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Abstract

Before their installation, critical systems must be assessed by an independent authority, who ensures that
software components are really compliant with a set of requirements described in standards. Such standards
describe the framework and the rules to be strictly followed along the development process. Moreover high
levels of safety highly recommand the use of formal methods.
In this paper, we examine how the FoCaL development environment can help to fulfil these requirements
and to ease assessment. This tool aims to help all stages of critical software development, at least when
formal methods are required (step-by-step specification and implementation, properties expressed by first-
order formulae, proofs helped by automatic tool). Upon our experience as either software safety assessor or
researchers in software engineering and formal methods, we propose a development life cycle adapted to the
FoCaL specificity and compliant with independent assessment requirements, through a complete example.
We show how features such as inheritance, late binding, redefinition, parametrisation, encapsulation and
declarations/definitions, properties/theorems, whole development checked by an independent proof assistant
and partially automatic documentation can be used to improve the global safety and the re-use of software
components.

Keywords: formal methods, assessment, software life-cycle, FoCaL

1 Introduction

Software development process is usually presented as the cooperation between two

major actors: the end user, whose describes the “what” and the software devel-

1 This work is supported in part by the Agence Nationale de la Recherche under grant ANR-06-SETI-016
for the SSURF Project (Safety and Security UndeR Focal).
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oper which answers the “how”. The development of safety critical software needs

to integrate a third participant, the governmental regulatory bodies (authorities).

Their main task is to assert the compliance of each stage of the development with

national and/or international Standards before commissioning. Most of them, such

as the future DO-178C 2 [2] for avionics or Cenelec EN 50128 [1] for railway sys-

tems, are dedicated to a specific domain whereas some others, such as IEC-61508

[4] or Common Criteria for security [3], have a much more generic purpose. These

standards, usually built upon a classical view of development cycle of products,

provide requirements about activities to be performed, contents of outputs to be

produced, verifications to carry out along each phase of this cycle and describe some

mandatory support activities such as Change and Configuration Management.

For non vital software, Verification and Validation (V&V) is a rather informal

process usually performed by the software engineer himself. But Critical systems

cannot escape a full assessment process by a third-party expert. Indeed, standards

prescribe the organisational independence level between the different teams involved

in the development. The assessor has to evaluate the full development process from

the system level to the embedded software. Note that, being legally liable in case of

damages caused by the system, the assessor will refuse commissioning of the system

under evaluation, if he/she has any doubt regarding the safety/security/reliability

demonstration. For these reasons, developers of critical systems have the greatest

interest in easing the assessment process of their products and particularly the

verification of the life-cycle compliance with the prescriptions of the standards.

When high criticality or insurance levels must be reached, standards require

the use of formal methods during the software development cycle. These methods

usually offer a non-ambiguous language and some features to express and to reason

upon properties. They can be proof or verification-based, but they can be use-

fully applied only if the system concepts, its purposes and its potential hazards are

described clearly, precisely and as completely as possible.

The first author has 15-years experience in assessment of critical systems, ei-

ther developed via formal or conventional methods, and is a “third party” expert

in railway systems. The two next authors work on the theory, design and imple-

mentation of the FoCaL environment 3 (presented within this paper), which aims to

ease development of safety critical software through a proof-based formal approach.

The contents of the paper are issued from the assessment experience and some ex-

periments using FoCaL features to answer needs of development and assessment of

software parts of critical systems. We mainly focus in this paper on the software

life-cycle.

As is commonly known, a software life-cycle is a sequence of steps describing how

a development team specifies, designs, implements, tests, and maintains a piece of

software. Each stage is described by its required inputs, performed activities and

expected outputs, together with documentation, required properties, etc. There are

2 DO-178B introduces formal methods in a ”soft” tone, but DO-178C is discussing it more directly.
3 homepage : http://focal.inria.fr
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different presentations of software cycles (V-cycle, Waterfall, . . . ). Unfortunately,

rather often in practise some phases, such as specification or maintenance, are not

fully accomplished.

In the case of critical embedded software, the cycle is usually a V-cycle, mainly

decomposed into five (mandatory) phases: requirements specification, architecture

design, implementation and low level testing, integration/validation testing and the

longest one, the maintenance phase. Moreover, standards ask for strict bound-

aries between phases together with traceability between phases, and the assessment

process must state that these demands are fully achieved. Each software require-

ment must be linked to software components implementing it and to the set of

tests validating this requirement. Similarly, each line of code should be linked to a

need (software requirements or architecture design choices). Indeed many anomalies

come from errors inserted during the transformation from one phase to its successor,

especially during the transition from the specification to the design phase.

