On the provability logic of bounded arithmetic

Alessandro Berarducci*
Dipartimento di Matematica, Universitá di Pisa, Via Buonarrotti 2, 56100 Pisa, Italy

Rineke Verbrugge**

Faculteit der Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands

Communicated by D. van Dalen
Received 27 September 1991
Revised 6 March 1992

Abstract

Berarducci, A. and R. Verbrugge, On the provability logic of bounded arithmetic, Annals of Pure and Applied Logic 61 (1993) 75-93. Let $P L \Omega$ be the provability logic of $I \Delta_{0}+\Omega_{1}$. We prove some containments of the form $L \subseteq P L \Omega \subset T h(\mathscr{C})$ where L is the provability logic of PA and \mathscr{C} is a suitable class of Kripke frames.

1. Introduction

In this paper we develop techniques to build various sets of highly undecidable sentences in $I \Delta_{0}+\Omega_{1}$. Our results stem from an attempt to prove that the modal logic of provability in $I \Delta_{0}+\Omega_{1}$, here called $P L \Omega$, is the same as the modal logic L of provability in PA. It is already known that $L \subseteq P L \Omega$. We prove here some strict containments of the form $P L \Omega \subset \operatorname{Th}(\mathscr{C})$ where \mathscr{C} is a class of Kripke frames.

Stated informally the problem is whether the provability predicates of $I \Delta_{0}+\Omega_{1}$ and PA share the same modal properties. It turns out that while $I \Delta_{0}+\Omega_{1}$ certainly satisfies all the properties needed to carry out the proof of Gödel's second incompleteness theorem (namely $L \subset P L \Omega$), the question whether $L=P L \Omega$ might depend on difficult issues of computational complexity. In fact if

[^0]$P L \Omega \neq L$, it would follow that $I \Delta_{0}+\Omega_{1}$ does not prove its completeness with respect to Σ_{1}^{0}-formulas, and a fortiori $I \Delta_{0}+\Omega_{1}$ does not prove the Matijasevič-Robinson-Davis-Putnam theorem (every r.e. set is diophantine, see [6], [3]). On the other hand if $I \Delta_{0}+\Omega_{1}$ did prove its completeness with respect to $\Sigma_{1_{-}^{-}}^{0}$ formulas, it would follow not only that $L=P L \Omega$, but also that $N P=c o-N P$. The possibility remains that $L=P L \Omega$ and that one could give a proof of this fact without making use of provable Σ_{1}^{0}-completeness in its full generality. Such a project is not without challenge due to the ubiquity of Σ_{1}^{0}-completeness in the whole area of provability logic.

We begin by giving the definitions of L and $P L \Omega$.
Definition 1.1. The language of modal logic contains a countable set of propositional variables, a propositional constant \perp, boolean connectives \neg, \wedge, \rightarrow, and the unary modality \square. The modal provability logic L is axiomatized by all formulas having the form of propositional tautologies (including those containing the \square-operator) plus the following axiom schemes:

1. $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$.
2. $\square(\square A \rightarrow A) \rightarrow \square A$.
3. $\square A \rightarrow \square \square A$.

The rules of inference are:

1. If $\vdash A \rightarrow B$ and $\vdash A$, then $\vdash B$ (modus ponens).
2. If $\vdash A$, then $\vdash \square A$ (necessitation).

Definition 1.2. Let T be a Σ_{1}^{b}-axiomatized theory in the language of arithmetic (see [1]). A T-interpretation ${ }^{*}$ is a function which assigns to each modal formula A a sentence A^{*} in the language of T, and which satisfies the following requirements:

1. \perp^{*} is the sentence $0=1$.
2. * commutes with the propositional connectives, i.e., $(A \rightarrow B)^{*}=A^{*} \rightarrow B^{*}$, etc.
3. $(\square A)^{*}=\operatorname{Prov}_{T}\left(\left\ulcorner A^{*}\right\urcorner\right)$.

Clearly * is uniquely determined by its restriction to the propositional variables. The presence in the modal language of the propositional constant \perp allows us to consider closed modal formulas, i.e., modal formulas containing no propositional variables. If A is closed, then A^{*} does not depend on ${ }^{*}$, e.g. ($\left.\square \perp\right)^{*}$ is the arithmetical sentence $\operatorname{Prov}_{T}(\ulcorner 0=1\urcorner)$.

Definition 1.3. Let $P L \Omega$ be the provability logic of $I \Delta_{0}+\Omega_{1}$, i.e., $P L \Omega$ is the set of all those modal formulas A such that for all $I \Delta_{0}+\Omega_{1}$-interpretations ${ }^{*}$, $I \Delta_{0}+\Omega_{1} \vdash A^{*}$.

It is easy to see that $P L \Omega$ is deductively closed (with respect to modus ponens and necessitation), so we can write $P L \Omega \vdash A$ for $A \in P L \Omega$. Our results arise from an attempt to answer the following:

Question 1.4. Is $P L \Omega=L$? (Where we have identified L with the set of its theorems.)

The soundness side of the question, namely $L \subseteq P L \Omega$, has already been answered positively. This depends on the fact that any reasonable theory which is at least as strong as Buss' theory S_{2}^{1} satisfies the derivability conditions needed to prove Gödel's incompleteness theorems (provided one uses efficient coding techniques and employs binary numerals). For the completeness side of the question, namely $P L \Omega \subseteq L$, we will investigate whether we can adapt Solovay's proof that L is the provability logic of PA.

We assume that the reader is familiar with the Kripke semantics for L and with the method of Solovay's proof as described in [9]. In particular we need the following:

Theorem 1.5. $L \vdash A$ iff A is forced at the root of every finite tree-like Kripke model. (It is easy to see that A will then be forced at every node of every finite tree-like Kripke model.)

Solovay's method is the following: if $L \nvdash A$, then the countermodel ($K,<, \Vdash$) provided by the above theorem is used to construct a PA-interpretation * for which PA $\nmid A^{*}$.

The reason Solovay's proof cannot be adapted to $I \Delta_{0}+\Omega_{1}$ is that it is not known whether $I \Delta_{0}+\Omega_{1}$ satisfies provable Σ_{1}^{0}-completeness (see Definition 2.1) which is used in an essential way in Solovay's proof.

2. Arithmetical preliminaries

Definition 2.1. Let Γ be a set of formulas. We say that a (Σ_{1}^{b}-axiomatized) theory T satisfies provable Γ-completeness, if for every formula $\sigma(\boldsymbol{x}) \in \Gamma$,

$$
T \vdash \sigma\left(x_{1}, \ldots, x_{n}\right) \rightarrow \operatorname{Prov}_{T}\left(\left\ulcorner\sigma\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\urcorner\right) .
$$

It is known that PA , as well as any reasonable theory extending $I \Delta_{0}+\exp$, satisfies provable Σ_{1}^{0}-completeness.

De Jongh, Jumelet and Montagna [5] showed that Solovay's result can be extended to all reasonable Σ_{1}^{0}-sound theories T satisfying provable Σ_{1-}^{0} completeness. More precisely it is sufficient that the provability predicate of T provably satisfies the axioms of Guaspari and Solovay's modal witness comparison logic R^{-}. So Solovay's result holds for $\mathrm{ZF}, I \Sigma_{n}$ and $I \Delta_{0}+\exp$.

On the other hand it is known that if $N P \neq c o-N P$, then $I \Delta_{0}+\Omega_{1}$ does not satisfy provable Σ_{1}^{0}-completeness or even provable Δ_{0}-completeness. In [13] the second author proved that, if $N P \neq c o-N P, I \Delta_{0}+\Omega_{1}$ does not even satisfy provable completeness for the single Σ_{1}^{0}-formula

$$
\sigma(u, v) \equiv \exists x\left(\operatorname{Prf}_{I \Lambda_{0}+\Omega_{1}}(x, u) \wedge \forall y<x \neg \operatorname{Prf}_{I \Lambda_{0}+\Omega_{1}}(y, v)\right) .
$$

One possibility, although unlikely, remains: to adapt Solovay's proof to $I \Delta_{0}+\Omega_{1}$ it would suffice that $I \Delta_{0}+\Omega_{1}$ satisfies provable Σ_{1}^{0}-completeness for sentences, and we cannot rule out this possibility even assuming $N P \neq c o-N P$. By [5] it would actually suffice to have provable Σ_{1}^{0}-completeness for all closed instances of $v(u, v)$ where u and v are instantiated by Gödel numbers of arithmetical sentences.

