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a b s t r a c t

The transition density of a stochastic, logistic population growth model with multiplicative intrinsic
noise is analytically intractable. Inferring model parameter values by fitting such stochastic differential
equation (SDE) models to data therefore requires relatively slow numerical simulation. Where such sim-
ulation is prohibitively slow, an alternative is to use model approximations which do have an analytically
tractable transition density, enabling fast inference. We introduce two such approximations, with either
multiplicative or additive intrinsic noise, each derived from the linear noise approximation (LNA) of a
logistic growth SDE. After Bayesian inference we find that our fast LNA models, using Kalman filter recur-
sion for computation of marginal likelihoods, give similar posterior distributions to slow, arbitrarily exact
models. We also demonstrate that simulations from our LNA models better describe the characteristics
of the stochastic logistic growth models than a related approach. Finally, we demonstrate that our LNA
model with additive intrinsic noise and measurement error best describes an example set of longitudinal
observations of microbial population size taken from a typical, genome-wide screening experiment.

© 2014 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/3.0/).

. Introduction

Stochastic models simultaneously describe dynamics and noise or heterogeneity in real systems (Chen et al., 2010). For example,
tochastic models are increasingly recognised as necessary tools for understanding the behaviour of complex biological systems (Wilkinson,
011, 2009) and are also used to capture uncertainty in financial market behaviour (Kijima, 2013; Koller, 2012). Many such models are
ritten as continuous stochastic differential equations (SDEs) which often do not have analytical solutions and are slow to evaluate
umerically compared to their deterministic counterparts. Simulation speed is often a particularly critical issue when inferring model
arameter values by comparing simulated output with observed data (Hurn et al., 2007).

For SDE models where no explicit expression for the transition density is available, it is possible to infer parameter values by simulating
latent process using a data augmentation approach (Golightly and Wilkinson, 2005). However, this method is computationally intensive
nd not practical for all applications. When fast inference for SDEs is important, for example for real-time analysis as part of decision
upport systems or for big data inference problems where we simultaneously fit models to many thousands of datasets (e.g. Heydari et al.
2012)), we need an alternative approach. Here we demonstrate one such approach: developing an analytically tractable approximation
o the original SDE, by making linear noise approximations (LNAs) (Kurtz, 1970, 1971; Van Kampen, 2011). We apply this approach to a
DE describing logistic population growth for the first time.

The logistic model of population growth, an ordinary differential equation (ODE) describing the self-limiting growth of a population of
ize xt at time t, was developed by Verhulst (1845)
dxt

dt
= rxt

(
1 − xt

K

)
. (1)
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he ODE has the following analytic solution:

xt = K

1 + Qe−rt
, (2)

where Q =
(

K

P
− 1

)
ert0 , P = xt0 and t ≥ t0. (3)

The model describes a population growing from an initial size P with an intrinsic growth rate r, undergoing approximately exponential
rowth which slows as the availability of some critical resource (e.g. nutrients or space) becomes limiting (Peleg et al., 2007). Ultimately,
opulation density saturates at the carrying capacity (maximum achievable population density) K, once the critical resource is exhausted.
here further flexibility is required, generalized forms of the logistic growth process (Tsoularis and Wallace, 2002) may be used instead.
To account for uncertainty about processes affecting population growth which are not explicitly described by the deterministic logistic

odel, we can include a term describing intrinsic noise and consider a SDE version of the model. By adding a term representing multiplicative
ntrinsic noise to the ODE in (1) we arrive at a model, first introduced by Capocelli and Ricciardi (1974), which we refer to as the stochastic
ogistic growth model (SLGM):

dXt = rXt

(
1 − Xt

K

)
dt + �XtdWt, (4)

here P = xt0 and is independent of Wiener process Wt, t ≥ t0.
The Kolmogorov forward equation has not been solved for (4), therefore no explicit expression for the transition density is available.
Alternative stochastic formulations of the logistic ODE can be generated (Campillo et al., 2013).
While not equivalent to (4), SDEs derived from logistic growth Markov jump processes (MJPs) (Feller, 1939) are available within the

iterature (Ross et al., 2006, 2009). The intrinsic noise in MJPs tends to zero with larger population sizes, while (4) introduces an additional
arameter � that allows us to tune the amount of noise in the system that is not directly associated with the noise due to the discreteness of
he process (demographic noise). For the yeast populations that we model during the analysis of high-throughput screens (see Section 5.2)
e observe fluctuations much larger than those consistent with demographic noise, especially in the stationary phase. Consequently SDEs
erived from MJPs do not adequately describe our data. Therefore, we find that the SLGM in (4) is the more appropriate model for estimating

ogistic growth parameters of large populations.
Román-Román and Torres-Ruiz (2012) derive a diffusion process (which we label RRTR) from a reparameterisation of the logistic growth

odel. We use the RRTR as an approximation of the SLGM. Unlike the SLGM, the RRTR has a transition density that can be derived explicitly,
nabling fast inference. The Bayesian approach can be applied in a natural way to carry out parameter inference for state space models
ith tractable transition densities (West and Harrison, 1997). The transition density is used to describe the Markovian evolution of the

tate process St. A state space model also describes the probabilistic dependence between an observation process variable Xt and state
rocess St via a measurement error model.

The Kalman filter (Kalman, 1960) is typically used to infer a hidden state process of interest St and is an optimal estimator, minimising
he mean square error of estimated parameters when all noise in the system can be assumed to be Gaussian. The main assumptions of the
alman filter are that the underlying system is a linear dynamical system and that the noise has known first and second moments. Here,
e use the Kalman filter in a different way: to reduce computational time in a parameter inference algorithm by recursively computing

he marginal likelihood (West and Harrison, 1997).
The RRTR can be fit to data within an acceptable time frame by assuming multiplicative measurement error to give a linear Gaussian

tructure, allowing us to use a Kalman filter for inference.
We introduce two new first order linear noise approximations (LNAs) (Wallace, 2010; Komorowski et al., 2009) of (4), one with multi-

licative and one with additive intrinsic noise, which we label LNAM and LNAA respectively. The LNA reduces a SDE to a linear SDE with
dditive noise, which can be solved to give an explicit expression for the transition density. The LNA assumes the solution of a diffusion
rocess Yt can be written as Yt = vt + Zt (a deterministic part vt and stochastic part Zt), where Zt remains small for all t ∈ R≥0. The LNA is
seful when a tractable solution to a SDE cannot be found. Typically the LNA is used to reduce an SDE to a Ornstein-Uhlenbeck process
hich can be solved explicitly. Ornstein–Uhlenbeck processes are linear Gaussian, so time-discretising the resulting LNA will therefore

ive a linear Gaussian state space model with an analytically tractable transition density. We derive transition densities for the two approx-
mate models and construct a Kalman filter by choosing measurement noise to be either multiplicative or additive to retain linear Gaussian
tructure. Exact simulations from the SGLM are compared with each of the three approximate models. We compare the utility of each of
he approximate models for parameter inference by comparing simulations with both synthetic and real datasets.

