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Abstract

The string theory with perimeter action is tensionless by its geometrical nature and has a pure massless spectrum of higher
spin gauge particles. | demonstrate that the linear transformation of the world-sheet fields defines a n&@(0,the sigma-
model equipped by additional Abelian constraint, which bréa®6sD, D) to a diagonaSQ(1, D — 1). The effective tension
is equal to the square of the dimensional coupling constant of the perimeter action. This correspondence allows to view the
perimeter action as a “square root” of the Nambu—Goto area action. The aforementioned correspondence between tensionles:
strings andSQ(D, D) sigma-model allows to introduce vertex operators in full analogy with the standard string theory and to
confirm the form of the vertex operators introduced earlier, the value of the intereeftand the critical dimensiop = 13.
0 2005 Elsevier B.V. Open access under CC BY license,

It is generally expected that high energy limit or, requires therefore a nonperturbative treatment of the
what is equivalent, the tensionless linait — oo of problem[4-8].1
string theory should have massless spectmdlf{; = The tensionless model with perimeter action sug-
(N — 1)/o’ — 0 and should recover genuine symme- gested if17-20]does not appear as an— oo limit
tries of the theory{1-3]. Of course this observation of the standard string theory, as one could probably
ignores the importance of the high ger@asliagrams, think, but has a tensionless character by its geomet-
the contribution of whichAg ~ exp{—a/'s/(G + 1)} rical nature[17]. Therefore it remains mainly unclear
is exponentially large compared to the tree level di- at the moment how these two models are connected.
agram[1-3]. The ratio of the corresponding scatter- However the perimeter model shares many properties
ing amplitudes behaves as;,1/Ag ~ expla’s/ G2} with the area strings in the sense that it has world-sheet
and makes any perturbative statement unreliable andconformal invariance and contains the correspond-
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ing Virasoro algebra, which is extended by additional
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less string theory the intercept= 1 and therefore

Abelian generators. This makes mathematics used inonly N = 1 state realizes fixed helicity representa-
the perimeter model very close to the standard string tions, W = 0, whereas the ground stat¥ = 0 and

theory and allows to compute its massless spectrum,

critical dimensionD, = 13 [18—20] and to construct
appropriate vertex operatdial,22]
Comparing literally the spectrum of these two mod-

the rest of the excited statéé > 2 realize continu-
ous spin representation®/ #~ 0, of the massless little
group S@11).

The aforementioned correspondence allows to in-

els one can see that instead of usual exponential grow-troduce the vertex operators in full analogy with the
ing of states, in the perimeter case we have only linear standard string theory and to confirm the form of

growing. In this respect the number of states in the

perimeter model is much less compared with the stan-

dard string theory and is larger compared with the field
theory models of the Yang—Mills type. From this point
of view it is therefore much closer to the quantum field
theory rather than to the standard string theory. At the
same time its formulation and the symmetry structure

is more string-theoretical. Perhaps there should be a
strong nonperturbative rearrangement of the spectrum

in the limit o’ — oo before the spectrum of the area

and the perimeter strings can become close to each

other.

Our aim here is to give a partial answer to these
questions. As we shall see the linear transforma-
tion of the world-sheet fields defines a map to the
SQ(D, D) o-model equipped by an additional Abelian
constraint, which breaksSQ D, D) to a diagonal
SQ1, D — 1). The effective string tension is equal to
the square of the dimensional coupling constaruf
the perimeter action

1 m?2

2ra’ 0w

This relation allows to view the perimeter action as
a “square root” of the Nambu—Goto area action=
V/1/20’. The mass-shell quantization condition of the
SQ(13,13) o-model

o' M2 =—a'K?=(N - 1),

which defines the value of the first Casimir operator
K? of the Poincaré algebra in 26 dimensions, is trans-
lated through the dictionary into the quantization con-
dition for the squaréV = w%_3 of the Pauli-Lubanski

form wp_3 of the Poincaré algebra in 13 dimensions

(k)2

Wy s—=(N—a)’=(N-17%
m

because, as we shall S&8), K o K |in 26 dim = 2m X
(k - ) in 13 dim This demonstrates that in the tension-

the vertex operators introduced earlief21,22] The
n-point scattering amplitude dixed helicity states
W1 =0 (N =1) in terms of 13-dimensional momenta
k; and polarizations; is?

