Since 

and 

rdm) = [In? - ll,, rCl,z,(mj = [ 1 - ml,, 

we have 

by (3.1) so the theorem holds trivially in this case. Let us suppose that it 
holds for every {,, with (0, z) D (s, t) for all m, and for CA1 for all m < k for 
some k < x Now, either t = t’ or there is some j > 1 in an earlier row of t 
than j- 1, in which case if u = (j- 1, j) then u = tu D t is row-standard, 
and so tl, satisfies the inductive hypothesis. Set IV= (k- 1, k); there are 
five cases to consider. 

(i) t = t’ and k is the first element of a row (the ith say) of t”; then 
r,(k) = [l -i],, and if ,~=(;1,,2, ,..., ,I-2,diPl+l, Al-l,&+ ,,...) so 
that p D 2, then 

S,&, - rA(W = ~,,,& - C - iI,). 

(ii) t = t” and k is in the same row of t’ as k- 1; then 
xj.A T;’ = q-lx,, and 

r,(k) = 1 + qri(k - 1). 

Therefore, 

xLAWk - r,(k)) = qxi.l K ‘(L - r,(k)) = xdLk- 1 - r,dk - 1)) T,,. 
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(iii) t # t*, j- 1 #k #j; here r,(k) = r,(k) and 

ML - r,(k)) = 5~u Tut-L - r,(k)) = tdL,- r,(k)) To. 

(iv) t # t”, j= k; here r,(k) = r,(k- 1) and 

SAA& - r,(k)) = L, T,(L - r,(k - 1 )I 

=L&--l-r,,+ 1)) T,+ ii,+ (q- 11 LL. 

(v) t # t”, j= k+ 1; here r,(k) = r,(k + 1) and 

5A~(Lk - r,(k)) = 5~, T,(L, - r,(k + 1)) 

= L(Lk + 1 - r,,(k + 1)) T, - L, - (4 - 1) LL,. 

In each case, it follows from the inductive hypothesis, together with 
Lemma 2.1 in cases (iii)-(v), that the right-hand side is a sum of elements 

5 with (s, t) 4 (a, z); these may be replaced by standard tableaux by 
a;plication of Lemma 3.5. 1 

5. THE SEMINORMAL BASIS 

We now assume that [2],, [3],, . . . . [n], are invertible elements of K. 
Note that this ensures that any regular tableau is precisely determined by 
its generalised residues. Let A’(m) be the set of possible generalised residues 
r,(m) for standard tableaux t, i.e., 

B(m)= {[k],: -m<k<rn} if m 2 4, 

A?(m)= {[k],: -m<k<m}\{O} if in = 2, 3. 

For any tableau t, we define 

E,=fi n -L - c 

m=l cteyn)\,{rl(r7r)) r,(m) -c’ 

Let s and t be standard tableaux, and u an arbitrary regular tableau; note 
that either t= u or there is a k such that r,(k) #r,,(k). Therefore, from 
Theorem 4.6 we have 

L-K, = S,uL + c a,zt,,, aar E K, (5.1) 
{u, 7: o,r standard. (a.~)> (s, r,) 

where 6,, is the Kronecker delta, one if its arguments are identical, zero 
otherwise. Thus E, # 0 by Lemma 3.7, since t is standard. Since there are 
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finitely many standard tableaux, it follows that there is some power of E,, 
the jth say, which annihilates each t,,, with t < U; thus by Theorem 4.6, 

5,,-qL,,, - r,(nz)) = S,,(L, - r,(m), Ej = 0, in = 1, 2, . ..) n. 