In view of the above difficulties, we try to do without Σ_{1}^{0}-completeness. In the rest of this section we state some results about $I \Delta_{0}+\Omega_{1}$ which in some cases allow us to dispense with the use of Σ_{1}^{0}-completeness. The following proposition is proved in [15]:

Theorem 2.2. $I \Delta_{0}+\Omega_{1}$ satisfies provable Σ_{1}^{b}-completeness.

By abuse of notation we will denote by $\square A$ both the arithmetization of the provability predicate of $I \Delta_{0}+\Omega_{1}$ and the corresponding modal operator. $\diamond A$ is defined as $\neg \square \neg A$ and $\square^{+} A$ as $\square A \wedge A$. If $A(x)$ is an arithmetical formula, we will write $\forall x \square(A(x))$ as an abbreviation for the arithmetical sentence which formalizes the fact that for all x there is a $I \Delta_{0}+\Omega_{1}$-proof of $A(\dot{x})$, where \dot{x} is the binary numeral for x. If A and B are arithmetical sentences, $\square A \leqslant \square B$ denotes the witness comparison sentence

$$
\exists x\left(\operatorname{Prf}_{I_{0}+\Omega_{1} 1}(x,\ulcorner A\urcorner) \wedge \forall y<x \neg \operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}(y,\ulcorner B\urcorner)\right) .
$$

Similarly $\square A<\square B$ denotes

$$
\exists x\left(\operatorname{Prf}_{I \Delta_{0}+\Omega_{1} 1}(x,\ulcorner A\urcorner) \wedge \forall y \leqslant x \neg \operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}(y,\ulcorner B\urcorner)\right) .
$$

$\square_{k} A$ is a formalization of the fact that A has a proof in $I \Delta_{0}+\Omega_{1}$ of Gödel number $\leqslant k$. So $\square A<\square B$ can be written as $\exists x\left(\square_{x} A \wedge \neg \square_{x} B\right)$. (Note that all the above definitions are only abbreviations for some arithmetical formulas and are not meant to correspond to an enrichment of the modal language.)

Remark 2.3. Since the proof predicate can be formalized by a Σ_{1}^{b}-formula, we have $I \Delta_{0}+\Omega_{1} \vdash \square A \rightarrow \square \square A$ and $I \Delta_{0}+\Omega_{1} \vdash \square_{x} A \rightarrow \square \square_{x} A$.

Definition 2.4. By an $I \Delta_{0}+\Omega_{1}$-cut we mean a formula $I(x)$ with exactly one free variable x, such that $I \Delta_{0}+\Omega_{1}$ proves that I defines an initial segment of numbers containing 0 and closed under successor, addition, multiplication, and the function ω_{1} (see [15]). We write $x \in I$ for $I(x)$.

Given an $I \Delta_{0}+\Omega_{1}$-cut $I, I \Delta_{0}+\Omega_{1}$ can formalize the fact that I defines a model of $I \Delta_{0}+\Omega_{1}$. It follows that for any arithmetical sentence θ we have:

Proposition 2.5. $I \Delta_{0}+\Omega_{1} \vdash \square(\theta) \rightarrow \square\left(\theta^{I}\right)$, where θ^{I} is obtained from θ by relativizing all the quantifiers to I.

Note that if a Σ_{1}^{0}-formula is witnessed in a cut, then it is witnessed in the universe. Thus we have:

Remark 2.6. For every $I \Delta_{0}+\Omega_{1}$-cut I, and every Σ_{1}^{0}-formula $\sigma\left(x_{1}, \ldots, x_{n}\right)$,

$$
I \Delta_{0}+\Omega_{1} \vdash x_{1} \in I \wedge \cdots \wedge x_{n} \in I \wedge \sigma^{I}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \sigma\left(x_{1}, \ldots, x_{n}\right) .
$$

The use of binary numerals is essential for the following proposition (see [7]):
Proposition 2.7. For any $I \Delta_{0}+\Omega_{1}-$ cut $I, I \Delta_{0}+\Omega_{1} \vdash \forall x \square(x \in I)$.
Making use of an efficient truth predicate (as in [7]), Verbrugge [13] proved the following result:

Theorem 2.8 (Small reflection principle). $I \Delta_{0}+\Omega_{1}+\forall k \square\left(\square \square_{k} A \rightarrow A\right)$.
An immediate corollary is the following principle (originally stated by Švejdar for PA):

Corollary 2.9 (Švejdar's principle). $1 \Delta_{0}+\Omega_{1} \vdash \square A \rightarrow \square(\square B \leqslant \square A \rightarrow B)$.
Using Solovay's technique of shortening of cuts, it is easy to prove the following:

Proposition 2.10. There is an $I \Delta_{0}+\Omega_{1}$-cut J, such that for each Σ_{1}^{0}-formula $\sigma\left(x_{1}, \ldots, x_{n}\right)$ we have:

$$
I \Delta_{0}+\Omega_{1} \vdash J\left(x_{1}\right) \wedge \cdots \wedge J\left(x_{n}\right) \wedge \sigma^{I}\left(x_{1}, \ldots, x_{n}\right) \rightarrow \square \sigma\left(x_{1}, \ldots, x_{n}\right)
$$

Proof. The proof is similar to the proof of provable Σ_{1}^{b}-completeness for $I \Delta_{0}+\Omega_{1}$ (see [15]). Therefore we only give a sketch of the proof. By induction on the structure of the formula, one can prove that for each Δ_{0}-formula A with free variables x_{1}, \ldots, x_{n}, there are k, l and m such that

$$
\begin{aligned}
& I \Delta_{0}+\Omega_{1} \vdash \forall x_{1}, \ldots, x_{n} \forall x \forall y\left(x=\max \left(x_{1}, \ldots, x_{n}\right) \wedge|y|=2^{\mid A} A\right\rangle^{k} \cdot|x|^{\prime}+m \\
& \wedge A\left(x_{1}, \ldots, x_{n}\right) \rightarrow \exists z \leqslant y \operatorname{Prf}_{I_{\Delta_{0}}+\Omega_{1}}\left(z,\left\ulcorner A\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right]\right) .
\end{aligned}
$$

Now let J be the cut, which can be obtained by Solovay's shortening methods (cf. [15, 8, 10]), such that

- $I \Delta_{0}+\Omega_{1} \vdash \forall x\left(J(x) \rightarrow \exists z\left(z=2^{x}\right)\right)$ and
- $I \Delta_{0}+\Omega_{1} \vdash \forall x, y\left(J(x) \wedge J(y) \rightarrow J(x+y) \wedge J(x \cdot y) \wedge J\left(2^{|x|} \cdot|y|\right)\right)$.

For this cut, we have for all Δ_{0}-formulas A,

$$
\begin{aligned}
I \Delta_{0}+\Omega_{1} \vdash & \forall x_{1}, \ldots, x_{n}\left(J\left(x_{1}\right) \wedge \cdots \wedge J\left(x_{n}\right) \wedge A\left(x_{1}, \ldots, x_{n}\right)\right. \\
& \left.\rightarrow \exists z \operatorname{Prf}_{I \Delta_{0}+\Omega_{1}}\left(z,\left\ulcorner A\left(\dot{x}_{1}, \ldots, \dot{x}_{n}\right)\right\urcorner\right)\right) .
\end{aligned}
$$

The result immediately follows.
In the sequel ' J ' will always refer to the cut of Proposition 2.10.
Corollary 2.11. If $S_{i}(i=1, \ldots, k)$ are Σ_{1}^{0}-sentences, then

Proof. Let J be as in Proposition 2.10. Work in $I \Delta_{0}+\Omega_{1}$ and suppose $\square\left(\bigvee_{i} S_{i}\right)$ holds. Since J (provably) defines a model of $I \Delta_{0}+\Omega_{1}$, it follows $\square\left(\bigvee_{i} S_{i}^{J}\right)$. By Proposition 2.10 and Remark 2.6, $\square\left(S_{i}^{J} \rightarrow \square^{+} S_{i}\right)$ and the desired result follows.