Usually each phase is treated with a dedicated formalism, which changes from

one phase to another. Most of the tools helping traceability between the different

phases are not powerful enough to formally ensure that unexpected behaviours

have not been inserted when developing the next phase. One possible solution

to this problem is to use the same language/frame along the whole software life-

cycle and to choose it according to its formal capabilities to meet the high level

safety/security requirements. There exist indeed powerful tools, like the different

environments based on the B system, introduced by J-R Abrial [21] upon set theory,

which are able to treat a large part of software cycle. The FoCaL environment,

based on type theory, was in fact partly inspired by some work and discussions with

B designers and developers. Yet B and FoCaL have strong differences (see [23] for

some comparison). Building upon our common knowledge about B and type theory,

and upon the strong first author experience of assessing software produced in a B

environment, we explain in this paper how to handle, within FoCaL, most of the

requirements mandated by standards upon the assessment of a software development

life-cycle. Benefits of using a unique formal language are two fold: first, ease of

traceability since the expression of the semantics of each phase does not need to be

re-iterated. Second, verification between phases may be performed by mechanised

proofs. But difficulties do not totally disappear. The main risk is to mix and overlap

phases and therefore to have fuzzy boundaries between phases. We recall that only

software developed following a well formed life-cycle can be easily assessed by a

third-party.

The assessment of life-cycle depends also upon the produced documentation dur-

ing each phase of life-cycle. These artefacts are also subject to strong requirements

by standards concerning content, traceability and maintenance. The FoCaL tool

provides some features to automate the generation of the software documentation

(see section 3).

We illustrate our approach with the development of a voter, a sufficiently tiny

example to comply with paper size limitations. However, safety device as such

voters are used in safety critical systems as guard against transient faults.
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Several industrial projects rest upon formal methods to build safety critical

systems/software. Usually, the development life-cycle as well as the related require-

ments are treated according to the specific features of the used formal method.

Then, arguments are provided to convince independent assessors of the compliance

of the final product. Our approach departs from those ones as the development of

FoCaL itself and the proposed methodology deeply embed these requirements. We

reap the benefit of this approach with a better view on the relations between critical

development cycle and FoCaL features.

The rest of the paper is organised as follows. We present the textual specification

of the voter in section 2. We sketch the main characteristics of FoCaL in section 3.

Section 4 presents assessment needs for a safety critical development and their

instantiation in the FoCaL tool, written like a Software Quality Plan would be. We

detail the modelisation of the voter in section 5. We finally conclude and present

further works in section 6.

2 Overview of the voter

Sensors may exhibit various kinds of errors like bias offset, scale factor, or tran-

sient faults due to sensitivity to spurious or environmental factors (temperature,

pressure,. . . ), that is, transient faults. Redundancy is one of the major techniques

used to guard safety critical systems against such transient faults. There exist

many kinds of redundancies, depending on which characteristics (safety, reliability

or both) should be privileged for the system. Roughly speaking, each redundant

component performs the same work and, when one fails, the others detect it and go

on providing the service.

Usually, a voter is used to elaborate the output from the input values given by the

redundant components. Voters are used, for example, for temperature acquisition

by multiple sensors in a boiler, or elaboration of the emergency brake signal of a

train from several computer replicas. . . The basic principle of a voter is to compare

its input values according to a given consistency relation, and then to output one

value depending on predefined rule. There are two parts in a voter:

• its consistency law, describing the comparison policy between input values (strict

equality, equality within a certain tolerance. . . ).

• its algorithm, describing the choice rules for the output values (majority vote,

identification of the faulty input, most restrictive vote, most recent value. . . )

The point is that, in redundant systems, the voter is the component that must be

perfect (as far as possible obviously). A failure of the voter is considered as a major

weakness of the system.

The redundancy called “2 out of 3” (aka 2oo3) participates in obtaining a safe

and reliable system based on 3 identical (or functionally identical) components

connected to a majority voter. From voter results, the system can determine the

actions to take (filtering failure, sending alarms, or system shutdown) in order to

remain within safety conditions.
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The 2oo3 voter, used for our example, selects one value from three independent

inputs if at least two of them are consistent. Moreover, we also want to detect the

faulty value. So, a second output is added to the voter in order to qualify the first

result as follows:

• perfect match: the three inputs are consistent, the index of one of them is

returned (first one for example).