. The Román-Román and Torres-Ruiz (2012) diffusion process

Román-Román and Torres-Ruiz (2012) present a logistic growth diffusion process (RRTR) which has a transition density that can be
ritten explicitly, allowing inference of model parameter values from discrete sampling trajectories.

The RRTR is derived from the following ODE:

dxt

dt
= Qr

ert + Q
xt. (5)
The solution to (5) is given in (2) (it has the same solution as (1)). Román-Román and Torres-Ruiz (2012) derive the RRTR from a
eparameterisation of the logistic growth model (2) for which the limit value depends on the initial one. Using the reparameterisation
ntroduced by Román-Román and Torres-Ruiz (2012) it is also possible to carry out inference in situations where there are several observed
rajectories of the same phenomenon, each of them showing logistic growth but with a different initial value.
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Román-Román and Torres-Ruiz (2012) see (5) as a generalisation of the Malthusian growth model with a deterministic, time-dependent
ertility h(t) = Qr/(ert + Q), and replace this with Qr/(ert + Q) + �Wt to obtain the following approximation to the SLGM:

dXt = Qr

ert + Q
Xtdt + �XtdWt, (6)

here Q and P are defined by (3). The process described in (6) is a particular case of the lognormal process with exogenous factors, therefore
n exact transition density is available (Gutiérrez et al., 2006). The transition density for Yt, where Yt = log(Xt), can be written:

(Yti
|Yti−1 = yti−1 ) ∼ N

(
�ti

, �ti

)
,

where a = r, b = r

K
,

�ti
= log(yti−1 ) + log

(
1 + be−ati

1 + be−ati−1

)
− �2

2
(ti − ti−1) and

�ti
= �2(ti − ti−1).

(7)

We chose a lognormal (multiplicative) measurement error model in order to construct a linear Gaussian structure, enabling fast inference
hrough the use of a Kalman filter for marginal likelihood computation.

. Linear noise approximation with multiplicative noise

We now take a different approach to approximating the SLGM (4), which will turn out to be closer to the exact solution of the SLGM than
he RRTR (6). Starting from the original model (4), we apply Itô’s lemma with the transformation f(Xt) ≡ Yt = log Xt to obtain the following
tô drift-diffusion process:

dYt =
(

r − 1
2

�2 − r

K
eYt

)
dt + �dWt. (8)

The log transformation from multiplicative to additive noise gives a constant diffusion term which will allow the LNA to give a better
pproximation of the diffusion term than it could on the original scale.

The LNA can be viewed as a first order Taylor expansion of an approximating SDE about a deterministic solution (Fearnhead et al., 2014).
e now separate the process Yt into a deterministic part vt and a stochastic part Zt so that Yt = vt + Zt and consequently dYt = dvt + dZt. We

hoose vt to be the solution of the deterministic part

dvt =
(

r − 1
2

�2 − r

K
evt

)
dt. (9)

Without loss of generality we set t0 = 0. After redefining our notation as follows: a = r − �2

2 and b = r
K , we solve (9) for vt ,

vt = log

(
aPeat

bP(eat − 1) + a

)
. (10)

We now write down an expression for dZt, where dZt = dYt − dvt:

dZt = (a − beYt ) dt + �dWt − (a − bevt ) dt

We then substitute in Yt = vt + Zt and simplify the expression to give

dZt = b (evt − evt+Zt ) dt + �dWt.

Zt is a non-linear SDE that cannot be solved explicitly. We use the LNA to obtain a SDE that can be solved: we make a first-order
pproximation of eZt ≈ 1 + Zt and then simplify to give

dZt = −bevt Ztdt + �dWt. (11)

This process is a particular case of the time-varying Ornstein–Uhlenbeck process, which can be solved explicitly. The transition density
or Yt (derivation in Appendix A) is then:

(Yti
|Yti−1 = yti−1 )∼N(�ti

, �ti
),

redefine yti−1 = vti−1 + zti−1 , Q =
(

a/b

P
− 1

)
,

�ti
= yti−1 + log

(
1 + Qe−ati−1

1 + Qe−ati

)
+ e−a(ti−ti−1) 1 + Qe−ati−1

1 + Qe−ati
zti−1 and

�ti
= �2

[
4Q (eati − eati−1 ) + e2ati − e2ati−1 + 2aQ 2(ti − ti−1)

2a(Q + eati )2

]
.

(12)
The LNA of the SLGM with multiplicative intrinsic noise (LNAM) can then be written as

dYt = (dvt + bevt vt − bevt Yt) dt + �dWt,
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r alternatively in terms of Xt,

dXt =
[

Xt

(
dvt + bevt vt − bevt log Xt + 1

2
�2

)]
dt + �XtdWt,

here Yt = log Xt, X0 = P is independent of Wt and t ≥ 0.
Similar to the RRTR, we chose a lognormal (multiplicative) measurement error model in order to construct a linear Gaussian structure,

nabling fast inference through the use of a Kalman filter for marginal likelihood computation.
Note that the RRTR given in (6) can be similarly derived using a zero-order noise approximation (eZt ≈ 1) instead of the LNA.

. Linear noise approximation with additive noise

As in Section 3, we start from the SLGM, given in (4). Without first log transforming the process, the LNA will lead to a worse approxi-
ation to the diffusion term of the SLGM, but we will see in the coming sections that there are nevertheless advantages. We separate the

rocess Xt into a deterministic part vt and a stochastic part Zt so that dXt = dvt + dZt and consequently Xt = vt + Zt . We choose vt to be the
olution of the deterministic part

dvt =
(

rvt − r

K
v2

t

)
dt.

Without loss of generality we set t0 = 0. After redefining our previous notation as follows: a = r and b = r
K , we solve dvt to give:

vt = aPeat

bP(eat − 1) + a
. (13)

We now solve dZt, where dZt = dXt − dvt. Expressions for both dXt and dvt are known:

dZt = (aXt − bX2
t )dt + �XtdWt − (avt − bv2

t )dt.

We then substitute in Xt = vt + Zt and simplify the expression to give

dZt = (a − 2bvt)Zt − bZ2
t dt + (�vt + �Zt) dWt.

Zt is a non-linear SDE that cannot be solved explicitly. We use the LNA to obtain a SDE that can be solved: we set second order term
bZ2

t dt = 0 and �ZtdWt = 0 such that the following SDE is linear in the narrow sense (Kloeden and Platen, 1992) (additive noise) to give

dZt = (a − 2bvt)Ztdt + �vtdWt. (14)

This approximate process is a particular case of the Ornstein–Uhlenbeck process, which can be solved. The transition density for Xt

derivation in Appendix B) is then

(Xti
|Xti−1 = xti−1 )∼N(�ti

, �ti
),

where xti−1 = vti−1 + zti−1 ,

�ti
= xti−1 +

(
aPeati

bP(eati − 1) + a

)
−

(
aPeati−1

bP(eati−1 − 1) + a

)
+ ea(ti−ti−1)

(
bP(eati−1 − 1) + a

bP(eati − 1) + a

)2

Zti−1

and

�t = 1
2

�2aP2e2ati

(
1

bP(eati − 1) + a

)4
× [b2P2(e2ati − e2ati−1 ) + 4bP(a − bP)(eati − eati−1 ) + 2a(ti − ti−1)(a − bP)2].