The above corollary was originally proved by Visser [14] as a consequence of the following more general result:

Theorem 2.12 (Visser's principle). If S and $S_{i}(i=1, \ldots, k)$ are Σ_{1}^{0}-sentences, then

$$
I \Delta_{0}+\Omega_{1} \vdash \square\left(\bigwedge_{i}\left(S_{i} \rightarrow \square S_{i}\right) \rightarrow S\right) \rightarrow \square S
$$

3. Trees of undecidable sentences

We will rephrase the problem of whether $P L \Omega=L$ as a problem concerning the existence of suitable trees of undecidable sentences.

Let \mathscr{C} be a class of finite tree-like strict partial orders. Without loss of generality we assume that for all $(K,\langle) \in \mathscr{C}, K=\{1, \ldots, n\}$ for some $n \in \omega$, and 1 is the root (i.e., the least element of K). By $T h(\mathscr{C})$ we denote the set of all those modal formulas that are forced at the root of every Kripke model whose underlying tree belongs to \mathscr{C}. Let \leqslant be the non-strict partial order associated to $<$.

Definition 3.1. Given a tree ($K,<$) with root 1 and underlying set $K=$ $\{1, \ldots, n\}$, we say that ($K,<$) can be embedded (or simulated) in $I \Delta_{0}+\Omega_{1}$ if there are arithmetical sentences L_{1}, \ldots, L_{n} (one for each node) such that, letting \square denote formalized provability from $I \Delta_{0}+\Omega_{1}$, the conjunction of the following
sentences is consistent with $I \Delta_{0}+\Omega_{1}$:

1. L_{1};
2. $\square^{+}\left(L_{1} \vee \cdots \vee L_{n}\right)$;
3. $\square^{+}\left(L_{i} \rightarrow \neg L_{j}\right)$ for $i \neq j$ in K;
4. $\square^{+}\left(L_{a} \rightarrow \diamond L_{b}\right)$ for $a<b$ in K;
5. $\square^{+}\left(L_{a} \rightarrow \square \neg L_{b}\right)$ for $a \nless b$ in K.

The following lemma is inspired by Solovay's proof of the fact that L is the provability logic of PA.

Lemma 3.2. In order for $P L \Omega \subseteq \operatorname{Th}(\mathscr{C})$ to be the case it suffices that every tree $(K,<) \in \mathscr{C}$ can be embedded in $I \Delta_{0}+\Omega_{1}$.

Proof. Suppose $A \notin T h(\mathscr{C})$. Then there is a Kripke model ($K,<, \stackrel{H}{ }$) such that $(K,<) \in \mathscr{C}, K=\{1, \ldots, n\}, 1$ is the least element of K, and $1 \Vdash \neg A$. By our hypothesis there exists a model M of $I \Delta_{0}+\Omega_{1}$ and sentences L_{1}, \ldots, L_{n} satisfying, inside the model M, the properties $1-5$ of Definition 3.1. Define an $I \Delta_{0}+\Omega_{1}$-interpretation ${ }^{*}$ by setting, for every atomic propositional letter p, $p^{*} \equiv \bigvee_{i \Vdash p} L_{i}$. It is then easy to verify by induction on the complexity of the modal formula B, that for every $i \in K$:

1. $i \Vdash B \Rightarrow M \vDash \square^{+}\left(L_{i} \rightarrow B^{*}\right)$;
2. $i \Vdash \neg B \Rightarrow M \vDash \square^{+}\left(L_{i} \rightarrow \neg B^{*}\right)$.

The induction step for \square is based on the following consequences of $1-5$:

1. $M \vDash \square^{+}\left(L_{i} \rightarrow \diamond L_{j}\right)$ for $i<j$;
2. $M \vDash \square^{+}\left(L_{i} \rightarrow \square\left(\bigvee_{j>i} L_{i}\right)\right)$.

Since $1 \Vdash \neg A$, it follows that $M \vDash \neg A^{*}$, hence $I \Delta_{0}+\Omega_{1} \nvdash A^{*}$ as desired.
Corollary 3.3. If every finite tree $(K,<)$ can be embedded in $I \Delta_{0}+\Omega_{1}$, then $P L \Omega=L$.

Proof. Let \mathscr{C} be the class of all finite trees. If our hypothesis is satisfied, then $L \subseteq P L \Omega \subseteq T h(\mathscr{C})=L$.

It can be easily verified that the sufficient condition of Lemma 3.2 is also necessary. Thus $P L \Omega \subseteq T h(\mathscr{C})$ iff every $(K,<) \in \mathscr{C}$ can be embedded in $I \Delta_{0}+\Omega_{1}$. Hence a very natural question to ask is:

Question 3.4. Which finite trees can be embedded in $I \Delta_{0}+\Omega_{1}$?
Note that a complete answer to the above question, although interesting by itself, may not suffice to characterize $P L \Omega$. In fact if \mathscr{C} is the set of all finite trees

W

X

Y

Fig. 1. The trees $\mathbf{W}, \mathbf{X}, \mathbf{Y}$.
that can be embedded in $I \Delta_{0}+\Omega_{1}$, we can in general only conclude $P L \Omega \subseteq$ $T h(\mathscr{C})$.

In order to describe the results proved in this and previous papers, we need to define what it means for a tree to omit another tree.

Definition 3.5. Let $\left(T_{1},<_{1}\right)$ and ($\left.T_{2},<_{2}\right)$ be (strict) partial orders. An homomorphic embedding of ($T_{1},<_{1}$) into ($\left.T_{2},<_{2}\right)$ is an injective map $f: T_{1} \rightarrow T_{2}$ such that for all $x, y \in T_{1}, x<{ }_{1} y \leftrightarrow f(x)<{ }_{2} f(y)$. If there is no homomorphic embedding of T_{1} into T_{2} we say that T_{2} omits T_{1}.

If we try to adapt Solovay's proof to $I \Delta_{0}+\Omega_{1}$ in the most straightforward manner, the only trees that we can embed in $I \Delta_{0}+\Omega_{1}$ are the linear trees, namely trees omitting $(K,<)$ where $K=\{1,2,3\}, 1<2,1<3$ and 2 is incomparable with 3.

A first improvement can be achieved using Švejdar's principle: let \mathscr{C}_{1} be the class of all trees that omit the tree $\mathbf{W}=(W,<)$, the least strict partial order with underlying set $W=\{1,2,3,4\}$ such that $1<2,1<3<4$ (see Fig. 1). The second author proved in her master's thesis [12] that for trees in \mathscr{C}_{1} Solovay's proof can be adapted using Švejdar's principle. In other words, $P L \Omega \subseteq T h\left(\mathscr{C}_{1}\right)$. She also proved that the inclusion is a strict one.

In subsequent work she showed, using both Švejdar's and Visser's principles, that $P L \Omega$ is included in the modal theory of \mathscr{C}_{2}, the class of all trees of height $\leqslant 3$.

A new improvement [2] was achieved by analogous techniques but using a different definition of the Solovay constants. In this way it was proved that $P L \Omega \subseteq T h\left(\mathscr{C}_{3}\right)$, where \mathscr{C}_{3} is the class of all trees that omit the tree $\mathbf{X}=(X,<)$, the least strict partial order with underlying set $X=\{1,2,3,4,5\}$ such that $1<2<4<5,1<2<3$.

Finally in Section 4 of the present paper, we improve these earlier results, by proving:

Theorem 3.6. $P L \Omega \subseteq T h\left(\mathscr{C}_{4}\right)$, where \mathscr{C}_{4} is the class of trees that omit the tree $\mathbf{Y}=(Y,<)$, the least strict partial order with underlying set $Y=\{1,2,3,4,5,6\}$ such that $1<2<3<5,1<2<4<6$.

In particular, Theorem 3.6 says that we can embed \mathbf{X} but not \mathbf{Y}. Note that the trees in \mathscr{C}_{4} can have an arbitrarily large number of bifurcation points, but each bifurcation point except the root can have at most one immediate successor which is not a leaf. The root can have any number of immediate successors which are not leaves.

