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Report

Uncommon Deletions of the Smith-Magenis Syndrome Region Can Be
Recurrent When Alternate Low-Copy Repeats Act as Homologous
Recombination Substrates
Christine J. Shaw,1 Marjorie A. Withers,1 and James R. Lupski1,2,3

Departments of 1Molecular and Human Genetics and 2Pediatrics, Baylor College of Medicine, and 3Texas Children’s Hospital, Houston

Several homologous recombination “hotspots,” or sites of positional preference for strand exchanges, associated
with recurrent deletions and duplications have been reported within large low-copy repeats (LCRs). Recently, such
a hotspot was identified in patients with the Smith-Magenis syndrome (SMS) common deletion of ∼4 Mb or a
reciprocal duplication within the KER gene cluster of the SMS-REP LCRs, in which 50% of analyzed strand
exchanges resulting in deletion and 23% of those resulting in duplication occurred. Here, we report an additional
recombination hotspot within LCR17pA and LCR17pD, which serve as alternative substrates for nonallelic ho-
mologous recombination that results in large (∼5 Mb) deletions of 17p11.2, which include the SMS region. Using
polymerase-chain-reaction mapping of somatic cell hybrid lines, we refined the breakpoints of six deletions within
these LCRs. Sequence analysis of the recombinant junctions revealed that all six strand exchanges occurred within
a 524-bp interval, and four of them occurred within an AluSq/x element. This interval represents only 0.5% of
the 124-kb stretch of 98.6% sequence identity between LCR17pA and LCR17pD. A search for potentially stim-
ulating sequence motifs revealed short AT-rich segments flanking the recombination hotspot. Our findings indicate
that alternative LCRs can mediate rearrangements, resulting in haploinsufficiency of the SMS critical region, and
reimplicate homologous recombination as a major mechanism for genomic disorders.

Several common deletion/duplication syndromes have
been shown to result from nonallelic homologous re-
combination (NAHR) between large, highly homolo-
gous region-specific low-copy repeats (LCRs) (Shaw and
Lupski 2004). LCRs are usually 10–500 kb in size and
195% identical (Stankiewicz and Lupski 2002). NAHR
between LCRs results in a clustering of rearrangement
breakpoints within the LCRs, and, thus, most rearrange-
ments associated with a particular group of LCRs are
the same size. These same-sized or common rearrange-
ments, with breakpoints clustered at the flanking LCRs,
are recurrent and account for 75%–99% of rearrange-
ments in most cases (Stankiewicz and Lupski 2002). De-
spite long stretches of high sequence identity between
LCR copies, studies have revealed positional preferences
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for strand exchange within disease-associated LCRs of
Charcot-Marie-Tooth disease type 1A (CMT1A [MIM
118220]) and hereditary neuropathy with liability
to pressure palsies (HNPP [MIM 162500]); neuro-
fibromatosis type 1 (NF1 [MIM 162200]); Williams-
Beuren syndrome (WBS [MIM 194050]); and Smith-
Magenis syndrome (SMS [MIM 182290]) and dup(17)
(p11.2p11.2) syndrome (Reiter et al. 1996, 1998; Lopes
et al. 1999; Lopez-Correa et al. 2001; Bayes et al. 2003;
Bi et al. 2003). These recombination “hotspots” vary in
size from 557 bp to 12 kb and represent only 2%–13%
of the total sequence homology between the LCRs (Rei-
ter et al. 1996, 1998; Lopes et al. 1999; Lopez-Correa
et al. 2001; Bayes et al. 2003; Bi et al. 2003).

Elsewhere, we reported a recombination hotspot as-
sociated with both the common SMS deletion and the
reciprocal duplication, dup(17)(p11.2p11.2), demon-
strating, as had been shown for HNPP/CMT1A (Reiter
et al. 1998; Lopes et al. 1999), the reciprocity of the
crossover events (Bi et al. 2003). Analysis of somatic cell
hybrid lines and genomic DNA showed that several of
the strand exchange events that result in a deletion or
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Figure 1 Comparison of common and uncommon deletions of SMS. Proximal chromosome 17p is depicted at the bottom, with the
position of LCRs shown. The common deletion is shown above, and the large deletions of SMS (discussed in the main text) are shown below.
The solid horizontal lines represent the undeleted chromosome segments, and the dotted lines represent the deleted chromosome segments. The
numbers identifying analyzed patients with large deletions are listed (right). The arrows indicate the distal and proximal breakpoints of the
large deletions within LCR17pA and LCR17pD, respectively.

duplication occurred in a 12-kb region within the KER
gene clusters of the proximal and distal SMS-REP LCR
copies, despite 170 kb of high similarity (198% identity)
between them. Sequence analysis of the SMS-REPs iden-
tified an AT-rich 2.1-kb inverted repeat near the 12-kb
hotspot, which could mediate a hairpin loop formation,
potentially predisposing the DNA to double strand
breaks (DSBs) (Bi et al. 2003).