(15)

The LNA of the SLGM, with additive intrinsic noise (LNAA) can then be written as

dXt =
[
bvt

2 + (a − 2bvt) Xt

]
dt + �vtdWt,

here X0 = P independent of Wt and t ≥ 0. We chose a normal (additive) measurement error model in order to construct a linear Gaussian
tructure, enabling fast inference through the use of a Kalman filter for marginal likelihood computation.

. Simulation and Bayesian inference for the stochastic logistic growth equation and approximations

To compare the accuracy of each of the three approximations for the SLGM, we first compare simulated forward trajectories from the
RTR, LNAM and LNAA with simulated forward trajectories from the SLGM (Fig. 1). We use the Euler-Maruyama (E-M) method (Kloeden
nd Platen, 1992) with very fine discretisation to give arbitrarily exact simulated trajectories from each SDE.

The LNAA and LNAM trajectories are visually indistinguishable from the SLGM (Fig. 1A–D). On the other hand, population sizes simulated
ith the RRTR display large deviations from the mean as the population approaches its stationary phase when compared to the SLGM (Fig. 1A

nd B). The RRTR, see (6), which can be derived from a zero-order noise approximation of the SLGM, lacks a mean reverting property found
n the LNAM and LNAA. Fig. 1E further highlights the increases in variation as the population approaches stationary phase for simulated
rajectories of the RRTR, in contrast to the SLGM and our LNA models.
To compare the approximate models across a large parameter space, in Table 1 we present mean squared errors (MSEs) for the mean
rowth and standard deviations, using forward simulations. Table 1 shows that, within the range of parameters considered, the LNAM
nd LNAA better approximate the mean curve of the SLGM than the RRTR, with ∼10 and ∼5 times lower MSE than the RRTR respectively.
imilarly, Table 1 shows that the LNAM and LNAA better approximate the standard deviation of the SLGM than the RRTR, with ∼1000 and
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Fig. 1. Forward trajectories (no. of simulations=100) for a logistic SDE and approximations. See Table 2 for parameter values. (A) The stochastic logistic growth model (SLGM).
(B) The Román-Román and Torres-Ruiz (2012) (RRTR) approximation. (C) The linear noise approximation with multiplicative intrinsic noise (LNAM). (D) The linear noise
approximation with additive intrinsic noise (LNAA). (E) Standard deviations of simulated trajectories over time for the SLGM (black), RRTR (red), LNAM (green) and LNAA
(blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Table 1
Mean squared errors (MSEs) between our approximate models and the SLGM are calculated for the mean growth of forward simulated trajectories over time (100 trajectories,
each with 27 time points evenly spaced across t ∈ (0, 7)). MSEs are calculated across the following parameter space, K ∈ (0, 1), r ∈ (0, 8), P ∈ (0, 0.005) and � ∈ (0, 0.6), evaluating
at five evenly spaced values for each parameter range, giving a total of 54 = 625 combinations. An average MSE is then calculated across the 625 MSEs obtained. Similarly an
average MSE is calculated for the standard deviations of forward simulated trajectories over time, evaluating at each of the 27 time points.

Model RRTR LNAM LNAA

Average MSE for mean growth 0.051 0.0043 0.010
Average MSE for standard deviation 2.024 0.0021 0.0016
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1300 times less than the RRTR respectively. This observation is consistent with the RRTR lacking a mean reverting property. Both the
NAM and LNAA have good (low) MSE, with the LNAM slightly better overall, as expected.

.1. Bayesian parameter inference with approximate models

To compare the quality of parameter inference using each of these approximations we simulated synthetic time-course data from the
LGM and combined this with either lognormal or normal measurement error. Carrying out Bayesian inference with broad priors (see (16)
nd (17)) we compared posterior parameter estimates using each approximation with values used to generate the synthetic dataset. The
ynthetic time-course datasets consist of 27 time points generated using the E-M method with a fine discretisation (Kloeden and Platen,
992). Parameter values used to simulate time courses, see Table 2, were chosen to cover the range observed in growth curves of healthy
east cultures considered in the next section.

We formulate our inference problem as a dynamic linear state space model. To allow fast parameter inference we have chosen our
easurement error models to give linear Gaussian structures and construct a Kalman filter recursion for marginal likelihood computation

Appendix D). We therefore assume lognormal (multiplicative) error for the RRTR and LNAM, and for the LNAA we assume normal (additive)
easurement error. Dependent variable yti

and independent variable {ti, i = 1, . . ., N} are data input to the model (where ti is the time at
oint i and N is the number of time points). Xt is the state process, describing the population size.

The state space model for the RRTR and LNAM is as follows:

log(yti
) ∼ N(Xti

, �2),

(Xti
|Xti−1 = xti−1 ) ∼ N(�ti

, �ti
), where xti

= vti
+ zti

,
(16)

ti
and �ti

are given by (7) and (12) for the RRTR and LNAM respectively. Priors are as follows:

log X0 ≡ log P ∼ N(�P, �P
−1), log K ∼ N(�K , �K

−1), log r ∼ N(�r, �r
−1),

log �−2 ∼ N(��, ��
−1), log �−2 ∼ N(��, ��

−1)I[1,∞].

Bayesian inference is carried out using relatively uninformative priors (see Table C.1 for prior hyper-parameter values). Lognormal prior
istributions are chosen to ensure logistic growth and precision parameters are strictly positive. Ensuring that logistic growth parameters
re positive disallows biologically unrealistic cultures, for example, a yeast population size cannot be negative so we do not expect the
nderlying process to have a negative carrying capacity K. In order to avoid unnecessary exploration of extremely low probability regions
nd to ensure that intrinsic noise does not dominate the process, we truncate our prior for log �−2. We chose a lower limit of 1 after
bserving forward simulations from our processes, using logistic growth parameter values across a large parameter space (while covering
epresentative parameter choices for microbial population growth curves, see Section 5.2) and increasing log �−2 until intrinsic noise is so
arge that the deterministic part of the process is masked, rendering inference for the growth parameters impractical. An assumption of
he LNA is that intrinsic noise is small and so it is natural to restrict large intrinsic noise.

The state space model for the LNAA is as follows:

yti
∼ N(Xti

, �2),

(Xti
|Xti−1 = xti−1 ) ∼ N(�ti

, �ti
), where xti

= vti
+ zti

,
(17)

ti
and �ti

are given by (15). Priors are as in (16). Measurement error for the observed values is modelled with a normal distribution so
hat we have a linear Gaussian structure. The state space models in (16) and (17) have different measurement error structures. To make
fair comparison between (16) and (17), we chose our priors so that the marginal moments for the measurement error of our models

re similar by visual inspection of simulated growth curves, paying particular attention to the exponential growth phase, where growth is
astest.