A(klv el; e 7 knv en)

— dﬂ]_ . 'dﬂ'n eielﬂ1+"'+ie,,7rn

n
< [T aUhme Ui @
i
where Uy, -, (32) are fixed helicity vertex operators
(ki -m;) =0,i=1,...,n. This scattering amplitude
exhibits important gauge invariance with respect to the
gauge transformatiorjs9]:

- kn), @)

where A; (ks, ..., k,) are gauge parameters. This in-
variance is valid only for the states which are described
by the fixed helicity vertex operatavy , (32), for
which Wy ~ (k- 7)? = 0.

The perimeter string modebas suggested ifiL7]
and describes random surfaces embeddéa dimen-
sional space—time with the following action

—mL="" a2 Vny 2
S_mL_T[ /d C\/E (A(h)X/L) )

where hqpg is the world-sheet metricA(h) = 1/
Vhd,vhh*Pds is Laplace operator ang: has di-
mension of mass. There is no Nambu—Goto area term
in this action. The action has dimension of length
L and the dimensional coupling constantzis Mul-
tiplying and dividing the Lagrangian by the square

e; > e +kiAi(k, ..

root,/(A(h)X,)? one can represent it in the-model

2 Wy defines fixed helicity states, whé#; = 0 (N = 1), and
continuous spin representations (CSR), whép # 0 (N # 1) [18,
19,27-29]
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form [18]:

1
S=—= /dzg NV hh*P 3, TT* 3 X", ()
T

where the operataif# is
AR XM

V(A X#)2

We shall consider the modd?, in which two field
variablesX* andh.g are independent. The classical
equation is

" =m

) AMWIT*=0 4)

and world-sheet energy—momentum tensor

() Tup = do IT"3p) X" — haph®d.IT*8, X" = 0.
®)

The operatorT is aspace-like vector

Ay ©=m*m* —m?=0. (6)

The energy—momentum tensor is conservéd’,, =
0 and is traceles&?’T,, = 0, thus we have two-
dimensional world-sheet conformal field theory with
the central chargee = 2D [18]. We have equa-
tion of motion (4) together with the primary con-
straints(5) and (6) and secondary constraing% =
. 11, 0% = y_11, ©1 = 5, I19_IT of confor-
mal weights(1, 0), (0, 1) and(1, 1) [18]. The equiva-
lent form of the actior{3) is [23]
§= —% /dzg Vhh?

X {nwaanﬂaﬂxv+wo,,3(172—m2)}, @)

where thelT# field is now an independent variable and
thew,p are Lagrange multipliers. The system of equa-
tions which follows from$

Ah)ITH =0,
"1, = m?

A(h) X" — 20 wog ITH =0,
8)

is equivalent to the original equatiofs) and(6) and

the corresponding new energy—momentum teﬂ’gpr
acquires an additional term which depends only on the
field I7

-

1
Taﬂ = Taﬁ + ((.l)a/fj — Ehaﬁhysa)),g)(nz — 1), (9)
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whereh“bfab = 0. The central charge= 2D of the
Virasoro algebra remains untouched and demonstrates
the absence of additional contributions to the central
charge due to the primary constra{f) (see alsd24]

for alternative calculation).

Correspondence with the $D, D) o-model Let
us introduce new variables as follows:

1
m—
S+ =

1
- (o] +3),

V2

L (ot — o).

Xt = _—
V2

Then the actior§3) will take the form

m2

2
x (0o DY 0Py — 04Dy 0pP3).

(10)

S = d?¢ nuwhh*?