• partial match: two of the three inputs are consistent together, but the third

one is not. The index of the inconsistent one is returned. This enables identifying

a failure on this input.

• range match: One input is consistent with the two others which are mutually

inconsistent. The index of the consistent value is returned. This can arise when

the consistency law is not transitive (ie. equality within a tolerance). In this case,

the system can go on working with the most plausible value.

• no match: all the inputs are inconsistent two per two. The voter cannot take a

decision since the majority rule is not applicable.

The specification of the no match case seems, at first sight, satisfactory: no

value is output as there is no good candidate. At the specification level, this be-

haviour is acceptable, but a choice has to be made during the design phase; the

component connected to the voter is waiting for two values (the index of the com-

ponent and the flag). It will be its own concern to decide what to do with the first

output, according to the second.

3 The FoCaL environment

The FoCaL project was launched in 1998 by T. Hardin and R. Rioboo [7] with the

objective of helping all stages of development of critical software within safety and

security framework, at least when formal methods are required or chosen. The idea

was to elaborate a development environment able to provide high-level and justified

confidence to users. On the other hand, this system had to remain easy to use by

well-trained engineers.

Currently, FoCaL can be seen as still a prototype of an Integrated Develop-

ment Environment (IDE), for a language providing high level mechanisms such as

inheritance, late binding, redefinition, parametrisation, etc. Confidence in proofs

submitted by developers relies on formal proof verification. This support language

was formally described and studied [6,5,22].

A FoCaL development is organised as a hierarchy that may have several roots.

The upper levels of the hierarchy are built along the specification stage while the

lower ones correspond to implementation. Each node of the hierarchy corresponds to

a progress toward a complete implementation. We call here refinement the process

of building a top-down hierarchy. The FoCaL refinement process has been formally

studied in [6]. Its formal comparison with other notions of refinement such as those

of B or TLA remains to be done.
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Species

A node of the hierarchy is called a species. A species is a kind of record composed

of fields, called methods, which may be:

• The method introduced by the keyword rep, exposing the data representation

of values of the species. This type is called the carrier type. Available types

are roughly: type variables, ML-like types (with restricted polymorphism) and

species carrier types (i.e. the carrier of a species can depend on the carrier of

other species). This method is mandatory and can be explicitly given or obtained

by inheritance. It may be undefined (i.e. be just a type variable) along some

inheritance stages but will have to be defined once and only once in the final

inheritance branch (ie. collection).

• Declarations, introduced by the keyword signature followed by a name and a

type (no computational body provided).

• Definitions introduced by the keyword let made of a name, a type and an ex-

pression. Mutually recursive definitions are introduced by let rec. The syntax

of expressions is very close to those of usual ML family languages.

• Statements, introduced by the keyword property followed by a name and a first-

order formula built with the usual connectors (not, and, ∀ . . . ).

• Theorems, introduced by the keyword theorem followed by a name, a statement

and a proof ultimately checked by the Coq proof assistant [14] (see below).

Statements, definitions and proofs can freely use names of other methods of

the species (denoted by Self!m or shorter !m, or even shorter m if no local function

named m is in the scope). The FoCaL compiler (see below) performs various analyses

to ensure that dependencies between properties, definitions and proofs do not lead

to cycles or logical inconsistencies.

A let rec definition is not considered as leading to a dependence cycle. Here

is a strong difference with most usual object-oriented languages where methods are

considered as mutually recursive without any restriction. Hence, the FoCaL “object”

model is different since species are not classes, nor objects according to the usual

meanings in the object oriented terminology. Species are not first class-values, only

values living in carriers are so. Method types are type expressions à la ML. The

expression Self in a type denotes the rep of the species and should be understood

as Self!rep.

The elements of the species are called entities, to emphasise the fact that they

are defined not only by their representation, but also by the functions manipulating

them and their properties.