To see how the inference from our approximate models compares with slower “exact” models, we carry out inference using the approach
f Golightly and Wilkinson (2005) with E-M simulations of (4) and of the log transformed process, using 15 evenly spaced intervals between
imulated observations. We used a single site update algorithm to update model parameters and the E-M approximation of the latent process
n turn. Given these simulations we can construct a state space model for an “exact” SLGM with lognormal measurement error (SLGM+L)
nd similarly for the SLGM with normal measurement error (SLGM+N), priors are as in (16).

We use the approach of Komorowski et al. (2009) to carry out inference for our approximate SDEs with the Kalman filter. Our inference
akes use of a Kalman filter to integrate out the state process. The Kalman filer allows for fast inference compared to slow numerical

imulation approaches that impute all states. The algorithm for our approximate models is the Metropolis-within-Gibbs sampler with a
ymmetric proposal (Gamerman and Lopes, 2006). Full-conditionals are sampled in turn to give samples from the joint posterior distri-
ution. Each update in our algorithm is a Metropolis-Hastings step using a Kalman filter. Proposals are tuned for each update during a
urn-in period. Faster inference could potentially be achieved by carrying out joint parameter updates. Posterior means are used as point
stimates of parameter values and standard deviations are used to describe variation of inferred parameters. The Heidelberger and Welch
onvergence diagnostic (Heidelberger and Welch, 1981) is used to determine whether convergence has been achieved for all parameters.

To compare our ability to recover SLGM parameters (with lognormal measurement error) using inference with LNA models, we simulate
ata and carry out Bayesian inference. Fig. 2 shows that all three approximate models can capture the synthetic time-course data well,
ut that the RRTR model is the least representative with the largest amount of drift occurring at the saturation stage, a property not found

n the SLGM or the two new LNA models. Comparing forwards trajectories with measurement error (Fig. 2), the “exact” model is visually
imilar to our new approximate models. Further, Table 2 demonstrates that parameter posterior means are close to the true values and

hat standard deviations are small for all models and each parameter set. By comparing posterior means and standard deviations to the
rue values, Table 2 shows that all our models are able to recover the three different parameter sets considered.

To compare our ability to recover SLGM parameters (with normal measurement error) using inference with LNA models, we simulate
ata and carry out Bayesian inference. Fig. 3 shows that, of our approximate models, only the LNAA model can appropriately represent the
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Table 2
Bayesian state space model parameter posterior means, standard deviations and true values for Fig. 2, 3 and 4. True values for the simulated data used for Fig. 1–3 are also given.

Panel Model K̂ r̂ P̂ �̂ �̂

Fig. 2, SLGM with lognormal error
A SGLM+L 0.150 (0.001) 2.982 (0.014) 1.002 × 10−04 (1.112 × 10−06) 3.860 × 10−03 (2.127 × 10−03) 0.017 (0.005)
B RRTR 0.150 (0.003) 2.990 (0.011) 9.931 × 10−05 (1.069 × 10−06) 5.684 × 10−03 (2.360 × 10−03) 0.012 (0.006)
C LNAM 0.150 (0.001) 2.988 (0.013) 9.980 × 10−05 (1.124 × 10−06) 4.140 × 10−03 (2.180 × 10−03) 0.016 (0.005)
D LNAA 0.150 (0.001) 3.005 (0.020) 9.647 × 10−05 (2.946 × 10−06) 3.099 × 10−05 (2.534 × 10−05) 0.019 (0.003)
E SGLM+L 0.110 (0.001) 3.975 (0.047) 5.054 × 10−05 (1.568 × 10−06) 6.159 × 10−03 (5.527 × 10−03) 0.051 (0.014)
F RRTR 0.109 (0.007) 3.984 (0.035) 5.046 × 10−05 (1.137 × 10−06) 5.928 × 10−03 (4.596 × 10−03) 0.037 (0.009)
G LNAM 0.110 (0.001) 3.985 (0.046) 5.043 × 10−05 (1.580 × 10−06) 6.188 × 10−03 (5.191 × 10−03) 0.052 (0.013)
H LNAA 0.110 (0.001) 3.959 (0.067) 5.207 × 10−05 (4.310 × 10−06) 4.540 × 10−05 (4.395 × 10−05) 0.059 (0.010)
I SGLM+L 0.300 (0.001) 5.997 (0.029) 1.962 × 10−05 (4.041 × 10−07) 9.543 × 10−03 (4.035 × 10−03) 0.024 (0.015)
J RRTR 0.301 (0.004) 6.015 (0.017) 1.943 × 10−05 (2.835 × 10−07) 1.241 × 10−02 (2.307 × 10−03) 0.008 (0.006)
K LNAM 0.300 (0.001) 6.015 (0.031) 1.953 × 10−05 (4.202 × 10−07) 8.943 × 10−03 (4.252 × 10−03) 0.027 (0.016)
L LNAA 0.300 (0.001) 6.037 (0.067) 1.895 × 10−05 (1.502 × 10−06) 8.122 × 10−05 (1.596 × 10−04) 0.047 (0.008)

Fig. 3, SLGM with normal error
A SLGM+N 0.150 (0.002) 3.099 (0.085) 9.299 × 10−05 (7.305 × 10−06) 5.326 × 10−03 (1.009 × 10−03) 0.059 (0.030)
B RRTR 0.213 (0.123) 1.368 (0.263) 4.552 × 10−03 (2.118 × 10−03) 2.539 × 10−01 (1.097 × 10−01) 0.419 (0.129)
C LNAM 0.171 (0.033) 1.580 (0.271) 5.241 × 10−03 (2.048 × 10−03) 2.054 × 10−01 (7.805 × 10−02) 0.473 (0.051)
D LNAA 0.150 (0.002) 2.990 (0.262) 1.189 × 10−04 (7.099 × 10−05) 5.490 × 10−03 (1.060 × 10−03) 0.053 (0.033)
E SLGM+N 0.109 (0.001) 4.183 (0.074) 4.390 × 10−05 (4.129 × 10−06) 9.679 × 10−04 (2.806 × 10−04) 0.057 (0.012)
F RRTR 0.157 (0.087) 2.631 (0.337) 4.398 × 10−04 (1.678 × 10−04) 1.040 × 10−01 (1.009 × 10−01) 0.374 (0.162)
G LNAM 0.116 (0.009) 3.019 (0.374) 4.967 × 10−04 (1.397 × 10−04) 3.346 × 10−02 (4.309 × 10−02) 0.475 (0.044)
H LNAA 0.110 (0.001) 4.010 (0.158) 5.012 × 10−05 (1.443 × 10−05) 1.093 × 10−03 (3.638 × 10−04) 0.053 (0.013)
I SLGM+N 0.305 (0.003) 5.267 (0.125) 3.263 × 10−04 (3.407 × 10−05) 1.119 × 10−02 (1.974 × 10−03) 0.045 (0.031)
J RRTR 0.314 (0.057) 3.030 (0.233) 1.307 × 10−03 (2.897 × 10−04) 2.228 × 10−01 (3.708 × 10−02) 0.075 (0.086)
K LNAM 0.313 (0.020) 3.392 (0.430) 1.118 × 10−03 (3.269 × 10−04) 1.176 × 10−01 (8.435 × 10−02) 0.360 (0.165)
L LNAA 0.302 (0.002) 5.862 (0.523) 2.890 × 10−05 (2.599 × 10−05) 8.774 × 10−03 (1.466 × 10−03) 0.041 (0.028)