On the other hand, we prove in Sections 5 and 6 that for many classes \mathscr{C} of trees (and especially for the classes $\mathscr{C}_{1}, \ldots, \mathscr{C}_{4}$ defined above), we cannot have $P L \Omega=T h(\mathscr{C})$. Therefore, all inclusions mentioned above are strict. More precisely we prove that if $P L \Omega=T h(\mathscr{C})$, then every binary tree can be homomorphically embedded in some tree belonging to \mathscr{C}. So it is unlikely that $P L \Omega$ is the theory of a class of trees, unless $P L \Omega=L$.

4. Upper bounds on PLS

Our task in this section will be to prove $P L \Omega \subseteq T h\left(\mathscr{C}_{4}\right)$ using Lemma 3.2.
Definition 4.1. Given $(K, \prec) \in \mathscr{C}_{4}$, we say that $i \in K$ is a special node, iff i is a leaf, and some brother of i is not a leaf.

For example, in the tree \mathbf{X} of Fig. 1, the only special node is 3 .
Definition 4.2. Let $(K,<) \in \mathscr{C} 4$. Without loss of generality assume that $K=$ $\{1, \ldots, n\}$ and 1 is the root. Let J be the cut of Proposition 2.10. By a self-referential construction based on the diagonal lemma, we can simultaneously define sentences L_{1}, \ldots, L_{n}, and auxiliary functions v, w, S, such that the following holds:

1. If $i \in K$ is not special, let $w(i)=\mu x \square_{x} \neg L_{i}$ (with the convention that $w(i)=\infty$ if $\diamond L_{i}$); if $i \in K$ is special $w(i)=\mu x \in J \square_{x} \neg L_{i}$ (with the convention that $w(i)=\infty$ if $\diamond^{j} L_{i}$). We agree that ∞ is a specific element greater than any integer. Note that the definition of w can be formalized in $I \Delta_{0}+\Omega_{1}$.
2. If j is an immediate successor of i in $(K,<)$, let $v(i, j)=w(j)$; otherwise $v(i, j)=\infty$.
3. $S: K \rightarrow K$ is defined as follows: $S(i)=i$ if for no $j \in K$ we have $v(i, j)<\infty$; otherwise among all the $j \in K$ with $v(i, j)<\infty$, pick one for which $v(i, j)$ is minimal, and set $S(i)=S(j)$. (Note that there exists at most one such j because if $w(j)=w\left(j^{\prime}\right)<\infty$, then there is one single proof of both $\neg L_{j}$ and $\neg L_{j^{\prime}}$, so $j=j^{\prime}$.)
4. $I \Delta_{0}+\Omega_{1} \vdash L_{i} \leftrightarrow \square \neg L_{1} \wedge i=S(1)$.

The important point to observe, is that the definition of S can be formalized in $I \Delta_{0}+\Omega_{1}$ and that $I \Delta_{0}+\Omega_{1}$ proves that $S(1)$ is always defined. This depends on the fact that, although S is defined in a recursive way, to compute $S(1)$ one only needs a standard number of recursive calls, namely at most d where d is the
height of the tree $(K,<)$ (in fact at each recursive call we climb one step up in the tree). Note also that S depends self-referentially on L_{1}, \ldots, L_{n}. Finally note that, if a, b are distinct immediate successors of i, then the statement $v(i, a)<$ $v(i, b)$ is equivalent to a witness comparison sentence in which some quantifiers are relativized to J. In particular, if a and b are not special, then $v(i, a)<v(i, b)$ is equivalent to the Σ_{1}^{0}-sentence $\square \neg L_{a}<\square \neg L_{b}$.

Remark 4.3. The main differences with Solovay's construction are the following: (1) We do not use an extra node 0 (but this is a minor point since we could define L_{0} as $\diamond L_{1}$). (2) In our construction we can only jump one step at a time, namely at each recursive call S we can only move from one point to some immediate successor. (3) While Solovay employs a primitive recursive function from ω to K whose definition is not directly formalizable in $I \Delta_{0}+\Omega_{1}$, we use instead a function $S: K \rightarrow K$ which is provably total in $I \Delta_{0}+\Omega_{1}$. (4) We jump to a special node $i \in K$ only if we find a proof of $\neg L_{i}$ belonging to the cut J.

Given ($K,<$) as above, we will show that L_{1}, \ldots, L_{n} constitute an embedding of ($K,<$) in $I \Delta_{0}+\Omega_{1}$. We need the following lemma.

Lemma 4.4. Let L_{1}, \ldots, L_{n} and $(K,<)$ be as in Definition 4.2. Then:

1. $\vdash \square \neg L_{1} \rightarrow L_{1} \vee \cdots \vee L_{n}$.
2. $\vdash L_{i} \rightarrow \neg L_{j}$ for $i \neq j$ in K.
3. $\vdash L_{i} \rightarrow \square \neg L_{i}$ for $i \in K$.
4. L_{1} is consistent with $I \Delta_{0}+\Omega_{1}$.
5. If $j, j^{\prime} \in K$ are brothers, then $\vdash \square \neg L_{j} \leftrightarrow \square \neg L_{j^{\prime}}$.
6. $\vdash L_{a} \rightarrow \diamond L_{b}$ for $a<b$ in K.
7. $+L_{b} \rightarrow \square \neg L_{a}$ for $a<b$ in K.
8. If i is above (i.e. \geqslant) a brother of j, then $\vdash L_{i} \rightarrow \square \neg L_{j}$; if moreover j is a leaf, then $\vdash L_{j} \rightarrow \square \neg L_{i}$.
9. Let $b>1$ be an immediate successor of the root 1 . Then $\vdash L_{1} \rightarrow \square \square\left(\neg L_{b}\right)$.
10. $+L_{1} \rightarrow \square^{+}\left(L_{i} \rightarrow \square \neg L_{j}\right)$ whenever i, j are incomparable nodes of K.

Here ' \vdash ' stands for ' $I \Delta_{0}+\Omega_{1} \vdash$ '.
Proof. It will be clear from the context at which places we reason inside $I \Delta_{0}+\Omega_{1}$.
(1) and (2) are clear from the definition of the sentences L_{i} and the fact that $S: K \rightarrow K$ is a total function.
(3) L_{i} implies that $\square \neg L_{1} \wedge i=S(1)$. If $i=1, ~ \square \neg L_{i}$ follows immediately; otherwise we have $w(i)<\infty$, and therefore $\square \neg L_{i}$.
(4) If L_{1} is inconsistent with $I \Delta_{0}+\Omega_{1}$, then $\square \neg L_{1}$ holds in the standard model, so by (1), one of the sentences L_{i} must hold in the standard model. This is absurd since each of these sentences implies its own inconsistency.
(5) First note that $\vdash \square_{x} \neg L_{j} \rightarrow \square\left(x \in J \wedge \square_{x} \neg L_{j}\right)$. Thus, regardless of whether j is special or not, $\vdash \square \neg L_{j} \rightarrow \square\left(w(j)=\mu x \square_{x} \neg L_{j}\right)$. Since j and j^{\prime} are brothers,
$\vdash L_{j^{\prime}} \rightarrow w\left(j^{\prime}\right)<w(j) \quad$ (because $\quad j^{\prime}=S(1) \quad$ implies $\left.\quad w\left(j^{\prime}\right)<w(j)\right)$. Therefore $\vdash \square \neg L_{j} \rightarrow \square\left(L_{j^{\prime}} \rightarrow \square \neg L_{j^{\prime}}<\square \neg L_{j}\right)$. On the other hand by Švejdar's principle $\vdash \square \neg L_{j} \rightarrow \square\left(\square \neg L_{j^{\prime}}<\square \neg L_{j} \rightarrow \neg L_{j^{\prime}}\right)$ and we can conclude $+\square \neg L_{j} \rightarrow \square \neg L_{j^{\prime}}$.
(6) In $I \Delta_{0}+\Omega_{1}$ we can formalize the fact that if a consistent theory proves the consistency of another theory, then the latter is consistent (we assume that all theories contain $I \Delta_{0}+\Omega_{1}$ and have a Σ_{1}^{b} set of axioms). Hence $\vdash \diamond L_{u} \wedge \square\left(L_{u} \rightarrow\right.$ $\left.\diamond L_{v}\right) \rightarrow \diamond L_{v}$. It follows that in the proof of (6) we can assume without loss of generality that b is an immediate successor of a. Working inside $I \Delta_{0}+\Omega_{1}$, assume L_{a}. Then $a=S(1)$. Hence $w(b)=\infty$. Now if b is not a special node, then $w(b)=\infty \leftrightarrow \diamond L_{b}$ and we are done. If b is a special node, from $w(b)=\infty$ we can only conclude $\diamond^{\prime} L_{b}$, so we need an additional argument. This is provided by point (5). In fact by definition of special node, a has certainly one immediate successor b^{\prime} which is not special. Hence from L_{a} we can derive $\diamond L_{b^{\prime}}$, reasoning as above. By point (5), $\diamond L_{b} \leftrightarrow \diamond L_{b^{\prime}}$ and we are done.
(7) can be derived through the chain of implications: $L_{b} \rightarrow \square \neg L_{b} \rightarrow$ $\square \square \neg L_{b} \rightarrow \square \neg L_{a}$, where the last implication uses point (6).
(8) Let i be above a brother of i. Then by (5), (7) and (3) $\vdash L_{i} \rightarrow \square \neg L_{j}$ as desired. To prove the second part, assume further that j is a leaf. We need to show $+L_{j} \rightarrow \square \neg L_{i}$. We can assume that i is strictly above a brother j^{\prime} of j (for if i itself is a brother of j the desired result follows from (3) an (5)). But then j must be a special node, and therefore $w(j)=\mu x \in J \square_{x} \neg L_{j}$. So $w(j)<w\left(j^{\prime}\right)$ is equivalent to a Σ_{1}^{0}-formula relativized to J, namely