Inheritance

We say that a species A2 “refines” a species A1 if A2 inherits from A1 and “adds

precision” to A1. That is, the methods introduced in A1 and/or the carrier type

of A1 are made more concrete (more defined) in A2 (it is not the B refinement

concept). In case A2 multiply inherits from two species Si having a method with
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the same name, then the types of the two methods must be compatible (they must

have a most general unifier [10]). If both methods are defined, the last inherited

definition is kept (as in OCaml[9]) in A2.

In addition, new methods can be added in A2 and already given definitions

can be redefined. However, once fully defined by a concrete type, rep cannot be

redefined, for logical consistency reasons.

Interfaces

The type of a species is obtained by erasing definitions and proofs. If the carrier

(Self!rep) is not defined, it will silently be considered as a type variable (e.g.

α) and the species type will also be silently prefixed by an existential binder ∃α.

This binder will be eliminated as soon as the rep gets instantiated (defined) and

must be eliminated to obtain runnable code. The interface of a species is obtained

by abstracting the rep type in all the method types of the species type and this

abstraction is permanent (see the paragraph Collections).

While species types remain totally implicit to users, interfaces are simply denoted

by the species name. Interfaces can be ordered by inclusion, a point providing a

very simple notion of sub-typing.

Collections

A species is said to be complete if all declarations have received definitions and

all properties have received proofs. When complete, a species can be submitted to

an abstraction process of its carrier to create a collection. Thus the interface of

the collection is built out of the type of its underlying species. A collection can

hence be seen as an abstract data type, only usable through the methods of its

interface, but having the guarantee that all methods/theorems are defined/proved

and that invariants used to build the underlying species cannot be broken by using

this “component on the shelf”.

Parametrised species

Species can be parametrised by collections. The formal parameter is introduced

by a name C and an interface I. Any collection CC having an interface including

I can be used as actual parameter for C.Methods and statements figuring in I are

denoted by C!m in the species body (C!rep allows to use the rep of C as an abstract

type). As any CC is issued from a complete species no “link error” can arise at

run-time and properties of CC can be used as lemmas.

FoCaL allows very simple dependent types via parametrisation: a collection pa-

rameter being already introduced, an entity parameter denoting a value of the col-

lection parameter carrier can be introduced. The syntax forbids dependence cycles

between parameters and the compiler ensures consistency between the parameters.

Late-binding and redefinitions

As previously mentioned, methods may be only declared. This means that the

operation is only equipped with a signature (signature) and properties (property)
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but no effective implementation. However definitions of other methods may refer

to such only declared methods. This is indeed perfectly safe as runnable code can

be obtained only from collections. Thus these only declared methods will need

to be defined later in the inheritance hierarchy in order to allow construction of

collections. Now, late-binding brings the supplementary possibility to link together

methods according to their latest definition. This way, it is possible to rely at any

stage, while defining or proving properties of a method m, on a not yet implemented

method p, which functional model is enough to work on m. Once a computational

body is provided to p, the resolution mechanism will automatically link p and m’s

bodies. This mechanism also enables to redefine a method at any inheritance level,

always keeping the latest defined one in the final collection extracted from the

species.

On the proof side, if a proof π of m uses only the type of p, π remains valid

when p is defined or redefined. If the definition of p is needed to achieve the proof

π, clearly, π is no more valid after redefinition of p. The compiler invalidates all

proofs depending on an “old” definition and prompts the user to redo the proofs.

Thus, redefinition is fully safe.

Proof and automation

As properties must be proved, at latest before the collection level, a strong

effort is done to have automated tools collaborating with FoCaL in order to get

these proofs automatically done by theorems provers. FoCaL is designed to be open

to whatever kind of such provers: it currently supports Zenon [17] which is an

automated theorem prover developed by D. Doligez [18]. When Zenon succeeds,

it produces a Coq proof term. Moreover, some experiments have been done with

the rewriting based prover CiMe [15,16]. These external provers are dedicated to

some specific kinds of proofs and may discharge the developer from making proofs

by hand.

Compilation

Compilation of FoCaL sources leads, today, to both OCaml [9] and Coq codes.

The generated OCaml code provides the executable form of the development. On

the other side, the Coq code is produced from both the species source code, the

proof terms of Zenon and the Coq proofs directly given by the user. Indeed, getting

proofs is a quite satisfactory thing, but one must ensure these proofs are indeed

correct. Obviously, no human being would stand reading pages of demonstrations

to get convinced of this correctness! The Coq code will be checked by the Coq

theorem prover who will act as assessor, not only on all the proofs contained in the

development but also on the whole consistency of the model.