Clearly { islE(: s, t standard} is a basis for 3, since it is obtained from 
(tsl: s, t standard] by a unimodular linear transformation; consequently, 
any polynomial over K in the elements {L,, : 1 < HZ < n > .is zero if for each 
standard t it contains a factor L,,,-r,(m) for some m (not necessarily the 
same nz for each t, of course), since it then annihilates 2. In particular, 
E, = 0 if u is regular but not standard, and 

n (L,,-c)=O, in=&3 ,..., n. (5.2) 
CEW(wT) 

Note that we cannot remove any if the factors and still retain zero, since 
the result is a factor of some E,, where t is standard, so that (5.2) is the 
minimum polynomial for L,. Define 

E(m,k)= jj L-C 
k-c ’ 

kEB(m). 
CEl(rnJ’{k) 

Note that E(m, k) #O, since it is a factor of E,; (5.2) now shows that 
(E(nz, k): k E W(m)} is a set of orthogonal idempotents of 2. Let u be 
indeterminate; a variant of a well-known polynomial identity gives 

c n Ed; 
kc.%(m) cES?(m),jkj 

this is most easily proved by noting that the left side is a polynomial of 
maximum degree IB(m)l - 1, which takes the value 1 at each use%. 
Substituting L,, for u shows that the set of idempotents is complete. 

It follows that {E,: t is standard} is also a set of mutually orthogonal 
idempotents. In fact, some factors cancel, giving 

E,= fi E(m, v,(m)). 
m  = 2 

Summing over regular tableaux gives 

c E,= c E,= fi 1 E(nz, k) = 1, 
(t standard} { f regular) tn=2 ked(n?j 

so that this set also is complete. From (5.1) we see that .&’ has K-basis 

(Es l,, E, : s, t are standard >. 
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(bear in mind that E, is self *-conjugate) whence E,%E, is a linear 
K-module and so E, is primitive. We set 

L = EsLE,; 

{i,,} we shall call the seminormal basis for Z. From (5.1) we have 

is, = L + c b,,L b,, E K (5.3) 
(0,~: o, r standard,(o,r) > (s,r)} 

which may be solved to give 

L = is, + c co, io, 3 c,, E K. (5.4) 
(0,~: c~,rstandard,(u,r)> (s,f)} 

The orthogonality relations for the idempotents now give 

LEu = 0 unless t d 24 (5.5) 

for any standard tableaux S, t, U. 
Let 

E”= c E,= c & 
{r: f a standard A-tableau} {f: I a regular A-tableau) 

E” is explicitly symmetric in {L,: m = 2, 3, . . . . n}, and so commutes with 
each T,, u E 99, and therefore each element of X?; it is thus a central 
idempotent. If s and t are standard A-tableaux, then E,(,,E, # 0, so that E, 
and E, belong to the same block; E” is therefore a central primitive, or 
block, idempotent. It follows that ifs and t are respectively standard A- and 
p-tableaux, A + n, p + n, A# p, then for any h E SP 

E,hE, = E,E’hE, = E,hE’E, = 0. 

If /ZE# commutes with E,, t standard, then hE,= E,hE,= h,E, for some 
h, E K since E, is primitive. Therefore if h commutes with each of the 
primitive idempotents then it can be expressed as a linear combination of 
them, so that the primitive idempotents span a maximal commutative 
subalgebra of A?. This is, of course, the subalgebra generated over K by 
{L,,: m = 2, 3, . . . . n}; indeed 
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6. THE DIMENSIONS OF THE IRREDUCIBLE REPRESENTATIONS 

Let us remind ourselves of hooks and various products and quotients 
derived from them [9? 11. Let 2 t---n; the (i,j)-hook of [A] is the set of 
nodes ((i, k): k=j, j-t 1, . . . . ni} u {(k, j): k = i, i + 1, . . . . 1; >; its length h, is 
the number of these nodes. The hook-product h, = h;(q) is defined by 

The hook-length is related to the residues of the extreme nodes; note that 

h,-l=(+i)-((j-i;). 