$$
w(j)<w\left(j^{\prime}\right) \leftrightarrow \exists x \in J\left(\operatorname { P r f } _ { I _ { u _ { 0 } } + \Omega _ { 1 } } \left(x,\left\ulcorner\neg L_{j}^{\cdot\rceil}\right) \wedge \forall y \leqslant x \neg \operatorname{Prf}_{I_{A_{0}}+\Omega_{1}}\left(y,\left\ulcorner\neg L_{j^{\prime}}{ }^{\prime}\right)\right) .\right.\right.
$$

Thus by the properties of the cut J (and by Theorem 2.7), $\vdash w(j)<w\left(j^{\prime}\right) \rightarrow$ $\square w(j)<w\left(j^{\prime}\right)$. Now the desired result follows by observing that $\vdash L_{j} \rightarrow w(j)<$ $w\left(j^{\prime}\right)\left(\right.$ as $\left.\vdash j=S(1) \rightarrow w(j)<w\left(j^{\prime}\right)\right)$ and $\vdash L_{i} \rightarrow w\left(j^{\prime}\right)<w(j)$.
 to show that for each $i>1$ we have $+\square\left(L_{i} \rightarrow \square \neg L_{b}\right)$. This follows from (8), (3) and (7).
(10) If the incomparable nodes i and j are in one of the situations covered by point (8), then $\vdash L_{i} \rightarrow \square \neg L_{j}$, and a fortiori $+L_{1} \rightarrow \square^{+}\left(L_{i} \rightarrow \square \neg L_{j}\right)$ as desired. Since ($K,<$) omits \mathbf{Y}, (8) can always be applied except when the biggest node (with respect to \leqslant) below i and j is 1 (the root). So assume that this is the case. By (2), we have $+L_{1} \rightarrow\left(L_{i} \rightarrow \square \neg L_{j}\right)$. In order to show that also $+L_{1} \rightarrow \square\left(L_{i} \rightarrow\right.$ $\square \neg L_{j}$), we will make use of Proposition 2.10. Let i^{\prime}, j^{\prime} be the least nodes with $1<i^{\prime} \leqslant i$ and $1<j^{\prime} \leqslant j$. So i^{\prime} and j^{\prime} are brothers. It follows from (9) that $\vdash L_{1} \rightarrow \square\left(\square \neg L_{i^{\prime}}\right)$. Therefore, by Proposition 2.5, $\vdash L_{1} \rightarrow \square\left(\square^{J} \neg L_{i^{\prime}}\right)$. In the presence of $\square^{J} \neg L_{i^{\prime}}$, the sentence $w\left(i^{\prime}\right)<w\left(j^{\prime}\right)$ is equivalent to a Σ_{1}^{0}-sentence relativized to J. Therefore, by Proposition 2.10, $\vdash L_{1} \rightarrow \square\left(w\left(i^{\prime}\right)<w\left(j^{\prime}\right) \rightarrow\right.$ $\square\left(w\left(i^{\prime}\right)<w\left(j^{\prime}\right)\right)$). The desired result now follows from the fact that L_{i} provably implies $i=S(1)$ which entails $w\left(i^{\prime}\right)<w\left(j^{\prime}\right)$, while L_{j} provably implies $w\left(j^{\prime}\right)<$ $w\left(i^{\prime}\right)$.

Corollary 4.5. If $(K,<)$ and L_{1}, \ldots, L_{n} are as above, then the conjunction of the following sentences is consistent with $1 \Delta_{0}+\Omega_{1}$:

1. L_{1};
2. $\square^{+}\left(L_{1} \vee \cdots \vee L_{n}\right)$;
3. $\square^{+}\left(L_{i} \rightarrow \neg L_{j}\right)$ for $i \neq j$ in K;
4. $\square^{+}\left(L_{a} \rightarrow \diamond L_{b}\right)$ for $a<b$ in K;
5. $\square^{+}\left(L_{a} \rightarrow \square \neg L_{b}\right)$ for $a a \nless b$ in K.

Proof. The derivation of Corollary 4.5 from Lemma 4.4 follows from a straightforward argument which can even be formalized in the decidable theory L^{ω}. (The axioms of L^{ω} arc all the theorems of L and all the instances of $\square A \rightarrow A$. The only rule is modus ponens.)

We have thus shown that every tree of \mathscr{C}_{4} can be embedded in $I \Delta_{0}+\Omega_{1}$. Thus:
Theorem 4.6. $P L \Omega \subseteq \operatorname{Th}\left(\mathscr{C}_{4}\right)$.

5. Disjunction property

In this section we prove the following:
Theorem 5.1. IF PLS $=\operatorname{Th}(\mathscr{C})$, where \mathscr{C} is a class of finite trees, then every binary tree can be homomorphically embedded in some tree belonging to \mathscr{C}.

In particular, since the binary tree \mathbf{Y} cannot be embedded in any member of \mathscr{C}_{4}, it will follow that the inclusion $P L \Omega \subseteq \operatorname{Th}\left(\mathscr{C}_{4}\right)$ is strict.

We will use the fact that $P L \Omega$ has the 'disjunction property' as proved by Franco Montagna (private communication).

Definition 5.2. A modal theory P has the disjunction property if for every pair of modal sentences A and B, if $P \vdash \square A \vee \square B$, then $P \vdash A$ or $P \vdash B$.

It is known that L has the disjunction property.
Theorem 5.3 (Montagna). PLS has the disjunction property.
Proof. Suppose that for some $I \Delta_{0}+\Omega_{1}$-interpretations ${ }^{\circ}$ and ${ }^{\bullet}$ we have $I \Delta_{0}+$ $\Omega_{1} \not+A\left(\boldsymbol{p}^{\circ}\right)$ and $I \Delta_{0}+\Omega_{1} \not+B\left(\boldsymbol{p}^{\bullet}\right)$, where p contains all propositional variables occurring in the modal formulas A and B. We have to prove that there is an $I \Delta_{0}+\Omega_{1}$-interpretation ${ }^{*}$ such that $I \Delta_{0}+\Omega_{1} \nvdash(\square A \vee \square B)^{*}$.