On the executable side, work is currently performed in the FoCaLteam to gen-

erate C code. Generation towards most of programming languages is possible since

required features are mainly record data structures.

FoCaL semantics was initially specified in Coq, which brings a satisfactory confi-

dence in the language’s correctness. On the other side, the correction of the compiler
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against FoCaL’s semantics was proved in [5].

Documentation

Safety developments must contain various documentation items to be assessed.

Creation of this documentation can be assisted by FoCaL by extraction of com-

ments that can (and should) be embedded within the development (code) and from

the code itself. As previously stated, these comments may describe non-functional

requirements and will be available for traceability purpose. These comments are

kept during the compilation process, linked to FoCaL entities forming the software,

and can be automatically processed by (internal or external) tools processing the

abstract syntax tree of the program. FoCaL’s architecture allows to easily interface

analyses/tools with the internals of the compiler to take advantage of the analy-

ses it already performs. In combination with the properties and operations of the

species (i.e. theorems and functions), it is possible to automatically generate (in

the simplest case) a document (HTML for instance) describing the system. More-

over, UML diagrams can be automatically extracted from a Focal Model [20]. This

permits to the developer to have a graphical view of its model and also facilitate

the communication between the developer, the client and the assessor.

4 Software life-cycle within FoCaL

As said in the introduction, the life-cycle of critical software is based on a 5 steps

V-cycle similar to the V-cycle of classical software development cycle. The main

difference is that it is submitted to a traceability analysis by an independent verifica-

tion team after each phase while another independent validation team performs the

software testing. This implies that the boundary between each life-cycle phase must

be clearly identified when a unique formalism is used along the whole development.

As presented in section 3, a FoCaL model is made of species which are used to

describe all the phases of the cycle. Properties can be expressed as first-order formu-

lae, a choice which is recognised as a good compromise between the expressiveness

of the logic framework and its ease of use. Indeed FoCaL is intended to be used not

only by computer researchers or mathematicians, but also by smart engineers with

minimal background in logic.

Currently FoCaL provides no syntactical categories to distinguish between the

different stages of a life-cycle and we are not sure that such distinctions will be

beneficial for engineers as they could perhaps add too much rigour. Instead, we

propose to provide species templates dedicated for each phase of the development

life-cycle. Since each phase addresses a different view of the system, these templates

will be defined by the kind and the forms of methods (declarations, definitions,

properties, proofs) which should be used (or not) during the considered phase.

They will help to identify clear boundaries between phases, which is mandatory for

the verification process.

The following figure depicts the classical V life-cycle for software development.

In this paper, we consider only requirements specification, architecture design,
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Fig. 1. The classical V life-cycle

coding and maintenance phases. The phase “Integration/validation testing” is con-

sidered in the work of C. Dubois and M. Carlier [12].

4.1 Specification phase

The aim is to specify the interface and the requirements for the software based on

the Statement Of Work (SOW) delivered by the customer. In fact, the requirement

phase is a way to re-express the customer needs with a software engineering view.

Requirements are usually split into two parts:

• Functional requirements focus on describing the expected behaviour of the sys-

tem/software without referring to any specific solution. These requirements de-

scribe the relations between inputs and outputs of the software.

• Non-functional requirements describe all constraints of the software, like time

and space bounds, safety integrity levels to achieve, portability needs. . . These

requirements are pretty difficult to express in term of software design models but

are mandatory to issue an industrial system.

• For critical software, there is a third kind of requirements called Safety require-

ments. Safety requirements are coming from the results of the safety studies

performed on the previous phases. They ensure that the functional requirements

will never trigger a Feared Event. They can be considered as requirements on the

two first kinds of requirements.

A species describing a component of a specification will follow the species for

specification template. It is a species containing only specification requirements

expressed as follows:

• A functional requirement is represented by a signature (name and type) and

functional properties (described below).

• A safety requirement is also represented by properties on these signatures. How-

ever, their shape is slightly different from the functional properties since they do

not express property on the function behaviour, but rather characteristics of the

function.

• Non functional requirements which cannot be – easily – expressed by a first-order

formula are put inside commentaries and, as they are kept along the compilation

process, they can receive separate treatments (see section 3). This is a way to
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ensure their traceability through the development.