Let t be a A-tableau; if n is in the ith row of t then we define the hook- 
quotient yrn to be 

hooks of length one are excluded. For rrr < n we define ynn similarly, except 
that the hooks are computed in the tableau obtained by removing the 
nodes m + 1, m + 2, . . . . n from t. Let 

Yt= ri Ytm. m = 2 

Let [p] be the diagram obtained from [A] by removing the node n from 
t. Consider the product ~~~7~~~; the numerator corresponds to those hooks 
of [;1] which are not hooks of C/i], the denominator to those hooks of [p] 
which are not also hooks of [A]. A simple induction on n now gives 

Y,Y~, = h,. 

In the case of t’, the hooks which contribute to yk lie entirely within the 
rows, and 

Yn= n. fi Cjlq, 
i>O j= 1 

empty products taken as unity. 
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LEMMA 6.1. Let 1 I-n, and let t = t”w,; then 

ProoJ Let s be a standard tableau; then either s F t” or there is some 
nz in a later row of s than of t”. The first such m will be the first node in 
a row, and r,(m) = [-P,(W)],, whence tinES = 0. On the other hand, if m 
occupies node (i, j) in t”, so that i = pi(nz), then 

(L - C -MN,i 6 = (rAmI - C -~k41,) EL = q-iC&En, 

so that 

Therefore, postmultiplying tn;, by 1 in the form of the sum of primitive 
idempotents gives the required identity. In the second case we have factors 
of the form dbA~~,J,- L,)t, which will annihilate E, if there is some 
~tz in a later column of s than of t, which means unless t E s. Acting on E, 
this gives q[pnC(m)],-r,(m)); if m occupies the node (i, j) in t then 
pA.(nz)= [j14, so that we have 

Observe that [i], is the length of a partial column in [A], and so a partial 
row in [A’]. Taking product over all (i, j) E il gives qa(i’)-a(;i) +‘$jAf, as 
required. [ 

LEMMA 6.2. Let t be a standard A-tableau, v = (m - 1, m) for some 
m Q n. Let s = tv, and let a and b be the residues of the nodes occupied by 
m and m - 1 in t; let h = b -a. Then 

and ifs is standard, s D t, then 
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ProojY Let E = Es + E,; since E is symmetric in L,,+ I and L,,,, it 
commutes with T,. Since T~(FJZ)= ~,(PF- 1) and ~,(nz)=r,(~n- l), we have 

Therefore, using (4.2) we have 

qT,‘E, = 
L,-,-r,(m)ET,+l+(4--l)r,(m)E, 
r,(m) - r,(nzj L r,(m) -r,(m) 

But 

l+(q-ljr,(n7) &q-l) q-l 1 
r,(m) - r,(m) = f-q6 ===m= 

so that 

Now 

1 qT,’ --= 
[~~I, 

TL,-(y--I)-s=T,.-+=Tc+&-3 
4 

whence 

Now 

=4C~+~l,C~~-11, 
cu: ’ 

which is non-zero if Ihl > 1, i.e., if s is standard; if s D t then h > 0. In this 
case, the factors of ~1~ and yI are identical, except that the former has a 
factor [h],/[A - 11, where the latter has [h + l],/[h],, so that 

y =y C~+~l,C~-11, 
f 3 cw; 
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and 

We can iterate Lemma 6.2 to obtain elements !P, and @, of Z? such that 

4d(r)) 
YtE,= El@:, 

4 ?/I where @:!Pu,=- 
Yn ’ 

and so 

The elements Qr and !P1 are, in general, not uniquely determined, since 
they are constructed essentially from a reduced form for d(t), each trans- 
position v E B being replaced by an appropriate factor T, + [ f 1z];‘, and 
generally different reduced forms give different expressions. However, we 
shall assume some uniform construction. Note that @jr and !Pr both differ 
from Tdct, by a linear combination of terms T, for which 1~ D d(t), so that, 
using (5.5) and Lemma 2.1 we have 

and in particular 

Also 

from which we can derive the multiplication rule 

for any standard tableaux s, t, u of the same shape. It is now easy to 
construct the matrices representing transpositions with respect to the semi- 
normal basis. 