By multiple diagonalization, define for all $p_{i} \in \boldsymbol{p}$ an arithmetical formula p_{i}^{*} such that

$$
I \Delta_{0}+\Omega_{1} \vdash p_{i}^{*} \leftrightarrow\left(\square A\left(\boldsymbol{p}^{*}\right) \leqslant \square B\left(\boldsymbol{p}^{*}\right) \wedge p_{i}^{\circ}\right) \vee\left(\square B\left(\boldsymbol{p}^{*}\right)<\square A\left(\boldsymbol{p}^{*}\right) \wedge p_{i}^{\bullet}\right)
$$

We will show that $I \Delta_{0}+\Omega_{1}+(\square A \vee \square B)^{*}$. So suppose, to derive a contradiction, that $I \Delta_{0}+\Omega_{1} \vdash \square A\left(\boldsymbol{p}^{*}\right) \vee \square B\left(\boldsymbol{p}^{*}\right)$. Then

$$
I \Delta_{0}+\Omega_{1} \vdash \square A\left(\boldsymbol{p}^{*}\right) \leqslant \square B\left(\boldsymbol{p}^{*}\right) \vee \square B\left(\boldsymbol{p}^{*}\right)<\square A\left(\boldsymbol{p}^{*}\right)
$$

Thus, because $I \Delta_{0}+\Omega_{1}$ is a true theory, either

1. $\square A\left(\boldsymbol{p}^{*}\right) \leqslant \square B\left(\boldsymbol{p}^{*}\right)$ and $I \Delta_{0}+\Omega_{1} \vdash p_{i}^{*} \leftrightarrow p_{i}^{\circ}$ for all i
(by definition of \boldsymbol{p}^{*}), or
2. $\square B\left(\boldsymbol{p}^{*}\right)<\square A\left(\boldsymbol{p}^{*}\right)$ and $I \Delta_{0}+\Omega_{1} \vdash \boldsymbol{p}_{i}^{*} \leftrightarrow p_{i}^{*}$ for all i.

In case 1 , we have $I \Lambda_{0}+\Omega_{1} \vdash A\left(p^{*}\right)$, so $I \Delta_{0}+\Omega_{1} \vdash A\left(\boldsymbol{p}^{\circ}\right)$, contradicting our assumption. Similarly, case 2 contradicts the assumption $I \Delta_{0}+\Omega_{1} \nvdash B\left(p^{\bullet}\right)$.

In order to prove Theorem 5.1 we need the following definition.

Definition 5.4. We define D_{n} by induction.

- $D_{0}=\mathrm{T}$.
- $D_{i+1}(\boldsymbol{p}, r)=\diamond\left(D_{i}(\boldsymbol{p}) \wedge \square^{+} r\right) \wedge \diamond\left(D_{i}(\boldsymbol{p}) \wedge \square^{+} \neg r\right)$, where \boldsymbol{p} is of length i, and all propositional variables in p, r are different.

The main property of the formulas D_{n} is expressed by the following lemma.

Lemma 5.5. If \boldsymbol{K} is a finite tree-like Kripke model with root k such that $k \Vdash D_{n}$, then we can homomorphically embed (see Definition 3.5) the full binary tree \boldsymbol{T}_{n} of $2^{n+1}-1$ nodes into K.

Proof. By induction on n.
Base case. Trivial: \mathbf{T}_{0} contains only one point.
Induction step. Suppose that $k \Vdash D_{i 1}(p, r)$, i.e.,

$$
k \Vdash \diamond\left(D_{i}(\boldsymbol{p}) \wedge \square^{+} r\right) \wedge \square\left(D_{i}(\boldsymbol{p}) \wedge \square^{+} \neg r\right)
$$

Then there are nodes k_{1}, k_{2} such that $k \leqslant k_{1}, k \leqslant k_{2}, k_{1} \Vdash D_{i}(\boldsymbol{p}) \wedge \square^{+} r$ and $k_{2} \Vdash D_{i}(\boldsymbol{p}) \wedge \square^{+} \neg r$. By the induction hypothesis, we can homomorphically embed a copy of the full binary tree \mathbf{T}_{i} of bifurcation depth i into the subtree of \mathbf{K} that consists of all points $\geqslant k_{1}$. Analogously, we can homomorphically embed a copy of \mathbf{T}_{i} into the subtree of \mathbf{K} of points $\geqslant k_{2}$.

Because $k_{1} \Vdash \square^{+} r$ and $k_{2} \Vdash \square^{+} \neg r$, we may conclude that k_{1} and k_{2} are incomparable and that the two images of \mathbf{T}_{i} are disjoint. Therefore, we can combine both homomorphic embeddings into one and subsequently map the root of \mathbf{T}_{i+1} to k. Thus an homomorphic embedding of \mathbf{T}_{i+1} into \mathbf{K} is produced.

Theorem 5.1 is now an immediate consequence of the following:
Theorem 5.6. Let \mathscr{C} be a class of finite trees such that $T h(\mathscr{C})$ has the disjunction property. Then for every $n, \operatorname{Th}(\mathscr{C})+D_{n}$ is consistent. Thus every binary tree can be homomorphically embedded in some member of \mathscr{C}.

Proof. Let $P=T h(\mathscr{C})$. Note that $P \supseteq L$. We prove by induction on n that $P+D_{n}$ is consistent.

Base case. Trivial.
Induction step. Suppose as induction hypothesis that for any \boldsymbol{p} consisting of i different propositional variables, $P+D_{i}(\boldsymbol{p})$ is consistent. In order to derive a contradiction, suppose that $P \vdash \neg D_{i+1}(\boldsymbol{p}, r)$, that is

$$
P \vdash \square\left(\neg D_{i}(\boldsymbol{p}) \vee \neg \square^{+} r\right) \vee \square\left(\neg D_{i}(\boldsymbol{p}) \vee \neg \square^{+} \neg r\right) .
$$

Then by the disjunction property, either

1. $P \vdash \neg D_{i}(\boldsymbol{p}) \vee \neg \square^{+} r$ or
2. $P \vdash \neg D_{i}(p) \vee \neg \square^{+} \neg r$.

We show that 1 cannot hold. By the induction hypothesis, $P \nvdash \neg D_{i}(\boldsymbol{p})$. Since r does not appear in $D_{i}(\boldsymbol{p})$, we can take $r=\mathrm{T}$. But then $P \vdash \square^{+} r$, so $P \nmid \neg D_{i}(\boldsymbol{p}) \vee \neg \square^{+} r$.

By an analogous proof, we can show that 2 cannot hold, which gives the desired contradiction.

Note that in the proof of the fact that $\operatorname{Th}(\mathscr{C})+D_{n}$ is consistent we have only used the fact that $T h(\mathscr{C})$ is a consistent modal theory extending L and satisfying the disjunction property. The same proof can therefore be applied to $P L \Omega$, yielding:

Proposition 5.7. $P L \Omega+D_{n}$ is consistent.
We are now able to strengthen Theorem 5.1 as follows:
Theorem 5.8. If there exists a binary tree H which cannot be homomorphically embedded in any member of \mathscr{C}, then $T h(\mathscr{C}) \nsubseteq P L \Omega$.

Proof. Under our assumption there is some n such that the full binary tree of height n cannot be embedded in any member of \mathscr{C}. Hence $\operatorname{Th}(\mathscr{C})+D_{n}$ is inconsistent. On the other hand $P L \Omega+D_{n}$ is consistent.

6. Further results

We give some further results, due to the first author, of the form ' $P L \Omega+\phi$ is consistent', for various choices of ϕ. In particular we strengthen Proposition 5.7
by showing that $P L \Omega+D_{n}+\square^{n+1} \perp$ is consistent. Note, for a motivation, that $L=P L \Omega$ if and only if every modal formula ϕ consistent with L, is consistent with $P L \Omega$. The disjunction property will not be used.

Definition 6.1. Given a tree (K, \prec) with root 1 and underlying set $K=$ $\{1, \ldots, n\}$, we say that $(K,<)$ can be weakly embedded in $I \Delta_{0}+\Omega_{1}$ if there are arithmetical sentences L_{1}, \ldots, L_{n} (one for each node) such that, letting \square denote formalized provability from $I \Delta_{0}+\Omega_{1}$, the conjunction of the following sentences is consistent with $I \Delta_{0}+\Omega_{1}$:

1. L_{1};
2. $\square^{+}\left(L_{i} \rightarrow \neg L_{j}\right)$ for $i \neq j$ in K;
3. $\square^{m} \perp \wedge \neg \square^{m-1} \perp$ where m is the height of ($K,<$) (i.e., the maximum cardinality of a chain in $(K,<)$). We agree that $\square^{0} \perp$ is \perp and $\square^{k+1} \perp$ is $\square \square^{k} \perp$;
4. $\square^{+}\left(L_{a} \rightarrow \diamond L_{b}\right)$ for $a<b$ in K;
5. $\square^{+}\left(L_{a} \rightarrow \square \neg L_{b}\right)$ for $a \nless b$ in K.