• Proofs that the safety requirements are respected by the functional requirements,

under the hypothesis that the functional properties hold.

• In addition, since a component can be parametrised by other ones, one must

express the mandatory properties these other components must comply with.

We call them ”glue” assumptions.

Functional and safety requirements are both encoded as FoCaL properties. We

distinguish between them by introducing a template for the functional ones as fol-

lows.

Since a functional property expresses the relation between inputs and outputs
of the component, we propose the following template:

signature foo in t_1 -> t_2 -> ... -> t_n -> Self ;

(* Requirement 1 for foo. *)
property foo_1:

all i_1 in t_1 , i_2 in t_2 ,... i_n in t_n ,
(* Pre -condition on the signature. *)
r1 (i_1 , i_2 , ..., i_n )

->
(* Post - condition on the signature. *)
r2 (i_1 , i_2 , ..., i_n , foo (i_1 , i_2 , ..., i_n )) ;

in which r 1 and r 2 are properties on signatures (local or imported by parametri-

sation) and “glue” assumptions.

At this stage of the life-cycle, proofs can be made that safety requirements are

entailed by the functional requirements on functions and by the glue assumptions on

the imported functions. Indeed, late-binding and collection mechanisms in FoCaL

allow to already perform proofs of the safety requirements, without having defini-

tions of functions declared in the species, nor proofs from imported components

already done. The system ensures that such definitions will be given and proofs

of their properties will be done before the creation of the collections defining the

system. In the same way, the user may be sure that the components passed as

actual parameters later in the life-cycle will have these proofs done, hence he may

safely assume them at this stage.

The phase ending criterion is when all the safety requirements are proved. Usu-

ally no definition is introduced during the specification phase. However, some defini-

tions of mathematical functions can help to express requirements: it is easier to rely

on the definition of the absolute value function instead of expressing it only through

its characteristic properties. We currently consider the possibility of adding a new

syntactic category (logical let) to handle such definitions which may be useless in

the following phases (for example, by in-lining of the absolute value function).

4.2 Architecture and design phase

This stage is dedicated to introduce the architectural choices to answer the specifi-

cation requirements. It describes:

• the software breakdown into components,
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• the behaviour of each component,

• the data exchanged between components ,

• the inter-relations between components (inheritance, parametrisation. . . ),

• the scheduling of components.

For critical software, the design should follow design rules. These rules are guide-

lines to apply in order to achieve and ease the safety demonstration and description

of all constraints coming from the hardware supporting the software (built-in-tests

to perform, hardware performance and reliability. . . ) or pre-existing software (Op-

erating System, COTS. . . ).

According to the presentation of this phase, we propose to give the following

structure for a species for design:

• Breakdown of the software must answer 2 main issues: to propose efficient al-

gorithms and to respect the functional requirements expressed in the previous

phase. FoCaL’s parametrisation allows acquisition of existing or future (i.e. not

yet implemented) dedicated species offering such algorithms and inheritance can

be used to keep traceability between the two phases.

• Definition of the behaviour via a progressive carrier choice and via the imple-

mentation of the signatures (possibly working on the carrier’s structure). FoCaL

authorises re-definition of methods previously implemented. This feature may be

handy to specialise algorithms for a specific data representation of the carrier.

• Proofs of the functional requirements ensure that, through the breakdown steps

and the introduction of definitions, the functional properties given in the species

for specification are indeed fully implemented. This achieves the traceability

between phases.

The refinement process between specification and design may span on several in-

heritance steps. Late-binding enables the use of a method not yet defined, and to be

sure that once defined, the compiler will find and use it. These points are especially

crucial to perform successive and incremental refinements. Hence, it is possible to

incrementally implement some concepts, enunciate properties, make proofs, and all

of them will be kept (inherited) from the parent(s), providing that the compiler

didn’t detect redefinitions breaking parent definitions. This last point ensures that

at any inherited stage properties and implementations remain consistent even in

case of redefinition. Moreover, following an incremental refinement, it is possible to

derive by inheritance several species from a same parent. The parent may provide

a default implementation of a method and each child will be free to redefine or not

this implementation according to its own constraints.

Obviously, industrial projects rarely start from a blank page. It is usual to

reuse external components (middleware, operating system primitives, COTS. . . ).

