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Abstract

The string theory with perimeter action is tensionless by its geometrical nature and has a pure massless spectrum
spin gauge particles. I demonstrate that the linear transformation of the world-sheet fields defines a map to theSO(D,D) sigma-
model equipped by additional Abelian constraint, which breaksSO(D,D) to a diagonalSO(1,D − 1). The effective tension
is equal to the square of the dimensional coupling constant of the perimeter action. This correspondence allows to
perimeter action as a “square root” of the Nambu–Goto area action. The aforementioned correspondence between t
strings andSO(D,D) sigma-model allows to introduce vertex operators in full analogy with the standard string theory
confirm the form of the vertex operators introduced earlier, the value of the intercepta = 1 and the critical dimensionD = 13.
 2005 Elsevier B.V. Open access under CC BY license.
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It is generally expected that high energy limit o
what is equivalent, the tensionless limitα′ → ∞ of
string theory should have massless spectrumM2

N =
(N − 1)/α′ → 0 and should recover genuine symm
tries of the theory[1–3]. Of course this observatio
ignores the importance of the high genusG diagrams,
the contribution of whichAG � exp{−α′s/(G + 1)}
is exponentially large compared to the tree level
agram[1–3]. The ratio of the corresponding scatte
ing amplitudes behaves asAG+1/AG � exp{α′s/G2}
and makes any perturbative statement unreliable
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requires therefore a nonperturbative treatment of
problem[4–8].1

The tensionless model with perimeter action s
gested in[17–20]does not appear as anα′ → ∞ limit
of the standard string theory, as one could proba
think, but has a tensionless character by its geom
rical nature[17]. Therefore it remains mainly unclea
at the moment how these two models are connec
However the perimeter model shares many prope
with the area strings in the sense that it has world-s
conformal invariance and contains the correspo

1 The different aspects and models of tensionless theories ca
found in[9–16].
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ing Virasoro algebra, which is extended by additio
Abelian generators. This makes mathematics use
the perimeter model very close to the standard st
theory and allows to compute its massless spectr
critical dimensionDc = 13 [18–20] and to construc
appropriate vertex operators[21,22].

Comparing literally the spectrum of these two mo
els one can see that instead of usual exponential g
ing of states, in the perimeter case we have only lin
growing. In this respect the number of states in
perimeter model is much less compared with the s
dard string theory and is larger compared with the fi
theory models of the Yang–Mills type. From this po
of view it is therefore much closer to the quantum fie
theory rather than to the standard string theory. At
same time its formulation and the symmetry struct
is more string-theoretical. Perhaps there should b
strong nonperturbative rearrangement of the spect
in the limit α′ → ∞ before the spectrum of the are
and the perimeter strings can become close to e
other.

Our aim here is to give a partial answer to the
questions. As we shall see the linear transform
tion of the world-sheet fields defines a map to
SO(D,D) σ -model equipped by an additional Abelia
constraint, which breaksSO(D,D) to a diagonal
SO(1,D − 1). The effective string tension is equal
the square of the dimensional coupling constantm of
the perimeter action

1

2πα′ = m2

π
.

This relation allows to view the perimeter action
a “square root” of the Nambu–Goto area actionm =√

1/2α′. The mass-shell quantization condition of t
SO(13,13) σ -model

α′M2
N = −α′K2 = (N − 1),

which defines the value of the first Casimir opera
K2 of the Poincaré algebra in 26 dimensions, is tra
lated through the dictionary into the quantization co
dition for the squareW = w2

D−3 of the Pauli–Lubansk
form wD−3 of the Poincaré algebra in 13 dimension

WN = (k · π)2

m2
= (N − a)2 = (N − 1)2,

because, as we shall see(26), K ◦ K|in 26 dim. = 2m×
(k · π)| This demonstrates that in the tensio
in 13 dim.
less string theory the intercepta = 1 and therefore
only N = 1 state realizes fixed helicity represent
tions, W = 0, whereas the ground stateN = 0 and
the rest of the excited statesN � 2 realize continu-
ous spin representations,W �= 0, of the massless little
group SO(11).

The aforementioned correspondence allows to
troduce the vertex operators in full analogy with t
standard string theory and to confirm the form
the vertex operators introduced earlier in[21,22]. The
n-point scattering amplitude offixed helicity states
W1 = 0 (N = 1) in terms of 13-dimensional momen
ki and polarizationsei is2

A(k1, e1; . . . ; kn, en)

=
∫

dπ1 · · ·dπn eie1π1+···+ienπn

(1)×
∫ n∏

i

d2 ζi

〈
Uk1,π1(ζ1) · · ·Ukn,πn(ζn)

〉
,

whereUki,πi
(32) are fixed helicity vertex operator

(ki · πi) = 0, i = 1, . . . , n. This scattering amplitud
exhibits important gauge invariance with respect to
gauge transformations[19]:

(2)ei → ei + kiΛi(k1, . . . , kn),

whereΛi(k1, . . . , kn) are gauge parameters. This i
variance is valid only for the states which are descri
by the fixed helicity vertex operatorUk,π (32), for
whichW1 ∼ (k · π)2 = 0.