It is easy to verify that 'embeddable' implies 'weakly embeddable'. (The only point to check is 3 .) We will prove:

Theorem 6.2. Every finite tree K can be weakly embedded in $I \Delta_{0}+\Omega_{1}$.
This is to be compared with the previous result Theorem 3.6 saying that every tree omitting \mathbf{Y} can be (strongly) embedded in $I \Delta_{0}+\Omega_{1}$.

Note that the fact that K is weakly embeddable in $I \Delta_{0}+\Omega_{1}$ can be expressed in the form ' $P L \Omega+\phi_{K}$ is consistent', where ϕ_{K} is a suitable modal formula depending on K (i.e., the conjunction of the five sentences of Definition 6.1, where the L_{i} 's are now thought as atomic modal formulas).

Corollary 6.3. PL $\Omega+D_{n}+\square^{n+1} \perp$ is consistent.
The proof of the corollary is easy and left to the reader. The idea is that the arithmetical sentences needed to prove that $P L \Omega+D_{n}+\square^{n+1} \perp$ is consistent, can be obtained as boolean combinations of the sentences L_{i} which weakly embed the full binary tree of height $n+1$ in $I \Delta_{0}+\Omega_{1}$.

Theorem 6.2 will be proved with the help of a self-referential construction based on an auxiliary tree $K_{1} \supseteq K$ which is obtained by duplicating each bifurcation node of K. The idea is that we can do in two steps what we cannot do in one step.

Definition 6.4. Given a finite tree ($K,<$), we injectively associate, to each bifurcation node i of $(K,<)$, a new node $d(i)$ not in K, and we define K_{1} as K union the set of all the new nodes $d(i)$. We make K_{1} into a tree $\left(K_{1}, \zeta_{1}\right)$ by putting each $d(i)$ immediately above i and by stipulating that the immediate successors of $d(i)$ in $\left(K_{1},<_{1}\right)$ are the immediate successors of i in ($K,<$). Briefly: ($K_{1},<_{1}$) is obtained from ($K,<$) by duplicating each bifurcation node.

On a first reading of the rest of this section we suggest to think of $(K,<)$ as the tree \mathbf{Y} of Fig. 1.

Definition 6.5. Let J be the cut of Proposition 2.10. Let $\left(K_{1},<_{1}\right)$ be obtained from ($K,<$) by duplicating each bifurcation node. By the diagonal lemma, we simultaneously define sentences L_{i} for $i \in K_{1}$, and auxiliary functions v, w, S such that the following holds:

1. If $j \in K_{1}$ is an immediate successor of one of the new nodes $d(i) \in K_{1}-K$, then $w(j)=\mu x \in J\left(\square_{x} \neg L_{j} \wedge \diamond_{x} L_{d(i)}\right)$; otherwise $w(j)=\mu x \square_{x} \neg L_{j}$.
2. If $j \in K_{1}$ is an immediate successor of i in $\left(K_{1},<_{1}\right)$, let $v(i, j)=w(j)$; otherwise $v(i, j)=\infty$.
3. $S: K_{1} \rightarrow K_{1}$ is defined as follows: $S(i)=i$ if for no $j \in K_{1}$ we have $v(i, j)<\infty$; otherwise among all the $j \in K_{1}$ with $v(i, j)<\infty$, pick one for which $v(i, j)$ is minimal, and set $S(i)=S(j)$. (Note that there exists at most one such j.)
4. For $i \in K_{1}, I \Delta_{0}+\Omega_{1} \vdash L_{i} \leftrightarrow \square \neg L_{1} \wedge i=S(1)$.

Remark 6.6. Note that the definitions of S and L_{i} can be formalized in $I \Delta_{0}+\Omega_{1}$ and that, for the same reason as in Section $4, S(1)$ is always defined. However, we do not necessarily have that $S(1) \in K$.

Lemma 6.7. If $a, b \in K$ and b is an immediate successor of a in $\left(K_{1},<_{1}\right)$, then $I \Delta_{0}+\Omega_{1} \vdash L_{a} \rightarrow \diamond L_{b}$.

Proof. We have $\vdash v(a, b)=\mu x \square_{x} \neg L_{b}$ and $\vdash L_{a} \rightarrow v(a, b)=\infty$, whence $\vdash L_{a} \rightarrow$ $\diamond L_{b}$ as desired.

Lemma 6.8. If $a \in K$ is a bifurcation point, then $I \Delta_{0}+\Omega_{1} \vdash L_{a} \rightarrow \diamond L_{d(a)}$.
Proof. We have $\vdash v(a, d(a))=\mu x \square_{x} \neg L_{d(a)}$. Hence as above $I \Delta_{0}+\Omega_{1} \vdash L_{a} \rightarrow$ $\diamond L_{d(a)}$.

Lemma 6.9. If $a<_{1} d(a)<_{1} b$ and b is an immediate $\left(<_{1}\right)$-successor of $d(a)$, then $I \Delta_{0}+\Omega_{1} \vdash \nabla L_{d(a)} \rightarrow \diamond L_{b}$.

Proof. Reason in $I \Delta_{0}+\Omega_{1}$. Assume $\square \neg L_{b}$. We need to prove $\square \neg L_{d(a)}$. Let x be such that $\left.\square_{x}\right\urcorner L_{b}$. By provable Σ_{1}^{b}-completeness, $\left.\square \square_{x}\right\urcorner L_{b}$. Since $\forall u \square(u \in J)$, we have $\square\left(\square_{x} \neg L_{b} \wedge x \in J\right)$. By the small reflection principle $\vdash \forall u \square\left(L_{d(a)} \rightarrow\right.$ $\diamond_{u} L_{d(a)}$). So $\square\left(L_{d(a)} \rightarrow \diamond_{x} L_{d(a)} \wedge \square_{x} \neg L_{b} \wedge x \in J\right)$. By definition, $v(d(a), b)=$ $\mu x \in J\left(\square_{x} \neg L_{b} \wedge \diamond_{x} L_{d(a)}\right)$. Thus $\square\left(L_{d(a)} \rightarrow v(d(a), b)<\infty\right)$. On the other hand the definition of $L_{d(a)}$ gives us $\square\left(L_{d(a)} \rightarrow v(d(a), b)=\infty\right)$. Hence $\square \neg L_{d(a)}$ as desired.

Lemma 6.10. If $a \in K, b \in K_{1}$, and $a<_{1} b$, then $I \Delta_{0}+\Omega_{1} \vdash L_{a} \rightarrow \diamond L_{b}$.

Proof. By the above lemmas, and by transitivity of 'proves the consistency of'.

Lemma 6.11. If $a, b \in K_{1}$ and $a \not{ }_{1} b$, then $I \Delta_{0}+\Omega_{1} \vdash L_{a} \rightarrow \square \neg L_{b}$.

Proof. We distinguish the case when $b \leqslant_{1} a$ from the case in which b is incomparable with a.

Case 1: Let $b \leqslant_{1} a$. From the dcfinitions, । $L_{a} \rightarrow \square \neg L_{1}$. So we can assume $b \neq 1$. Reason in $I \Delta_{0}+\Omega_{1}$. If L_{a}, then $a=S(1)$, hence by definition, every $b \leqslant_{1} a$ with $b \neq 1$ satisfies $w(b)<\infty$. A fortiori $\square \neg L_{b}$ as desired.