Fig. 4, observed yeast data
A SLGM+L 0.110 (0.007) 4.098 (0.299) 7.603 × 10−06 (3.206 × 10−06) 3.457 × 10−01 (5.319 × 10−02) 0.113 (0.109)
B SLGM+N 0.110 (0.003) 3.905 (0.173) 1.044 × 10−05 (3.086 × 10−06) 1.852 × 10−04 (7.460 × 10−05) 0.167 (0.028)
C RRTR 0.114 (0.026) 3.764 (0.201) 1.079 × 10−05 (3.155 × 10−06) 3.379 × 10−01 (4.840 × 10−02) 0.078 (0.077)
D LNAM 0.110 (0.011) 3.777 (0.216) 1.077 × 10−05 (3.277 × 10−06) 3.362 × 10−01 (5.137 × 10−02) 0.104 (0.108)
E LNAA 0.109 (0.003) 3.832 (0.198) 1.069 × 10−05 (3.680 × 10−06) 1.769 × 10−04 (6.607 × 10−05) 0.164 (0.033)

True values K r P � �

Fig. 1, panels A–D 0.11 4 0.00005 N/A 0.05
Fig. 2 and 3, panels A–D 0.15 3 0.0001 0.005 0.01
Fig. 2 and 3, panels E–H 0.11 4 0.00005 0.001 0.05
Fig. 2 and 3, panels I–L 0.3 6 0.0002 0.01 0.02
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Fig. 2. Forward trajectories with measurement error, simulated from parameter posterior samples (sample size = 1000). Model fitting is carried out on SLGM forward
trajectories with lognormal measurement error (black), for three different sets of parameters (see Table 2). See (16) or (17) for model and Table C.1 for prior hyper-parameter
values. Each row of figures corresponds to a different time course data set, simulated from a different set of parameter values, see Table 2. Each column of figures corresponds
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o a different model fit: (A), (E) and (I) SLGM+L (orange). (B), (F) and (J) RRTR model with lognormal error (red). (C), (G) and (K) LNAM model with lognormal error (green).
D), (H) and (L) LNAA model with normal error (blue). See Table 2 for parameter posterior means and true values. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of the article.)

imulated time-courses as both models with lognormal measurement error: the RRTR and LNAM do not closely match the data. Comparing
orward trajectories with measurement error (Fig. 3), the “exact” model is most visually similar to the LNAA, which shares the same

easurement error structure. Further, Table 2 demonstrates that only our models with normal measurement error have posterior means
lose to the true values and that standard deviations are larger in the models with lognormal measurement error. Observing the posterior
eans for K and each parameter set (Table 2), we can see that the RRTR has the largest standard deviations and that, of the approximate
odels, its posterior means are furthest from both the true values and the “exact” model posterior means. Comparing LNA models to the

exact” models with matching measurement error, we can see in Table 2 that they share similar posterior means and only slightly larger
tandard deviations. Example posterior diagnostics given in Fig. E.1, demonstrate that posteriors are distributed tightly around true values
or our LNAA and data from the SLGM with normal measurement error. Density plots with overlaid curves for the SLGM, RRTR, LNAM and
NAA model parameter posteriors used in Fig. 3D are given in Fig. E.2. Fig. E.2 also shows that inference using the LNAA gives parameter
osteriors that are most similar to the SLGM and that posteriors from the LNAA have greater density over the true parameter values than
ther approximations.

.2. Application to observed yeast data

We now consider which diffusion equation model can best represent observed microbial population growth curves taken from a
uantitative fitness analysis (QFA) experiment (Addinall et al., 2011; Banks et al., 2012), see Fig. 4. The observed data consist of scaled
ell density estimates over time for a population, or culture of budding yeast Saccharomyces cerevisiae. Independent replicate cultures are
noculated on plates and photographed over a period of 5 days. Captured images are then converted into estimates of integrated optical
ensity (IOD, which we assume are proportional to cell population size), by the software package Colonyzer (Lawless et al., 2010). The
ataset chosen for model fitting is a representative set of time-courses for 10 independent populations, each with 27 time points.

As in Fig. 3, we see that the LNAA model is the only approximation that can appropriately represent the time-course data. Both the RRTR
nd LNAM fail to bound the data as tightly as the LNAA (Fig. 4). Our two “exact” models are visually similar to our approximate models with

he same measurement error. The SLGM+N is most similar to the LNAA and the SLGM+L is most similar to the RRTR and LNAM. This is as
xpected due to matching measurement error structures. Table 2 summarises parameter estimates for the observed yeast data using each
odel. The variation in the LNAA model parameter posteriors is much smaller than the RRTR and LNAM, indicating a more appropriate
odel fit. Comparing the LNA models and “exact” models with matching measurement error, we can see in Table 2 that they share similar
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Fig. 3. Forward trajectories with measurement error, simulated from inferred parameter posterior samples (sample size = 1000). Model fitting is carried out on SLGM forward
trajectories with normal measurement error (black), for three different sets of parameters (see Table 2). See (16) or (17) for model and Table C.1 for prior hyper-parameter
values. Each row of figures corresponds to a different time course data set, simulated from a different set of parameter values, see Table 2. Each column of figures corresponds
to a different model fit: (A), (E) and (I) SLGM+N (pink). (B), (F) and (J) RRTR model with lognormal error (red). (C), (G) and (K) LNAM model with lognormal error (green).
(D), (H) and (L) LNAA model with normal error (blue). See Table 2 for parameter posterior means and true values.(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)

Table 3
Total mean squared error (MSE) for 10 observed yeast growth time courses, each with 1000 forward simulated time-courses with measurement error. Parameter values are
taken from posterior samples. Standard Deviations give the variation between the sub-total MSEs for each yeast time course fit.

Model SLGM+N SLGM+L RRTR LNAM LNAA

Total MSE 29.847 100.165 600.601 99.397 30.959
Standard deviation 1.689 8.391 55.720 9.263 2.030
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osterior means and standard deviations for all parameters and in particular, they are very similar for both K and r, which are important
henotypes for calculating fitness (Addinall et al., 2011).