(11)

If one considers the R-dimensional target space with
the combined coordinates

oM = (91", #5?), M=1,...,2D,

and fully symmetric Lorentzian signature space—time
metric with D pluses and> minuses

MN nHt
= _pHav2

=t
+7_7~-'7_ ’

then the actiorf11) will have formal interpretation in
terms ofo-model being defined on arl2dimensional
target space with the symmetry groB@(D, D)

(12)

2
- —%/dzg NI 9y &M g DN |

From this expression of the action we can deduce that
the effective string tensioffis; is equal to the square
of the massn

1 m?
2ra’
The last relations allow to view the tensionless string
theory, which is defined by the perimeter acti®),
as a “square root of the Nambu-Goto area action”
m = ./1/2a’. This interpretation has deep geometrical
origin because in some sense the perimétewhich
was defined for the two-dimensional surfaceq3y
can be considered as a square root of the surface area.

S (13)

(14)
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This intuitive interpretation can be made more pre-

cise if one recalls Zenodor-Minkowski isoperimetric
inequality[25,26], which tells that.? > 47 S, with the
equality taking place only for a sphere.

The crucial constrainte) will take the formm? x
(@1 + ®2)? = 2 and it breaksSQ(D, D) group of
fully symmetric space—tima/”-? down to the diag-
onal groupSQ(1, D — 1) of the standard space-time
MLDP=1 with one time coordinate

sQD, D) — diagsSQ1, D — 1),

as one can see from the component form of the above

constraint
— (@0 + ®Y)* + (B1+ B2 = — 2 + B2 =2/m?.
(15)

TheX, and ], fields(10) are actually light-cone co-
ordinates onM 2-? and one can heuristically say that
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following commutator relations
[x“,l%”]:in’“’, [e”,fr”]:in‘“’,
[, 8] =m0 8n1,0 (19)

and[«, @] = [B, B] = 0 (the indexes are not shown).
It is also convenient to introduce the zero momentum
operatorsyy = k", g = #'. The appearance of the
additional zero mode means that the wave function is
a function of the coordinate variableg ande*:

lI/Phys: ¥(x,e).

The coordinate variable* belongs to a Minkowski
spacex” € M' and e* belongs to a hyperboloid
e € H3 which is defined by the relatios? = —eZ +
¢2=1(6), (15)

M MBe H, (20)

our strings are massless because they propagate on thelt was suggested therefore 8] that ¢# should be

light cone of MP-P. The Abelian constrainl5) can

also be considered as a “compactification” to a hyper-

boloid manifold H?.
The energy—momentum tens¢®) will take the
form

Ty = 04 P105P1 — 0y D205 D2
1
- Ehaﬁhws (3, P10 @1 — 3, D205 P2).  (16)

It is therefore clear that we shall havé®2= 26 and
shall recover the previous res{di8]

D. =13 (17)

Operator algebra and vertexeBSor the open strings
the solution of this two-dimensional world-sheet CFT
is[18]:

1. ) 1 .
Xt =xt4 —gahlr+i E —Ble™""" cosno,
m n

n#0
. 1
n* =me"* + kMt +i Z —ale™" cosno, (18)
n#0 n
where k# = —i9/dx, and #* = —id/de, are mo-

mentum operators ang,, 8, are oscillators with the

3 The SQD, D) signature allows thé light-cone coordinates
o =00+ 00, b1 =Py + By

interpreted as a polarization vector, because from the
constraint(6), (15) it follows that[18]

k2 =0, e- k=0, =1

It is important to get a better idea about the algebra
(19). The transformatiofil0) naturally leads to the os-

cillators
A= (a4 BE), Bl = (ol — )
V2

and brings the algebi@9) to the form

N

[A#; AL] =+n""népim,
[B,lj; Bl;}’l] = —n""népim,

[A%; By ]=0.

n?’