Case 2: Let b be incomparable with a. It follows that in ($K_{1},<_{1}$) there exists a node of the form $d(i)$ and two immediate $\left(\alpha_{1}\right)$-successors u, v of $d(i)$ such that $u \leqslant_{1} a$ and $v \leqslant_{1} b$. By definition we have $w(u)=\mu x \in J\left(\square_{x} \neg L_{u} \wedge \diamond_{x} L_{d(i)}\right)$ and $w(v)=\mu x \in J\left(\square_{x} \neg L_{v} \wedge \diamond_{x} L_{d(i)}\right)$. By the properties of the cut J, it follows that $I \Delta_{0}+\Omega_{1} \vdash w(u)<w(v) \rightarrow \square(w(u)<w(v))$ and the desired result follows from the fact that $\vdash L_{a} \rightarrow w(u)<w(v)$ and $\vdash L_{b} \rightarrow w(v)<w(u)$.

The next two lemmas follow immediately from the definitions.

Lemma 6.12. $I \Delta_{0}+\Omega_{1} \vdash L_{i} \rightarrow \neg L_{i}$ for $i \neq j$ in K_{1}.

Lemma 6.13. $I \Delta_{0}+\Omega_{1} \vdash \square \neg L_{1} \rightarrow \bigvee_{i \in K_{1}} L_{i}$.

Lemma 6.14. L_{1} is consistent with $I \Delta_{0}+\Omega_{1}$.
Proof. Since for every $i \in K_{1}, I \Delta_{0}+\Omega_{1} \vdash L_{i} \rightarrow \square \neg L_{i}$, the standard model satisfies $\bigwedge_{i \in K_{1}} \neg L_{i}$. On the other hand, by the previous lemma, $\bigwedge_{i \in K_{1}} \neg L_{i}$ provably implies $\diamond L_{1}$ and the desired result follows.

We now prove the somewhat surprising:
Lemma 6.15. If a is $a\left(<_{1}\right)$-immediate successor of $d(i)$, then

$$
I \Delta_{0}+\Omega_{1} \vdash L_{d(i)} \rightarrow \square \neg L_{a}
$$

Proof. Recall that $v(d(i), a)=\mu x \in J\left(\square_{x} \neg L_{a} \wedge \diamond_{x} L_{d(i)}\right)$. Reason in $I \Delta_{0}+\Omega_{1}$. Λ ssume $L_{d(i)}$. Then there exists x such that $\square_{x} \neg L_{d(i)}$. Hencc $\square \square_{x} \neg L_{d(i)}$. Reason inside \square. Then $\square_{x} \neg L_{d(i)}$ holds. If for a contradiction L_{a} holds, then $v(d(i), a)<$ ∞. Thus there exists y such that $\square_{y} \neg L_{a}$ and $\diamond_{y} L_{d(i)}$. It follows that $y<x$. Thus $\square_{x} \neg L_{a}$. Since x is 'external', by the small reflection principle $\neg L_{a}$ holds. Contradiction.

Definition 6.16. For $i \in K$, define $k(i)$ as the cardinality of the longest ascending chain in $(K,<)$ whose first element is i. So if i is a leaf, $k(i)=1$. Extend the map $i \mapsto k(i)$ from K to K_{1} by defining $k(d(i))=k(i)-1$.

Lemma 6.17. For every $u \in K_{1}, I \Delta_{0}+\Omega_{1} \vdash L_{u} \rightarrow \square\left(\bigvee_{j>1 u \wedge k(j)<k(u)} L_{j}\right)$.
Proof. Since $\vdash L_{u} \rightarrow \square \neg L_{1}$, we have $\vdash L_{u} \rightarrow \square\left(\bigvee_{j \in K_{1}} L_{j}\right)$. So it is enough to show that if j does not satisfy $j>_{1} u \wedge k(j)<k(u)$, then $+L_{u} \rightarrow \square \neg L_{j}$. We have already shown that if $\neg\left(j>_{1} u\right)$, then $\vdash L_{u} \rightarrow \square \neg L_{j}$. On the other hand if $j>_{1} u$ and $\neg(k(j)<k(i))$, then u must be of the form $u=d(i)$ and j must be an immediate ($<_{\mathrm{i}}$)-successor of u (hence $k(j)=k(u)$). But then by a previous lemma $+L_{u} \rightarrow$ $\square \neg L_{j}$ as desired.

Lemma 6.18. For $u \in K_{1}, I \Delta_{0}+\Omega_{1} \vdash L_{u} \rightarrow \square^{k(u)} \perp$.
In particular $I \Delta_{0}+\Omega_{1} \vdash L_{1} \rightarrow \square^{m} \perp$ where m is the height of K.
Proof. By induction on $k=k(u)$. The base case is when $k(u)=1$. Then either u is a leaf, or $u=d(i)$ for some $i \in K$ with $k(i)=2$. In any case all the nodes $a>_{1} u$, if any, are immediate $\left(<_{1}\right)$-successors of u and $\vdash L_{u} \rightarrow \square \neg L_{a}$. But then L_{u} provably implies $\square \neg L_{j}$ for every $j \in K_{1}$, and therefore $\vdash L_{u} \rightarrow \square \perp$ as desired. The induction step follows from the previous lemma.
6.19. $I \Delta_{0}+\Omega_{1} \vdash L_{1} \rightarrow \neg \square^{m-1} \perp$.

Proof. Clear from the fact that for $a<b$ in $K, \vdash L_{a} \rightarrow \diamond L_{b}$.
The proof of Theorem 6.2 follows now immediately from all the preceding lemmas.
6.20. If $d(i)<_{1} j$ and j is not an immediate ($<_{1}$)-successor of $d(i)$, then we do not know whether $I \Delta_{0}+\Omega_{1} \vdash L_{d(i)} \rightarrow \square \neg L_{j}$ holds, or $I \Delta_{0}+\Omega_{1} \vdash L_{d(i)} \rightarrow \diamond L_{j}$ holds, or neither of them.

References

[1] S. Buss, Bounded Arithmetic (Bibliopolis, edizioni di filosofia e scienze, Napoli, 1986).
[2] A. Berarducci and R. Verbrugge, On the metamathematics of weak theories, ITLI Prepublication Series for Mathematical Logic and Foundations, ML-91-02, University of Amsterdam (1991).
[3] M. Davis, H. Putnam, and J. Robinson, The decision problem for exponential diophantine equations, Ann. of Math. 74 (1961) 425-436.
[4] D. Guaspari and R.M. Solovay, Rosser sentences, Anni. Math. Logic 16 (1979) 81-99.
[5] D. de Jongh, M. Jumelet and F. Montagna, On the proof of Solovay's theorem, Studia Logica 50 (1991).
[6] Yu. Matijasevič, Exponential sets are Diophantine, Dokl. Akad. Nauk SSSR 191 (1970) 279-282. (English translation: Soviet Math. Dokl. (1970) 354-357.)
[7] P. Pudlák, On the length of proofs of finitistic consistency statements in first order theories, in: J.B. Paris, A.J. Wilkie, and G.M. Wilmers, eds., Logic Colloquium ' 84 (North-Holland, Amsterdam, 1986).
[8] P. Pudlák, Cuts, consistency statements and interpretations, J. Symbolic Logic 50 (2) (1985).
[9] R.M. Solovay, Provability interpretations of modal logic, Israel J. Math. 25 (1976) 287-304.
[10] R.M. Solovay, On interpretability in set theories, Manuscript (1976).
[11] V. Švejdar, Modal analysis of generalized Rosser sentences, J. Symbolic Logic 48 (1983) 986-999.
[12] R. Verbrugge, Docs Solovay's Completeness Theorem Extend to Bounded Arithmetic?, Master's thesis, University of Amsterdam (1988).
[13] R. Verbrugge, Σ-completeness and bounded arithmetic, ITLI Prepublication Series for Mathematical Logic and Foundations, ML-89-05, University of Amsterdam (1989).
[14] A. Visser, On the Σ_{1}^{0}-conservativity of Σ_{1}^{0}-completeness, Notre Dame J. Formal Logic 32 (1991) 554-561.
[15] A.J. Wilkie and J.B. Paris, On the scheme of induction for bounded arithmetic formulas, Ann. Pure Appl. Logic 35 (1987) 261-302.

[^0]: Correspondence to: R. Verbrugge, Faculteit der Wiskunde en Informatica, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, Netherlands.

 * Research partially supported by the Italian Research Projects 40% and 60%.
 ** Rescarch supported by the Netherlands Organization for Scientific Research (NWO).