In Table 3, we compare the quality of parameter inference for 10 observed yeast time-courses with each approximate model. MSEs for
000 posterior sample forward simulations are calculated for each yeast time course and summed to give a Total MSE for each model. The
RTR has the highest total MSE and a much larger total MSE than the “exact” SLGM+L. It is interesting to see there is a very similar total
SE for the SLGM+L and LNAM, and similarly for the SLGM+N and LNAA, demonstrating that our approximations perform well.
Computational times for convergence of our MCMC schemes (code is available at http://github.com/jhncl/LNA.git) can be compared

sing estimates for the minimum effective sample size per second (ESSmin/sec) (Plummer et al., 2006). Table F.1 shows the ESSmin/sec
f the approximate models compared to the exact approaches. The average ESSmin/sec of our approximate model (coded in C) is ∼100
nd “exact” model ∼1 (coded in JAGS (Plummer, 2010) with 15 imputed states between time points, chosen to maximise ESSmin/s). Our
oftware for inference (coded in C) is about twice as fast as the simple MCMC scheme used by JAGS, indicating that our inference is ∼50×
aster than an “exact” approach. A more efficient “exact” approach could speed up further, say by another factor of 5, but our approximate
pproach will remain at least an order of magnitude faster (and the approximate approach could also be speeded up with a little work).
o ensure convergence of our Gibbs sampler we use a burn-in of 600,000 and a thinning of 4000 to obtain a final posterior sample size of
000. Our approximate models describe the mean curve of the SLGM well, when carrying out inference for models of systems with more
omplicated underlying dynamics, the restarting method of Fearnhead et al. (2014) could be used to give improved approximation and

ncreased numerical stability.

http://github.com/jhncl/LNA.git
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Fig. 4. Forward trajectories with measurement error, simulated from inferred parameter posterior samples (sample size = 1000). Model fitting is carried out on observed
yeast time-course data (black). See (16) or (17) and Table C.1 for prior hyper-parameter values. See Table 2 for parameter posterior means. (A) SLGM+N (pink). (B) SLGM+L
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orange). (A) RRTR model with lognormal error (red). (B) LNAM model with lognormal error (green). (C) LNAA model with normal error (blue). (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of the article.)

. Conclusion

We have presented two new diffusion processes for modelling logistic growth data where fast inference is required: the linear noise
pproximation (LNA) of the stochastic logistic growth model (SLGM) with multiplicative noise and the LNA of the SLGM with additive
ntrinsic noise. Both the LNAM and LNAA are derived from the linear noise approximation of the stochastic logistic growth model (SLGM).
he new diffusion processes approximate the SLGM more closely than an alternative approximation (RRTR) proposed by Román-Román
nd Torres-Ruiz (2012). The RRTR lacks a mean reverting property that is found in the SLGM, LNAM and LNAA, resulting in increasing
ariance during the stationary phase of population growth (see Fig. 1). The likelihood for a state space model with either the RRTR and
NAM is only tractable with lognormal measurement error. The LNAA differs as the likelihood is only tractable with normal measurement
rror. We are therefore able to cover two types of measurement error, with analytical solutions to the LNA and a tractable likelihood.

We compared the ability of the LNAM, LNAA and RRTR to approximate the SLGM by recovering parameter values from simulated
atasets using standard MCMC techniques. When modelling stochastic logistic growth with lognormal measurement error we find that
ur approximate models are able to represent data simulated from the original process.When modelling stochastic logistic growth with
ormal measurement error we find that only our models with normal measurement error can appropriately track data simulated from
he original process (see Fig. 3). We also compared parameter posterior distribution summaries with parameter values used to generate
imulated data after inference using both approximate and “exact” models (see Table 2). We find that, when using the RRTR model, posterior
istributions for the carrying capacity parameter K are less precise than for the LNAM and LNAA approximations. We also note that it is
ot possible to model normal measurement error while maintaining a linear Gaussian structure (which allows fast inference with the
alman filter) when carrying out inference with the RRTR. We conclude that for additive measurement error, the LNAA model is the most
ppropriate approximate model.

To test model performance during inference with real population data, we fitted our approximate models and the “exact” SLGM to
icrobial population growth curves generated by quantitative fitness analysis (QFA) (see Fig. 4). We found that the LNAA model was the
ost appropriate for modelling experimental data. It seems likely that this is because a normal error structure best describes this particular

ataset, placing the LNAM and RRTR models at a disadvantage. We demonstrate that arbitrarily exact methods and our fast approximations
erform similarly during inference for 10 diverse, experimentally observed, microbial population growth curves (see Table 3) which shows
hat, in practise, our fast approximations are as good as “exact” methods.

It is interesting to note that, although the LNAA is not a better approximation of the original SGLM process than the LNAM, it is still quite
easonable. Figs. 1A and D shows that the SLGM and LNAA processes are visually similar. Fig. 1E demonstrates that forward trajectories of
he LNAA also share similar levels of variation over time with the SLGM and LNAM.
Fast inference with the LNAA gives us the potential to develop large hierarchical Bayesian models which simultaneously describe
housands of independent time-courses from QFA with a diffusion equation, allowing us to infer the existence of genetic interactions on a
enome-wide scale using realistic computational resources.
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Here, we have concentrated on a biological model of population growth. However, we expect that the approach we have demonstrated:
enerating linear noise approximations of stochastic processes to allow fast Bayesian inference with Kalman filtering for marginal likelihood
omputation, will be useful in a wide range of other applications where simulation is prohibitively slow.
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ppendix A. LNAM solution

First we look to solve dZt, given in Eq. (11). We define f (t) = −bevt = − baPeati

bP(eati −1)+a
to obtain the following,

dZt = f (t)Ztdt + �dWt.

Conditioning on Z0, the solution of Zt has the following form (Arnold, 2013):

Zt = �(t)

[
Z0 +

∫ t

0

�(s)−1�dWs

]
,

here �(t) = e

∫ t

0
f (s)ds = a

bP(eati −1)+a
.

Note that the solution to the above integral is given by∫ t

0

f (s)ds =
∫ t

0

− baPeas

bP(eas − 1) + a
ds = log

(
a

bP(eati − 1) + a

)
.

Finally, the distribution at time t is Zt|Z0 ∼ N(Mt, Et) (Arnold, 2013), where

Mt = �(t)Z0 and Et = �(t)2 ∫ t

0

[
�(s)−1�

]2
ds.

Further, Mt = a
bP(eati −1)+a

Z0 and Et = �2[(a/bP(eati − 1) + a)]2 ∫ t

0
[(a/bP(eas − 1) + a)]−2ds.

As
∫ t

0

[
a

bP(eas−1)+a

]−2
ds = b2P2e2ati +4bP(a−bP)eati +2at(a−bP)2

2a3 − b2P2+4bP(a−bP)
2a3 ,

Et = �2
[

a

bP(eati − 1) + a

]2
[

b2P2(e2ati − 1) + 4bP(a − bP)(eati − 1) + 2ati(a − bP)2

2a3

]

= �2

[
b2P2(e2ati − 1) + 4bP(a − bP)(eati − 1) + 2ati(a − bP)2

2a(bP(eati − 1) + a)2

]
.

aking our solutions for vt (10) and Zt, we can now write our solution for the LNA to the log of the logistic growth process (8).
As Yt = vt + Zt ,

Yt |Y0∼N
(

log

[
aPeati

bP(eati − 1) + a

]
+ Mt, Et

)
.