The perimeter string modelwas suggested in[17]
and describes random surfaces embedded inD-dimen-
sional space–time with the following action

S = mL = m

π

∫
d2ζ

√
h

√(
∆(h)Xµ

)2
,

where hαβ is the world-sheet metric,∆(h) = 1/√
h∂α

√
hhαβ∂β is Laplace operator andm has di-

mension of mass. There is no Nambu–Goto area t
in this action. The action has dimension of leng
L and the dimensional coupling constant ism. Mul-
tiplying and dividing the Lagrangian by the squa

root
√

(∆(h)Xµ)2 one can represent it in theσ -model

2 WN defines fixed helicity states, whenW1 = 0 (N = 1), and
continuous spin representations (CSR), whenWN �= 0 (N �= 1) [18,
19,27–29].
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form [18]:

(3)S = − 1

π

∫
d2ζ ηµν

√
hhαβ∂αΠµ∂βXν,

where the operatorΠµ is

Πµ = m
∆(h)Xµ√
(∆(h)Xµ)2

.

We shall consider the modelB, in which two field
variablesXµ andhαβ are independent. The classic
equation is

(4)(I) ∆(h)Πµ = 0

and world-sheet energy–momentum tensor

(5)
(II) Tαβ = ∂{αΠµ∂β}Xµ − hαβhcd∂cΠ

µ∂dXµ = 0.

The operatorΠ is aspace-like vector,

(6)(III ) Θ ≡ ΠµΠµ − m2 = 0.

The energy–momentum tensor is conserved∇aTab =
0 and is tracelesshabTab = 0, thus we have two
dimensional world-sheet conformal field theory w
the central chargec = 2D [18]. We have equa
tion of motion (4) together with the primary con
straints(5) and(6) and secondary constraintsΘ1,0 =
Π∂+Π , Θ0,1 = Π∂−Π , Θ1,1 = ∂+Π∂−Π of confor-
mal weights(1,0), (0,1) and(1,1) [18]. The equiva-
lent form of the action(3) is [23]

Ś = − 1

π

∫
d2ζ

√
hhαβ

(7)× {
ηµν∂αΠµ∂βXν + ωαβ

(
Π2 − m2)},

where theΠµ field is now an independent variable a
theωαβ are Lagrange multipliers. The system of equ
tions which follows fromŚ

∆(h)Πµ = 0, ∆(h)Xµ − 2hαβωαβΠµ = 0,

(8)ΠµΠµ = m2

is equivalent to the original equations(4) and(6) and
the corresponding new energy–momentum tensorT́αβ

acquires an additional term which depends only on
field Π

(9)T́αβ = Tαβ +
(

ωαβ − 1

2
hαβhγ δωγ δ

)(
Π2 − 1

)
,

wherehabT́ab = 0. The central chargec = 2D of the
Virasoro algebra remains untouched and demonstr
the absence of additional contributions to the cen
charge due to the primary constraint(6) (see also[24]
for alternative calculation).

Correspondence with the SO(D,D) σ -model. Let
us introduce new variables as follows:

1

m2
Πµ = 1√

2

(
Φ

µ
1 + Φ

µ
2

)
,

(10)Xµ = 1√
2

(
Φ

µ
1 − Φ

µ
2

)
.

Then the action(3) will take the form

S = −m2

2π

∫
d2ζ ηµν

√
hhαβ

(11)× (
∂αΦ

µ
1 ∂βΦν

1 − ∂αΦ
µ
2 ∂βΦν

2

)
.

If one considers the 2D-dimensional target space wi
the combined coordinates

ΦM = (
Φ

µ1
1 ,Φ

µ2
2

)
, M = 1, . . . ,2D,

and fully symmetric Lorentzian signature space–ti
metric withD pluses andD minuses

ηMN =
(

ηµ1ν1

−ηµ2ν2

)

(12)=
(−,+, . . . ,+

+,−, . . . ,−
)

,

then the action(11) will have formal interpretation in
terms ofσ -model being defined on a 2D-dimensional
target space with the symmetry groupSO(D,D)

(13)S = −m2

2π

∫
d2ζ ηMN

√
hhαβ∂αΦM∂βΦN.