Several reports have estimated the frequency of the
∼4-Mb common deletion of SMS to vary from 76%–
95% of all deletions involving the SMS region (Chen et
al. 1997; Lupski 1998; Bi et al. 2002, 2003; Shaw et al.
2002; Potocki et al. 2003; Stankiewicz et al. 2003; Vlan-
gos et al. 2003) (fig. 1). The absence of a specific junction
fragment that is associated with the common deletion
suggests an alternative-sized rearrangement that is not
mediated by the SMS-REPs. In a cohort of 18 patients
with uncommon, or differently sized, deletions, we
found that 64% of breakpoints occurred in the various
LCRs located in 17p11.2 (Stankiewicz et al. 2003; Shaw
et al. 2004). Of the 18 deletions, 3 appeared to be of
the same size, with breakpoints located within homol-
ogous LCRs, LCR17pA, and LCR17pD (in patients 147,
1153, and 1939) (Stankiewicz et al. 2003). Using PCR
mapping of somatic cell hybrids and sequence analysis,
we can show that these three deletions, along with three
additional deletions (in patients 266, 279, and 475) have
identical breakpoints within LCR17pA and LCR17pD,
suggesting that uncommon deletions in the SMS region
can be recurrent (fig. 1).

To refine the sites of crossovers for these uncommon
deletions, we used an approach successfully employed
to map strand exchanges that result in recombinant
CMT1A-REPs (Reiter et al. 1996, 1998) and recombi-

nant SMS-REPs (Bi et al. 2003). Owing to the high
homology between LCR17pA and LCR17pD, restric-
tion-enzyme consensus sequence cis-morphisms, or pa-
ralogous sequence variants, identified on the basis of the
available finished NCBI BAC sequence, were utilized in
breakpoint mapping to distinguish between the proximal
(RP11-218E15) and distal (CTD-3157E16) LCR copies.
Initially, several cis-morphisms were mapped in a hybrid
cell line, generated from patient 1153, until the intervals
containing the deletion breakpoints were narrowed to a
few hundred base pairs. Once these intervals were iden-
tified for patient 1153, we developed an assay to deter-
mine if other deletion breakpoints (in patients 147, 266,
279, 475, and 1939) mapped within this interval. To
identify a patient-specific junction fragment containing
the strand exchange of patient 1153, a PCR/digestion
assay was performed. The deletion breakpoints of pa-
tients 266, 279, and 475 had not been characterized by
FISH, but pulsed-field gel electrophoresis and microsat-
ellite analyses revealed that these deletions were uncom-
mon, large deletions of the SMS region, with distal
breakpoints localized in the vicinity of LCR17pA
(Greenberg et al. 1991; Juyal et al. 1996). Therefore, we
included these patients in our assay.

Sequence analysis of the breakpoint regions of patient
1153 revealed two cis-morphic AclI restriction consen-
sus sites (fig. 2A). A PCR/digestion assay was developed
in which a 5.2-kb fragment that included the cis-morphic
AclI restriction sites was amplified (primers 5′- CTACA-
GGCCTTTGGCTTTAACATCTGTATCATAG-3′ and
5′-CCTACATTCTGCTGAGGTATTCCTTTCAGTT-
ATC-3′) from patient and parent genomic DNA (fig.
2A). In a normal individual, digestion of the PCR prod-
uct with AclI should yield 0.5-kb and 4.7-kb fragments
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Figure 2 Detection of a patient-specific junction fragment. A, Schematic representation of the breakpoint regions in LCR17pA (white
rectangle) and LCR17pD (gray rectangle). The dotted line represents the proposed crossover event between the LCRs; the 2.0-kb junction
fragment results from this crossover. Small unblackened arrows denote the primers used for amplification of the 5.2-kb product containing the
breakpoint region. AclI restriction sites and expected fragment sizes upon digestion of the PCR product are shown (not drawn to scale). B,
Results of assay. The sizes of the bands are shown to the right; the patients and their parents are represented by the pedigrees at the top. All
six patients, but none of the parents, have the expected 2.0-kb junction fragment, indicating that the six strand exchanges occurred within this
interval. The 5.2-kb undigested fragment is visible and presumably a result of incomplete digestion. The 0.5-kb fragment from LCR17pA is
not shown.