Note: aPeati

bP(eati −1)+a
has the same functional form as the solution to the deterministic part of the logistic growth process (4) and is equivalent

hen � = 0 (such that a = r − �2

2 = r).
Further, as Yt is normally distributed, we know Xt = eYt will be log normally distributed and

Xt |X0∼ log N(log

(
aPeati

bP(eati − 1) + a

)
+ Mt, Et).

Alternatively set Q = (a/bP − 1),

Xt |X0∼ log N(log

(
a
b

1 + Qe−at

)
+ Mt, Et).

From our solution to the log process we can obtain the following transition density

(Yti
|Yti−1 = yti−1 ) ∼ N

(
�ti

, �ti

)
,

where yti−1 = vti−1 + zti−1 , Q =

⎛
⎝ a

b
P

− 1

⎞
⎠ eat0 ,

�t = yt + log

(
1 + Qe−ati−1

)
+ e−a(ti−ti−1) 1 + Qe−ati−1

zt and

i i−1 1 + Qe−ati 1 + Qe−ati i−1

�ti
= �2

[
4Q (eati − eati−1 ) + e2ati − e2ati−1 + 2aQ 2(ti − ti−1)

2a(Q + eati )2

]
.
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n order to match our initial conditions correctly, we set Z0 = 0.

ppendix B. LNAA solution

First we look to solve dZt, given in (14). We define f(t) = a − 2bvt to obtain the following,

dZt = f (t)Ztdt + �vtdWt.

Conditioning on Z0, the solution of Zt has the following form (Arnold, 2013):

Zt = �(t)

[
Z0 +

∫ t

0

�(s)−1�dWs

]
,

here �(t) = e

∫ t

0
f (s)ds = eati

(
a

bP(eati −1)+a

)2
.

Note that the solution to the above integral is given by∫ t

0

f (s)ds =
∫ t

0

(a − 2bVs)ds = ati − 2 log

(
bP(eati − 1) + a

a

)
,

here
∫ t

0
Vsds = 1

b log
(

bP(eati −1)+a
a

)
.

Finally the distribution at time t is Zt|Z0 ∼ N(Mt, Et) (Arnold, 2013), where

Mt = �(t)Z0 and Et = �(t)2 ∫ t

0

[
�(s)−1�

]2
ds.

Mt = eati

(
a

bP(eati − 1) + a

)2
Z0

nd

Et =
(

eati

(
a

bP(eati − 1) + a

)2
)2 ∫ t

0

[
eas

(
a

bP(eas − 1) + a

)2
]−2

�2V2
s ds

= �2

(
eati

(
a

bP(eati − 1) + a

)2
)2 ∫ t

0

[
eas

(
a

bP(eas − 1) + a

)2
]−2[

aPeas

bP(eas − 1) + a

]2

ds.

= �2

(
eati

(
a

bP(eati − 1) + a

)2
)2 ∫ t

0

[
e−2as

(
a

bP(eas − 1) + a

)−4
][

aPeas

bP(eas − 1) + a

]2

ds

= �2

(
eati

(
1

bP(eati − 1) + a

)2
)2 ∫ t

0

[
a2P2

(
1

bP(eas − 1) + a

)−2
]

ds,

s
∫ t

0

(
1

bP(eas−1)+a

)−2
ds = b2P2e2ati +4bP(a−bP)eati +2at(a−bP)2

2a − b2P2+4bP(a−bP)
2a ,

Et = 1
2

�2aP2e2ati

(
1

bP(eati − 1) + a

)4

×
[
b2P2(e2ati − 1) + 4bP(a − bP)(eati − 1) + 2ati(a − bP)2] .

Taking our solutions for vt (13) and Zt, we can obtain the following transition density

(Xti
|Xti−1 = xti−1 )∼N(�ti

, �ti
),

where xti−1 = vti−1 + zti−1 ,

�ti
= xti−1 +

(
aPeati

bP(eati − 1) + a

)
−

(
aPeati−1

bP(eati−1 − 1) + a

)

+ea(ti−ti−1)

(
bP(eati−1 − 1) + a

bP(eati − 1) + a

)2

Zti−1 and

�ti
= 1

2
�2aP2e2ati

(
1

bP(eati − 1) + a

)4

×[b2P2(e2ati − e2ati−1 ) + 4bP(a − bP)(eati − eati−1 )
+2a(ti − ti−1)(a − bP)2].

In order to match our initial conditions correctly, we set Z0 = 0.
ppendix C. Prior hyper-parameters for Bayesian state space models

See Table C.1
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Table C.1
Prior hyper-parameters for Bayesian sate space models, Lognormal with mean (�) and precision (�)

Parameter name Value

�K log(0.1)
�K 2
�r log(3)
�r 5
�P log(0.0001)
�P 0.1
�� log(100)
�� 0.1

A

a
E

a

w
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�� log(10000)
�� 0.1

ppendix D. Kalman filter

To obtain �(yt1:N ) for the LNAA with normal measurement error we can use the following Kalman Filter algorithm. 	ti
and Yti

are the state
nd measurement processes respectively. wt and ut is the state and measurement error respectively, where wt and ut are IID, E[wt] = 0,
[ut] = 0, E[wtwt

T ] = Wt and E[utut
T] = U (measurement error is not time dependent). The unobserved latent process is driven by

	ti
|	ti−1∼N(Gti

	ti−1 , Wti
)

nd the measurement error distribution, relating the latent variable to the observed is given by,

Yti
|	ti

∼N(FT
ti

	ti
, U),

here U and matrices Fti
, Gti

and Wti
are all given. The Kalman filter consists of the recursion,

	ti
|y1:ti

∼N(mti
, Cti

),

mti
= ati

+ Rti
F(FT Rti

F + U)
−1

[yti
− FT ati

],

Cti
= Rti

− Rti
F(FT Rti

F + U)
−1

FT Rti

nitialized with m0 = P and C0 = 0, where

	ti
|y1:ti−1

∼N(ati
, Rti

),
ati

= Gti
mti−1

and Rti
= Gti

Cti−1 GT
ti

+ Wti
.