For this reason, FoCaL provides a way to make these external components available

in the model. However, a safe development cannot on one hand simply assume

that such components are safe, and on the other hand cannot prove their properties

as these COSTS are usually black boxes. Our solution, in term of methodology,
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is to verify by testing that these properties hold and then to assert the functional

properties required on these components by issuing a proof reduced to the keyword

admitted. This solution is certainly unsatisfactory for purists, but this is the only

possible choice when using external COTS. The compiler inserts the fact that these

properties have been admitted in the documentation. So the reader is warned about

that and may review the test results [12].

Like any development environment, FoCaL provides a set of fully proved “stan-

dard” libraries on which developments can safely rely. It is worth mentioning that

there is a library for symbolic computation on multivariate polynomials, on all

ordered-based mathematical structures and a generic one on access control by which

most of the usual access control policies received a FoCaL implementation.

The software breakdown is iterated until obtaining the proof of all the software

items. A software item is defined as the smallest piece of software that can be

compiled and tested alone. The phase ending criterion is when the proofs of the

functional requirements are done based on the definition of the software components,

on the properties of the reuse external components and on the ”glue” assumptions.

4.3 Implementation phase

This stage aims to produce the source code that implements the components. For

critical software, specific coding rules should be followed. These rules describe the

safe subset of the language that may be used. Low-level testing is also performed

during this stage. It permits verification that each software item is in line with its

documentation and does not contain systematic bugs (table overflow, division by

zero,. . . ). At this stage, the software items are “clear”, i.e. seen as white boxes.

We propose to give the following structure to a species for implementation:

• Final assembly of species. The aim is to produce a complete species, in which

all the methods are implemented or externally linked (i.e. there are no more

signatures without their related implementation).

• The proofs induced by the final assembly. They enable the user to ensure that

the “glue” assumptions set out during the specification phase hold.

Once such a complete species is obtained, it is possible to turn it into a collection,

which corresponds to an effective piece of software able to compute and give back

results.

From this collection the FoCaL compiler generates target code of the software

build. The phase ending criterion is obviously when the executable is produced.

Although FoCaL relies upon object-oriented flavours for specification and design, it

produces no object-oriented target code. This is very important because the pro-

duced code fulfils the safe language subset recommended by standards and is easily

traceable to the model by independent assessors. Finally this permits FoCaL back-

ends to most languages since it only relies on common and widespread programming

language features (mostly modules and records).
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4.4 Maintenance phase

This stage is dedicated to keep the consistency of the model despite any required or

imposed evolutions (hardware obsolescence or changes, enhancement requests, new

regulations from authorities or even bug fixes). The mainly used mechanisms are

redefinition, inheritance and late-binding just at the needed level in the hierarchy

defining the system. Standards require that each modification must be traced and

its impact on the whole system has to be clearly identified. Because FoCaL provides

highly efficient dependencies calculus [5], proofs to be redone are automatically

exhibited and strictly limited to the performed modifications. Since software is

formally developed using a well established life-cycle, impacts of modifications are

under control.

4.5 Transverse processes

Transverse processes are tasks performed on every life-cycle phase. For a FoCaL

development, there are two transverse processes:

• proofs to be performed at each phase. These proofs have 2 aims: correctness of

the provided definition and correctness of the refinement between phases. The

last point ensures the formal traceability between phases.

• the generation of the documentation associated to each phase.

Proof of a FoCaL model is assisted by theorem prover (see paragraph ’proof’ on

section 3). Of course, some proofs cannot be fully automated and remain in charge

of the engineer. However, the experience proves that automated tools strongly help

in effective FoCaL developments. FoCaL’s standard library (more that 7500 lines of

formal mathematics in FoCaL) is mostly proved thanks to Zenon!

FoCaL is strongly connected to the Coq proof assistant [14] since it acts as its

final assessor. Coq is a well established system already used in the industrial and

academic domains [13], which allows to put enough confidence in its verifications.

The use of a formal demonstration checker acting as an assessor of the proofs avoids

having to perform these verifications by hand and especially prevents errors during

these verifications. The choice of using Coq obviously implies that any automated

prover collaborating with FoCaL must be able to provide as output a Coq proof

trace.

Benefits of a unique language come from the ease of traceability since there is a

unique semantics for each phase. Figure 2 summarises FoCaL’s main features used

during the life-cycle phases.