from LCR17pA and 2.5-kb and 2.7-kb fragments
from LCR17pD (fig. 2A). With the assumption that a
homologous recombination event occurred in the inter-
val between the cis-morphic AclI restriction sites in the
patients, a 2.0-kb junction fragment and 0.5-kb and 2.7-
kb fragments would be visible from the recombinant
chromosome 17, along with the 0.5-kb, 2.5-kb, 2.7-kb,
and 4.7-kb fragments from the normal chromosome 17
(fig. 2A). AclI digestion of the 5.2-kb PCR products did,

indeed, yield a 2.0-kb junction fragment from all six
patients, but none of the parents (fig. 2B). Amplification
and digestion of the available somatic cell hybrids
yielded only the 2.0-kb junction fragment and the 0.5-
kb and 2.7-kb fragments expected from the deleted chro-
mosome 17 in all cases (data not shown).

To further refine the position of the strand exchanges
within the 2.0-kb hotspot, 13 cis-morphic nucleotides
located within the hotspot were utilized. To confirm that
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Figure 3 Fine mapping of the deletion breakpoints within the 2.0-kb AclI junction fragment. At the top is a diagram of the position of
the hotspot (dotted box) within the LCR sequence, and a finer-scale view of the hotspot itself is shown with the telomere (tel) on the left and
the centromere (cen) on the right. Paralogous sequence variants, or nucleotide cis-morphisms, between LCR17pA (above the line) and LCR17pD
(below the line) are represented by uppercase letters. Polymorphic nucleotides are represented by lowercase letters. Restriction enzyme consensus
sequence cis-morphisms (including the AclI sites used to isolate a patient-specific junction fragment) are also shown. Alu elements are depicted
by the diagonally striped rectangles, and AT-rich segments are represented by the blackened boxes labeled A, B, or C (C represents the AT-rich
segment distal to the hotspot, found only in LCR17pD). In the lower portion of the figure, patient numbers are given (right). Each circle
represents a cis-morphic nucleotide within the patient’s recombinant LCR17pA/D. Unblackened circles denote nucleotides matching LCR17pA,
and blackened circles denote nucleotides matching LCR17pD. Bold lines are drawn between the two cis-morphisms, in which the transition
from distal-like to proximal-like sequence occurs for each patient. The sizes of these intervals are given at the bottom (not drawn to scale).

these cis-morphisms were not polymorphisms, we at-
tempted to amplify proximal and distal LCR-specific
products via restriction enzyme digestion with ApoI,
DraI, TaqI, and XcmI (each of which had consensus site
cis-morphisms between LCR17pA and LCR17pD) and
subsequent PCR amplification from nine available
parents of the deletion patients (fig. 3). Digestion with
DraI and XcmI allowed LCR17pD-specific amplifi-
cation, whereas digestion with ApoI and TaqI allowed
LCR17pA-specific amplification. Sequences of this re-
gion that were obtained from the nine parents confirmed
the cis-morphic enzyme consensus sequences and ex-
cluded one of the potential cis-morphisms (fig. 3). The
excluded cis-morphism was found to be polymorphic
only in LCR17pD, possibly indicating a gene conversion
event from LCR17pD-like to LCR17pA-like.

DNA from five somatic cell hybrid lines (147, 266,
279, 475, and 1153) was amplified and sequenced to

narrow the strand exchange intervals. A somatic cell
hybrid line was not available for patient 1939, so the
2.0-kb AclI junction fragment was isolated by gel ex-
traction (fig. 2B). This junction-fragment DNA was then
used as a template for PCR and sequencing. Sequences
from the six junctions revealed that all strand exchanges
occurred within a 524-bp interval (fig. 3). Within this
interval, two crossovers (in patients 147 and 1153) oc-
curred within 136 bp, and the remaining four crossovers
occurred within 360 bp (fig. 3). Interestingly, the 524-
bp hotspot accounts for only 0.5% of the 124 kb of
98.6% sequence identity shared by LCR17pA and
LCR17pD.