See (West and Harrison, 1997) for further details.
The transition density distribution, see (15) is as follows:

	ti
|	ti−1 ∼N(Gti

	ti−1 , Wti
)

orequivalently (Xti
|Xti−1 = xti−1 ) ∼N

(
�ti

, �ti

)
, where xti−1 = vti−1 + zti−1 ,

	t =
(

1
Xti

)
=

(
1 0
H˛,ti

Hˇ,ti

)(
1
Xti−1

)
= Gti

	ti−1 ,

Gti
=

(
1 0
H˛,ti

Hˇ,ti

)
, Wti

=
(

0 0
0 �ti

)

where H˛,ti
= H˛(ti, ti−1) = vt − Vt−1ea(ti−ti−1)

(
bP(eaTi−1 − 1) + a

bP(eaTi − 1) + a

)2

and Hˇ,ti
= Hˇ(ti, ti−1) = ea(ti−ti−1)

(
bP(eaTi−1 − 1) + a

bP(eaTi − 1) + a

)2

.

he measurement error distribution is as follows:

yti
|	ti

∼ N(FT 	ti
, U)

or equivalently yti
|	ti

∼ N(Xti
, �2

� ),

where F =
(

0
1

)
and U = �2

� .

atrix Algebra:
ati
= Gti

mti−1

=
(

1 0
H˛,ti

Hˇ,ti

)(
1
mti−1

)
=

(
1
H˛,ti

+ Hˇ,ti
mti−1

)
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Rti
= Gti

Cti−1 GT
ti

+ Wti

=
(

0 0
0 Hˇ,ti

2c2
ti−1

)
+

(
0 0
0 �ti

)
=

(
0 0
0 Hˇ,ti

2c2
ti−1

+ �ti

)

Cti−1 =
(

0 0
0 c2

ti−1

)

Rti
F(FT Rti

F + U)
−1 =

(
0 0
0 Hˇ,ti

2c2
ti−1

+ �ti

)(
0
1

)

×
[(

0 1
)(

0 0
0 Hˇ,ti

2c2
ti−1

+ �ti

)(
0
1

)
+ �2

�

]−1

=
[(

Hˇ,ti

2c2
ti−1

+ �ti
+ �2

�

)]−1
(

0
Hˇ,ti

2c2
ti−1

+ �ti

)

mti
= ati

+ Rti
F(FT Rti

F + U)
−1

[yti
− FT ati

]

=
(

1
H˛,ti

+ Hˇ,ti
mti−1

)
+
[(

Hˇ,ti

2c2
ti−1

+ �ti
+ �2

�

)]−1
(

0
Hˇ,ti

2c2
ti−1

+ �ti

)[
yti

−
(

0 1
)(

1
H˛,ti

+ Hˇ,ti
mti−1

)]

=

⎛
⎝ 0

H˛,ti
+ Hˇ,ti

mti−1 +
Hˇ,ti

2c2
ti−1

+ �ti

Hˇ,ti

2c2
ti−1

+ �ti
+ �2

�

[
yti

− H˛,ti
− Hˇ,ti

mti−1

]
⎞
⎠

Cti
= Rti

− Rti
F(FT Rti

F + U)
−1

FT Rti

=
(

0 0
0 Hˇ,ti

2c2
ti−1

+ �ti

)
−
[(

Hˇ,ti

2c2
ti−1

+ �ti
+ �2

�

)]−1
(

0
Hˇ,ti

2c2
ti−1

+ �ti

)[(
0 1

)(
0 0
0 Hˇ, ti

2c2
ti−1

+ �ti

)]

=

⎛
⎜⎝

0 0

0 Hˇ,ti

2c2
ti−1

+ �ti
−

(
Hˇ,ti

2c2
ti−1

+ �ti

)2

Hˇ,ti

2c2
ti−1

+ �ti
+ �2

�

⎞
⎟⎠

With mti
and Cti

for i = 1 : N, we can evaluate ati
, Rti

and �(xti
|yt1:(i−1) ) for i = 1 : N. We are interested in �(yt1:i ) =

∏N
i=1�(yti

|yt1:(i−1) ), where

(yti
|yt1:(i−1) ) =

∫
x

�(yti
|xti

)�(xti
|yt1:(i−1) )dxti

gives a tractable Gaussian integral. Finally,

log �(yt1:N ) =
N∑

i=1

log �(yti
|yt1:(i−1) )

=
N∑

i=1

[
− log

(√
2�(�2

f
+ �2

g )
)

− (�f − �g)2

2(�2
f

+ �2
g )

]
,

where �f − �g = yti
− ati

= yti
− H˛,ti

− Hˇ,ti
mti−1

and �2
f

+ �2
g = �2

� + Rti
= �2

� + Hˇ,ti

2c2
ti−1

+ �ti
.

Procedure

Set i = 1. Initialize m0 = P and C0 = 0.
Evaluate and store the following log likelihood term:

[ ]

log �(yti

|yt1:(i−1) ) = − log
(√

2�(�2
f

+ �2
g )

)
− (�f − �g)2

2(�2
f

+ �2
g )

,

where �f − �g = yti
− H˛,ti

− Hˇ,ti
mti−1 and �2

f
+ �2

g = �2
� + Hˇ,ti

2c2
ti−1

+ �ti
.
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Fig. E.1. Trace, auto-correlation and density plots for the LNAA model parameter posteriors (sample size = 1000, thinning interval = 4000), see Fig. 3D. Posterior density
(black), prior density (dashed blue) and true parameter values (red) are shown in the right hand column. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)
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Fig. E.2. Density plots with overlaid curves for the SLGM (orange), RRTR (red), LNAM (green) and LNAA (blue) model parameter posteriors (sample size = 1000, thinning
interval = 4000), see Fig. 3D. True parameter values are given in black. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of the article.)
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Table F.1
Average minimum effective sample size per second (ESSmin/sec) and average CPU time in seconds for the SLGM+N, SLGM+L, RRTR, LNAM and LNAA for 10 model applications
to observed yeast data in Fig. 4 (excluding burn-in time). A sample size of 600,000 without thinning is obtained after a burn-in of 600,000.

Model SLGM+N SLGM+L RRTR LNAM LNAA

3

4
5

A

A

R

A

A
B
C
C
C

F
F
G

G
G

H
H
H

K
K
K
K
K

K
K
L

P
P
P
R
R

R
T
V

Average ESSmin/s 1.11 0.87 74.90 78.66 121.01
Average CPU time (s) 2397 2463 187 188 195

Create and store both mti
, and Cti

,

where mti
= H˛,ti

+ Hˇ,ti
mti−1 +

Hˇ,ti

2c2
ti−1

+ �ti

Hˇ,ti

2c2
ti−1

+ �ti
+ �2

�

[
yti

− H˛,ti
− Hˇ,ti

mti−1

]

and c2
ti

= Hˇ,ti

2c2
ti−1

+ �ti
−

(
Hˇ,ti

2c2
ti−1

+ �ti

)2

Hˇ,ti

2c2
ti−1

+ �ti
+ �2

�

.

Increment i, i = (i + 1) and repeat steps 2–3 till log �(ytN |yt1:(N−1) ) is evaluated.
Calculate the sum:

log �(yt1:N ) =
N∑

i=1

log �(yti
|yt1:(i−1) ).

ppendix E. Parameter posterior diagnostic plots

See Figs. E.1 and E.2.

ppendix F. Computational speed statistics

See Table F.1
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