Documentation of the development is not missed: during each phase, documen-

tation can be extracted from the FoCaL model (see paragraph ’documentation’ on

section 3). All these documentations are valuable for the assessor to verify the

safety issues and for the testing team in order to produce the validation tests. Note

that even if the software is formally developed, an independent validation testing

is mandatory. Finally, this documentation can be included in the artifacts for the

system safety-case.
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Fig. 2. FoCaL features along the life-cycle

5 Voter implementation

We now present an implementation of a voter in FoCaL following the development

life-cycle.

Voter specification phase

Species Sp voter presents the signature of the vote function, the functional re-

quirements of vote and the constraints that imported components must respect for

the voter to be proved. Here we force the imported comparison function comp value

representing the consistency law to be symmetric. This avoids the need to consider

all comparisons combinations.

(* Specification species for the vote algorithm part. *)
species Sp_voter (Q is Sp_qualifier , Si is Sp_sensor_index , V is Value)

inherits Basic_object =

(* Declaration of the vote function:
it takes 3 values and returns a sensor (index * qualifier). *)

signature vote : V -> V -> V -> (Si * Q) ;
signature sensor in (Si * Q) -> Si ; (* Get the first component of the

voter. *)
signature state in (Si * Q) -> Q ; (* Get the second component of the voter

. *)

(* Functional requirement 1: vote between 3 compatible values . *)
property vote_perfect :

all v1 v2 v3 in V,
((V!comp_value (v1 , v2) /\ V! comp_value (v2, v3) /\ V!comp_value (v1 , v3)

) ->
(Si!equal (sensor (vote (v1 , v2, v3)), Si!capt_1 ) /\
Q!equal (state (vote (v1, v2 , v3)), Q!perfect_match))) ;

...

(* Constraint on imported functions: function comp_value must be symmetric.
*)

property comp_value_is_symmetric :
all v1 v2 in V, V!comp_value (v1 , v2) -> V!comp_value (v2, v1) ;

...

Voter design phase
In this phase, we give an effective implementation to the vote function and we

prove that it satisfies the functional requirements (c.f. vote perfect).

(* Design phase of the voter algorithm. *)
species Imp_voter (Q is Sp_qualifier , Q is Sp_qualifier , Si is

Sp_sensor_index ,
V is Value)

inherits Sp_voter (Si, Q, V) =
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rep = unit ; (* Definition of the carrier. *)

(* Definition of the function. *)
let vote (v1 in V, v2 in V, v3 in V) in (Si * Q) =

let c1 = V!comp_value (v1, v2) in
let c2 = V!comp_value (v1, v3) in
let c3 = V!comp_value (v2, v3) in
if c1 then

if c2 then
if c3 then (Si!capt_1 , Q! perfect_match)
else ...

(* Proof of the functional requirements. *)
proof of vote_perfect =

by property Si!comp_transitive , Q!comp_transitive definition of vote
...

Voter implementation phase

The concrete species is built by providing effective collections to each voter’s pa-

rameters. At this stage, “glue” assumptions are proved (c.f. comp value is symmetric).

(* Definition of the closed species. *)
species Concrete_coll_int_imp_vote_tol inherits

Imp_vote (Coll_etat_vote , Coll_capteur , Coll_int_imp_value_tol ) =

(* Proof of the properties of the imported function. *)
proof of comp_value_is_symmetric =

by Coll_int_imp_value_tol !comp_value_symmetric ;
...

end ;;

(* Final point: get the frozen and run -able component. *)
collection Coll_int_imp_vote_tol implements Concrete_coll_int_imp_vote ;;

6 Conclusion and further works

FoCaL is a living demonstration that an academic development framework can be

created, integrating simultaneously strong expressiveness and semantics, efficient

target code and industrial needs to assess the produced software. Indeed, the FoCaL

tool provides a usable compromise between the ease to develop and the constraints

imposed by standards.

Several examples have been developed following the present methodology like

hierarchical automata’s, physical input acquisition,. . .

Ten years after its birth, the language is now mature enough to add enhance-

ments, and to bring stability and openings to external tools. A complete rewriting

of the tool is currently performed to improve compilation and to facilitate inte-

gration of new features. Some other system paradigms (like synchronous features,

higher-order parametrisation, certified C back-end. . . ) are currently studied, always

keeping in mind that the produced software must be assessed by an independent

authority before its commissioning.
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certifiés”, PhD Thesis, Paris 6 University, September 2003
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