In an attempt to explain the increased likelihood of
strand exchange in this interval, the genomic structure
of the region was analyzed for predisposing architecture.
BLAST analysis of the 524-bp interval aligned with itself
did not reveal any inverted sequences or palindromes



Reports 79

within the hotspot. Identification of repetitive sequences,
with the use of RepeatMasker, revealed a 132-bp portion
of an AluSq/x element in the 360-bp interval, in which
four of the strand exchanges occurred (see striped rec-
tangles in fig. 3). Intriguingly, the 360-bp interval con-
taining the Alu sequence, with only one polymorphic
nucleotide, is the interval of the highest sequence identity
(99.7%) within the 2.0-kb junction fragment (98.2%
identity) and is higher than the average identity (98.6%)
between LCR17pA and LCR17pD (fig. 3). Alu sequence-
mediated homologous recombination is known to be a
frequent cause of both germline and somatic deletions
(Deininger and Batzer 1999; Kolomietz et al. 2002). In-
terestingly, a core 26-bp sequence (containing CCAGC,
also found in x) within Alu elements has been found at
or close to sites of recombination events (Rudiger et al.
1995). This 26-bp core sequence is present in the AluSq/
x sequence within the hotspot interval, with only one
divergent nucleotide. These data suggest that both the
recombinogenic Alu sequence and the near-perfect iden-
tity of this interval may predispose the interval to the
increased frequency of strand exchanges.

Analysis of the 524-bp hotspot, with the use of
RepeatMasker, also identified a 28-bp AT-rich sequence,
386 bp centromeric to the hotspot interval in both
LCR17pA and LCR17pD, and a 39-bp AT-rich sequence
was identified 919 bp telomeric to the hotspot only in
LCR17pD (see blackened boxes labeled A, B, and C in
fig. 3). Sequence alignment of these AT-rich segments
revealed that the 39-bp segment unique to LCR17pD
has an internal 29-bp tract that matches, at 79% se-
quence identity and in an inverted orientation, both of
the 28-bp AT-rich segments within LCR17pA and
LCR17pD, which suggests that these sequences may be
able to form hairpin structures either within LCR17pD
or between LCR17pA and LCR17pD, potentially pre-
disposing the DNA to DSBs.

Several DNA sequence motifs have been shown to be
associated with site-specific recombination and re-
arrangements: these include x-like sequences, topoiso-
merase cleavage sites, translin target sites, human mini-
satellites, immunoglobulin heavy-chain class switch
sites, and DNA polymerase pause and frameshift hot-
spots (Abeysinghe et al. 2003). However, none of these
have been verified experimentally either to cause DSBs
or to stimulate recombination. Additionally, large-scale
comparative analysis of the sequences flanking various
deletion breakpoints have shown that those sequences
tend to be AT-rich, and translin binding sites and im-
munoglobulin heavy-chain class switch sites are present
at deletion breakpoints more frequently than would be
expected by chance (Abeysinghe et al. 2003). Given these
data, we analyzed the nucleotide composition of the 524-
bp hotspot and ∼5 kb located proximally and distally
for small sequence motifs. We found that the GC com-

position of the hotspot was 45%, compared with 42%–
43% for the LCR17pA and LCR17pD 10-kb fragments
including the hotspot and flanking sequences. Within the
hotspot interval, we found five deletion hotspot con-
sensus sequences (TGRRKM), seven immunoglobulin
heavy-chain class switch repeats (GAGCT, GGGCT,
TGGGG, and TGAGC), three DNA polymerase b

frameshift hotspots (TTTT and ACCCWR), one DNA
polymerase a/b frameshift hotspot (TGGNGT), and
one vaccinia topoisomerase I consensus cleavage site
(YCCTT) (Abeysinghe et al. 2003). Additionally, several
other motifs, such as a x-like sequence (GCWGGWGG),
translin target sites (ATGCAG and GCCCWSSW), hep-
tamer recombination signals (CACAGTG), and murine
MHC recombination/deletion hotspots ([CAGR]n) were
identified throughout the proximal and distal flanking
sequences (Abeysinghe et al. 2003). Although several
sequence motifs were found within the 524-bp hotspot
and flanking sequences, many of the consensus se-
quences occur frequently, and, thus, do not appear to
be associated in a specific manner with the observed
positional preference for strand exchange.