From this expression of the action we can deduce
the effective string tensionTeff is equal to the squar
of the massm

(14)
1

2πα′ = m2

π
.

The last relations allow to view the tensionless str
theory, which is defined by the perimeter action(3),
as a “square root of the Nambu–Goto area acti
m = √

1/2α′. This interpretation has deep geometri
origin because in some sense the perimeterL, which
was defined for the two-dimensional surfaces in(3),
can be considered as a square root of the surface
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This intuitive interpretation can be made more p
cise if one recalls Zenodor–Minkowski isoperimet
inequality[25,26], which tells thatL2 � 4πS, with the
equality taking place only for a sphere.

The crucial constraint(6) will take the formm2 ×
(Φ1 + Φ2)

2 = 2 and it breaksSO(D,D) group of
fully symmetric space–timeMD,D down to the diag-
onal groupSO(1,D − 1) of the standard space–tim
M1,D−1 with one time coordinate

SO(D,D) → diagSO(1,D − 1),

as one can see from the component form of the ab
constraint3

(15)
−(

Φ0
1 + Φ0

2

)2 + ( �Φ1 + �Φ2)
2 = −Φ2+ + �Φ 2+ = 2/m2.

TheXµ andΠµ fields(10)are actually light-cone co
ordinates onMD,D and one can heuristically say tha
our strings are massless because they propagate o
light cone ofMD,D . The Abelian constraint(15) can
also be considered as a “compactification” to a hyp
boloid manifoldHD .

The energy–momentum tensor(5) will take the
form

Tαβ = ∂αΦ1∂βΦ1 − ∂αΦ2∂βΦ2

(16)− 1

2
hαβhγ δ(∂γ Φ1∂δΦ1 − ∂γ Φ2∂δΦ2).

It is therefore clear that we shall have 2Dc = 26 and
shall recover the previous result[18]

(17)Dc = 13.

Operator algebra and vertexes.For the open string
the solution of this two-dimensional world-sheet C
is [18]:

Xµ = xµ + 1

m
π̂µτ + i

∑
n�=0

1

n
βµ

n e−inτ cosnσ,

(18)Πµ = meµ + k̂µτ + i
∑
n�=0

1

n
αµ

n e−inτ cosnσ,

where k̂µ = −i∂/∂xµ and π̂µ = −i∂/∂eµ are mo-
mentum operators andαn, βn are oscillators with the

3 The SO(D,D) signature allows theD light-cone coordinates

Φ = Φ0 ± Φ0, �Φ = �Φ ± �Φ .
± 1 2 ± 1 2
following commutator relations
[
xµ, k̂ν

] = iηµν,
[
eµ, π̂ν

] = iηµν,

(19)
[
αµ

n ,βν
l

] = nηµνδn+l,0

and [α,α] = [β,β] = 0 (the indexes are not shown
It is also convenient to introduce the zero moment
operatorsαµ

0 = k̂µ, β
µ
0 = π̂µ. The appearance of th

additional zero mode means that the wave functio
a function of the coordinate variablesxµ andeµ:

ΨPhys= Ψ (x, e).

The coordinate variablexµ belongs to a Minkowsk
spacexµ ∈ M13 and eµ belongs to a hyperboloi
eµ ∈ H 13 which is defined by the relatione2 = −e2

0 +
�e2 = 1 (6), (15)

(20)M26 → M13 ⊗ H 13.

It was suggested therefore in[18] that eµ should be
interpreted as a polarization vector, because from
constraint(6), (15) it follows that[18]

k2 = 0, e · k = 0, e2 = 1.

It is important to get a better idea about the alge
(19). The transformation(10)naturally leads to the os
cillators

Aµ
n = 1√

2

(
αµ

n + βµ
n

)
, Bµ

n = 1√
2

(
αµ

n − βµ
n

)

and brings the algebra(19) to the form
[
Aµ

n ;Aν
m

] = +ηµνnδn+m,[
Bµ

n ;Bν
m

] = −ηµνnδn+m,

(21)
[
Aµ

n ;Bν
m

] = 0.

This is a standard algebra of the oscillators with
following signature

ηµν = (−,+, . . . ,+) ∈ SO(1,D − 1),

−ηµν = (+,−, . . . ,−) ∈ SO(D − 1,1).

In terms of the above oscillators the “target space”
ordinates(10)ΦM = (Φ

µ1
1 ,Φ

µ2
2 ) have the form:

√
2Φ

µ
1 = xµ + 1

m
eµ +

(
1

m2
k̂µ + 1

m
π̂µ

)
τ

+ i

m

∑ 1

n
Aµ

n e−inτ cosnσ,
n�=0
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√
2Φ

µ
2 = −xµ + 1

m
eµ +

(
1

m2
k̂µ − 1

m
π̂µ

)
τ

(22)+ i

m

∑
n�=0

1

n
Bµ

n e−inτ cosnσ.