THEOREM 6.4 (Young’s Seminormal Form). Let s, u be standard 
tableaux of the same shape, v = (i - 1, i) E B, t = sv. Let (a, b) and (a’, b’) be 
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the nodes occupied by i - 1 and i respectively in s, and let h = b - 6’ - a + a’; 
then 

if /h/=1, 

if h> 1, 

if h<-I. 

Proof. If 1 hi = 1 then i - 1 and i are in the same row or column, so that 
t is regular but not standard, whence E, = 0; the first case now follows from 
Lemma 6.1. The other two cases follow directly from (6.3). 1 

It follows from Theorem 4.5 that 

As in Lemma 6.1, let t= t’bA; then 

Lemma 6.1 shows that E, and E, are the only idempotents in the respective 
expansions of <AA and T]~.,~., which belong to the same block. Therefore 

whence 

= n-a(l)yn,YIql(d(f))El 4 

=4 +++&j(t))h;E7+ 

It is useful to determine the coefficient of T, in the primitive idempotents. 
As we know, the coefficient of T,,, in zAZ is unity, as it is in Y,; in the 
former, ~1~ is the unique element of minimal length corresponding to a 
non-zero coefficient, in the latter, the unique element of maximal length. 
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Therefore, the coefficient of T, in zlr YUp is q’(‘VA) = qtCdCt)), so that the 
coefficient of T, in En is 

4 
a(l)-n,l-l 

1 ’ 

THEOREM 6.5. Let M be a left Z-module with K-basis m 1, m2, . . . . mk. 
Suppose that, for each u’ E W\ { 1 > an d each i < k, the coefficient of mi in the 
expansion of T,,,mi is 0; then 

dim,(E,M) = kq”‘“‘-“12;‘. 

Proof Consider the matrix representing the action of T,, on A4. With 
respect to the basis (m,}, each diagonal element is l/h,. However, 
M= E,M@, (1 -En)M; with respect to a basis reflecting this decom- 
position, we have 1 occurring dim,(E,M) times, otherwise 0. E.quating 
characters gives 

dim,(E,M) = kq”“‘-“h;‘. 1 

THEOREM 6.6 (Hook Theorem). Over any domain the Specht module S” 
has dimension n!/h,( 1). 

Proof Clearly, the dimension depends neither on the ground-ring nor 
on q. We therefore take K to be a field of characteristic zero and q = 1. If 
we now set M= 9 and take {m,} to be (T,: M’ E W} then the conditions 
of Theorem 6.5 are clearly satisfied, so that, since dim,(X) = II!, 

dim,(S’) = dim,(E,.S) = n!/hJl). 1 

THEOREM 6.7. Let G = GL,(q), the general linear group over a field of 
characteristic q; the dimension of the ordinary irreducible unipotent repre- 
sentation of G corresponding to the partition 2 of n is [n],[n - 11, ... 
Cllqq ““‘~“/h,(q). 

Proof We take K to be a field of characteristic zero. Let B be the set 
of lower triangular matrices in G, a Bore1 subgroup; we take m = B, and 
A4 the right KG-module generated by B. Thus the distinct right cosets of 
B in G furnish a K-basis for the permutation module A4, which affords 
the unipotent representations of G. The orders of G and B are 
IGl=(q”-l)(q”-q2)...(qn-qn-1) and ~B~=q’z(“-‘)~2(q-l)” respec- 
tively, so that dim,(M)= 1G1/1Bl = [n],[n- l],... Cl],. 

It is well known [4] that 2 is isomorphic to the KG-endomorphism 
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algebra of M, and may be embedded’ in KG as follows. Let us identify It’ 
with the subgroup of permutation matrices in G; then we may set 

T,,,= IBI-’ c 24, 12' E w, 

u E BICB 

and consider the left action on M. Clearly BwB n B = @ unless w  is the 
identity: Since M is a cyclic module generated by B, the conditions of 
Theorefi 6.5 are satisfied, and the required result follows immediately. 1 
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