In addition to these sequence motifs, nucleotide com-
position that predisposes DNA to altered secondary
structure has also been associated with an increased like-
lihood of rearrangements (Abeysinghe et al. 2003).
Alternating purine-pyrimidine sequences ([RY]1–36),
which are prone to form Z-DNA, are overly represented
in the vicinity of deletion breakpoints (Haniford and
Pulleyblank 1983; Abeysinghe et al. 2003). Polypurine
tracts ([R]25–39), prone to adopting triple-helical H-DNA,
are also overly represented at deletion breakpoints
(Lyamichev et al. 1985; Mirkin et al. 1987; Abeysinghe
et al. 2003). These forms of DNA are proposed to have
increased sensitivity to rearrangements in several ways:
alteration of topological stress (Herbert and Rich 1996),
preferential cleavage by topoisomerase II (Spitzner et al.
1990), influence of nucleosome location (Garner and
Felsenfeld 1987), transcription inhibition (Peck and
Wang 1985), replication inhibition (Baran et al. 1987;
Lapidot et al. 1989; Dayn et al. 1992), and susceptibility
to nuclease attack (Abeysinghe et al. 2003). We identified
alternating purine-pyrimidine sequences ([RY]5–12) located
as close as 134 bp from the hotspot, but no polypurine
tracts of 25–39 nt.

To determine if our hotspot had any sequence simi-
larities to LCR/NAHR-associated recombination hot-
spots reported elsewhere, we used BLAST analysis. Pair-
wise analysis of our hotspot aligned with hotspots in the
CMT1A/HNPP (Reiter et al. 1996, 1998; Lopes et al.
1999), NF1 (Lopez-Correa et al. 2001), WBS (Bayes et
al. 2003), and SMS (Bi et al. 2003) regions did not reveal
any significant similarities.

Although several repetitive elements and potentially
stimulating sequence motifs were identified in and
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around the recombination hotspot, the reason for the
greatly increased likelihood of recombination within this
interval remains a topic of speculation. Because of the
commonly occurring consensus sites for the stimulating
motifs, we cannot conclude that any of these motifs are
responsible for the positional preference for strand
exchange. Alternatively, positional preference of cross-
overs associated with LCR/NAHR-mediated rearrange-
ment may reflect constraints on access to the DNA be-
cause of chromatin structure, rather than a cis-acting
stimulating sequence. We propose three possible sce-
narios: (1) the high sequence identity between the
LCR17pA and LCR17pD hotspot intervals (99.4%) to-
gether with the location of an AluSq/x element within
the hotspot increases the likelihood of strand exchanges,
possibly because of the recombinogenic 26-bp core Alu
sequence (Rudiger et al. 1995); (2) the AT-rich elements
flanking the hotspot are able to form hairpins, thus pre-
disposing DNA to DSBs and erroneous repair; and (3)
the hotspot interval is a site of programmed DSBs and
recombination in meiosis, and NAHR with subsequent
resolution of the Holliday structure leads to deletions.

Interestingly, four of the six deletions discussed in this
report (in patients 147, 266, 1153, and 1939) were
found elsewhere to be paternally-derived (Greenberg et
al. 1991; Stankiewicz et al. 2003), whereas one deletion
was maternal in origin (in patient 279; the origin of
deletion in patient 475 could not be determined). This
suggests a potential parental origin bias in uncommon
recurrent deletions of 17p11.2, possibly reflecting sex
differences in sites of recombination between chromo-
somes, as has been observed for meiotic homologous
recombination in the HLA class II region (Cullen et al.
1995, 1997). However, no parent of origin preference
was observed in a larger data set of patients with com-
mon recurrent rearrangements of 17p11.2 (Greenberg
et al. 1991; Juyal et al. 1996; Shaw et al. 2002).

The deletions described in this report have been la-
beled elsewhere as uncommon and nonrecurrent dele-
tions of SMS because their breakpoints do not fall within
the proximal and distal SMS-REPs, the homologous re-
combination substrates for the common deletion (Stan-
kiewicz et al. 2003). However, we have shown that these
deletions, although uncommonly sized, are, in fact, re-
current, occurring via NAHR through an alternate set
of homologous LCRs, LCR17pA, and LCR17pD. We
have estimated the occurrence of this large deletion to
be ∼4% in our cohort of patients with SMS, suggesting
that the frequency of recurrent deletions among patients
with SMS is ∼85%. Nevertheless, given the abundance
of LCRs within proximal 17p, it is possible that other
recurrent deletions may occur with the use of other sets
of LCRs as NAHR substrates (Stankiewicz et al. 2003).
Taken together, these data suggest that uncommon de-
letions are not always nonrecurrent, but, rather, can be

generated via the same NAHR mechanism by the use of
alternate repeat substrates. Thus, our findings, once
again, implicate homologous recombination as a major
mechanism for genomic disorders.
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