(21)
This is a standard algebra of the oscillators with the
following signature

" =(—+.....H€SQL D -1,
_nluv=(+a_7'~'7_) GSqD_l,l)

In terms of the above oscillators the “target space” co-
ordinateg10) ¥ = (&, ®4?) have the form:

1 1. 1
V2ol =xt 4 Zel 4 (—zk” + —fr“)r
m m m
S '
+ é > ~Ajie™"" cosno,
n#0
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ﬁ¢g = —xM 4+ ieu + (iz/gu _ iﬁu)f Indeed the general form of the vertex operators sug-
m m m gested inf21] is given by the formula
+ :ﬂ— Z %B,’fe*"’” cosno. (22) U,ﬁfjl,ﬂl ------- ik ©)
70 —gxMgTxi 8" 11 9l i
The aboveSQ(D, D) o-model interpretation of the ¢ ¢ ¢ ¢
tensionless string theory allows to introduce vertex x kX @) Fim- 1), (27)

operators in the full analogy with the standard string o conformal spin should be equal to zero, there-
theory case. Indeed the vertex operator for the ground ¢ M4 - 4n;=i1+---+7; = N. Using the
J = J .

state has the form: world-sheet energy—momentum operdt8] 7'(¢) =

Ve = oiKo®. —:9; X - 9; IT: one can compute the anomalous dimen-
k=" ' sion of the open strings vertex operatf{#t$,22}
wherekK™ = (k[*, k5?), @M = (9]*, 5%, Ko ® = k- )

nun KM@V, and has conformal dimension equal to 4= +N. (28)

the square of the momentuir" It must be equal to 1 in order to describe emission of

KoK physical states, therefore in tensionless string theory
om2 (23) the value of the intercept is equal to one= 1, be-

_ — (kn) _ —
Therefore substituting the expressions for the field gilrjr:@(?ndiz)w(;e(s m +N—a)y=0[19] The
oM = (o[*, ®4?) interms of the original world-sheet P gp
fields X* andIT* (10)we shall get (k-m)

A=a'K%=

—1-N (29)

m
k1 ®1—iko Do, __ . ikX+inIl/m. .
Vg =:H7me2 = e fm, (24) are translated to the mass-shell condition on d¢he

model sidex’K2=1— N.
Let us discuss what these relations mean. The

where the momentaandx are:

1 1 . - . . . .
k= (k1 +kp), T =———(k1 — kp). (25) physical meaning of the invariant - 7 is given

V2 V2m by W = w?_,-square of the Pauli-Lubanski form
This is an interesting relation because it demon- wip"y"* ~ ghiip-3v20k M, of the Poincaré
strates how the R-dimensional momentunk™ of algebra onV13, that is[18,19]
the SQ(D, D) o-model splits into two parts which 2

. : (k-m)

form the physical momentum variable, of the W=—. (30)

tensionless strings propagating in a 13-dimensional m
Minkowski space—time* € M-P—! and the momen- From (29), (30) we conclude that on the level the

tum #, which is conjugate to the polarization vector Valué of the square of the Pauli-Lubanski form is

et e gLD-1 equal to
Wy =(1-N)>2 31
Msqi3 13 = Msq1,12 ® Hsq1,12)- N_ _( . _ _ _ - 5D
. . As it is well known it defines fixed helicity states,
We can now translate the conformal dimensiorof when W = 0 and continuous spin representations,

the ground state vertex operatdg into the language  \yhen w + 0 [18,19,27—29] Thereforeonly N = 1
of our momenta andx state realizes the fixed helicity representations, whereas
KoK _ K2 — 12 (k +mm)? (k- mm)? the ground stateV = 0 and the rest of the excited

A statesN > 2 realize continuous spin representations

2 2 2 2
(13’.1171) 2m Am Am of the massless little group $00). The corresponding
= . (26) vertex operatot/y , (N = 1) in open strings case is
m

. koo . Xain]
This clearly confirms the form of the vertex operator Uk =& 0 ®¢'"°% = (& - I + w - X)e" * T,
and its conformal dimension obtained earlief24]. (32)
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where in 26 dimensionK o ¢ =0, Ko K =0
or, being translated through our dictiongi36) into

13 dimensions, it will take the formk - £k, ) +
7wk, ) =0, k-7 =0. The Uy, operators are
of the essential importance, because for th&m-~

(k - m)? = 0, and they create fixed helicity massless
gauge particlef30-41}
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