The aboveSO(D,D) σ -model interpretation of the
tensionless string theory allows to introduce ver
operators in the full analogy with the standard str
theory case. Indeed the vertex operator for the gro
state has the form:

VK = :eiK◦Φ :
whereKM = (k

µ1
1 , k

µ2
2 ), ΦM = (Φ

µ1
1 ,Φ

µ2
2 ), K ◦Φ =

ηMNKMΦN , and has conformal dimension equal
the square of the momentumKM

(23)∆ = α′K2 = K ◦ K

2m2
.

Therefore substituting the expressions for the fi
ΦM = (Φ

µ1
1 ,Φ

µ2
2 ) in terms of the original world-shee

fieldsXµ andΠµ (10)we shall get

(24)VK = :eik1Φ1−ik2Φ2: = :eikX+iπΠ/m:,
where the momentak andπ are:

(25)k = 1√
2
(k1 + k2), π = 1√

2m
(k1 − k2).

This is an interesting relation because it dem
strates how the 2D-dimensional momentumKM of
the SO(D,D) σ -model splits into two parts whic
form the physical momentum variablekµ of the
tensionless strings propagating in a 13-dimensio
Minkowski space–timexµ ∈ M1,D−1 and the momen
tum πµ, which is conjugate to the polarization vect
eµ ∈ H 1,D−1

MSO(13,13) → MSO(1,12) ⊗ HSO(1,12).

We can now translate the conformal dimension∆ of
the ground state vertex operatorVK into the language
of our momentak andπ

∆ = K ◦ K

2m2
= k2

1 − k2
2

2m2
= (k + mπ)2

4m2
− (k − mπ)2

4m2

(26)= (k · π)

m
.

This clearly confirms the form of the vertex opera
and its conformal dimension obtained earlier in[21].
Indeed the general form of the vertex operators s
gested in[21] is given by the formula

U
µ1µ̃1...,...µj µ̃j

k,π (ζ )

= :∂n1
ζ Xµ1∂

ñ1

ζ̄
Xµ̃1 . . . . . . ∂

nj

ζ Πµj ∂
ñj

ζ̄
Πµ̃j

(27)× eik·X(ζ )+iπ ·Π(ζ):,
the conformal spin should be equal to zero, the
fore n1 + · · · + nj = ñ1 + · · · + ñj = N . Using the
world-sheet energy–momentum operator[18] T (ζ ) =
−:∂ζ X · ∂ζ Π : one can compute the anomalous dim
sion of the open strings vertex operators[21,22]:

(28)∆ = (k · π)

m
+ N.

It must be equal to 1 in order to describe emission
physical states, therefore in tensionless string the
the value of the intercept is equal to one,a = 1, be-
cause(L0 − a)ψ = (

(k·π)
m

+ N − a)ψ = 0 [19]. The
corresponding poles

(29)
(k · π)

m
= 1− N

are translated to the mass-shell condition on theσ -
model side:α′K2 = 1− N .

Let us discuss what these relations mean.
physical meaning of the invariantk · π is given
by W = w2

D−3-square of the Pauli–Lubanski for
w

µ1,...,µD−3
D−3 ∼ εµ1,...,µD−3,νλρkνMλρ of the Poincaré

algebra onM13, that is[18,19]

(30)W = (k · π)2

m2
.

From (29), (30) we conclude that on the levelN the
value of the square of the Pauli–Lubanski form
equal to

(31)WN = (1− N)2.

As it is well known it defines fixed helicity state
when W = 0 and continuous spin representatio
when W �= 0 [18,19,27–29]. Thereforeonly N = 1
state realizes the fixed helicity representations, whe
the ground stateN = 0 and the rest of the excite
statesN � 2 realize continuous spin representatio
of the massless little group SO(11). The corresponding
vertex operatorUk,π (N = 1) in open strings case is

(32)

Uk,π = ζ ◦ Φ̇eiK◦Φ = (ξ · Π̇ + ω · Ẋ)eik·X+iπ ·Π,
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where in 26 dimensionsK ◦ ζ = 0, K ◦ K = 0
or, being translated through our dictionary(26) into
13 dimensions, it will take the form:k · ξ(k,π) +
π · ω(k,π) = 0, k · π = 0. The Uk,π operators are
of the essential importance, because for themW ∼
(k · π)2 = 0, and they create fixed helicity massle
gauge particles[30–41].
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