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Abstract A variety of mammals employ torpor as an energy-saving strategy in environments of

marginal or severe stress either on a daily basis during their inactive period or on a seasonal basis

during prolonged multi-day hibernation. Recently, a few Madagascar lemur species have been iden-

tified as the only primates that exhibit torpor; one of these is the gray mouse lemur (Microcebus

murinus). To explore the regulatory mechanisms that underlie daily torpor in a primate, we ana-

lyzed the expression of 28 selected genes that represent crucial survival pathways known to be

involved in squirrel and bat hibernation. Array-based real-time PCR was used to compare gene

expression in control (aroused) versus torpid lemurs in five tissues including the liver, kidney,
nces and
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skeletal muscle, heart, and brown adipose tissue. Significant differences in gene expression during

torpor were revealed among genes involved in glycolysis, fatty acid metabolism, antioxidant

defense, apoptosis, hypoxia signaling, and protein protection. The results showed upregulation of

select genes primarily in liver and brown adipose tissue. For instance, both tissues showed elevated

gene expression of peroxisome proliferator activated receptor gamma (ppargc), ferritin (fth1), and

protein chaperones during torpor. Overall, the data show that the expression of only a few genes

changed during lemur daily torpor, as compared with the broader expression changes reported

for hibernation in ground squirrels. These results provide an indication that the alterations in gene

expression required for torpor in lemurs are not as extensive as those needed for winter hibernation

in squirrel models. However, identification of crucial genes with altered expression that support

lemur torpor provides key targets to be explored and manipulated toward a goal of translational

applications of inducible torpor as a treatment option in human biomedicine.
Introduction

A strong depression of metabolic rate is a hallmark of torpor
phenotypes in a wide variety of mammals that employ daily
torpor or multi-day hibernation [1]. This survival strategy con-

serves an animal’s energy expenditure when resources, such as
food and water, are scarce or abiotic conditions are highly
unfavorable for normal life [1]. A number of genomics-based

studies have profiled the transcriptional regulation of winter
hibernation in rodents and black bears, identifying many genes
that are differentially expressed during torpor in hibernators
[2–4]. Overall findings from these studies show coordinated

regulation of cellular processes that are involved in metabolic
functions and cytoprotection that are crucial to maintaining
the torpor phenotype. To date, notable changes in transcrip-

tion have been linked with genes involved in energy and fuel
utilization processes, such as cell growth, glycolysis, lipid meta-
bolism, molecular transport, and cellular stress response (e.g.,

unfolded protein response, apoptosis, cell cycle arrest, and
antioxidant defense) [2,3,5–7].

For many years, the repertoire of animal hibernation mod-
els has been primarily rodents with some studies of bats, bears

and marsupials [1–7]. However, recently, it has been discov-
ered that a few small lemur species from Madagascar undergo
metabolic rate depression and descend into daily torpor or

even multi-day hibernation to support survival during the
dry season when food is scarce [8,9]. To our best knowledge,
the gray mouse lemur (Microcebus murinus) and a few other

small Malagasy lemurs represent the only primates with this
ability. Indeed, hibernation in lemurs is also novel among
mammals, which are the only cases of natural hibernation

not accompanied by profound reductions in body temperature
[8,9]. Hence, lemurs are the closest species to humans that can
undergo naturally-induced hypometabolism. To gain insight
into the mechanisms of primate torpor, the present study

investigated transcriptional regulation in the gray mouse
lemur, by examining the expression of a selected group of
genes that have been shown to be regulated in rodent hiberna-

tion. Previous studies have shown that although the overall
rate of gene transcription is reduced during torpor, expression
of some selected genes is upregulated [10]. Examples of these

genes include those involved in the regulation of lipid
metabolism (fatty acid-binding proteins, peroxisome
proliferator-activated receptor gamma coactivator), inhibition

of carbohydrate catabolism (pyruvate dehydrogenase kinase),
as well as those involved in antioxidant defense (Cu/Zn
superoxide dismutase, aflatoxin aldehyde reductase, and heme
oxygenase-1) [5,10].

Using real-time PCR, the present study analyzed the
expression of 28 genes in five tissues of M. murinus. These
genes were chosen based on their biological roles and their his-

torical significance in previous hibernation studies (Table 1)
[2,3,5–7], which are involved in the regulation of metabolism,
apoptosis, hypoxia resistance, protein chaperones and antiox-

idant defense. By comparing with previous findings from
hibernating rodents, understanding the regulatory pattern of
these genes during torpor can help to determine if the molecu-
lar signatures seen in primate torpor are similar to those

observed among non-primate mammals. Our study is the first
to provide molecular evidence of transcriptional regulation in
primate torpor.

Results

It has been previously demonstrated that mammalian hiberna-
tion typically responds with a relatively conserved set of genes
that act to adapt the cell to associated stresses. To compare the
torpor response of the lemur to that of other mammalian

hibernators that are torpid at characteristically-low Tb, we
determined the relative expression of genes previously shown
to be torpor-responsive in low Tb hibernators (Table 1), in

selected lemur tissues using custom RT-PCR arrays designed
for primate species. The relative mRNA expression levels of
28 genes were measured in five tissues including the liver, kid-

ney, skeletal muscle, heart, and brown adipose tissue (BAT),
by comparing control (aroused) and torpid lemurs to deter-
mine their transcriptional response during primate torpor.

The genes chosen for this study were categorized according
to their known cellular roles: metabolism (i.e., fatty acid and
glucose metabolism), apoptosis, hypoxia, protein chaperones,
and antioxidant defense.

In liver tissue, the gene expression of ppargc (2.6 ± 0.43-
fold), ldha (2.95 ± 0.41-fold), gadd45a (2.11 ± 0.22-fold),
and fth1 (2.01 ± 0.39-fold) was found to increase significantly

during torpor, when compared to controls (Figure 1;
P < 0.05). No significant changes were observed in any of
the other genes studied. Notably, peroxisome proliferator-

activated receptor gamma, coactivator (PPARGC), the protein
encoded by ppargc, functions as a key transcription factor that
regulates multiple genes within the lipid metabolism.
Upregulation of ppargc would thus suggest that controlled reg-

ulation of lipid metabolism is likely to be important in torpid



Table 1 Genes analyzed in this study and their known roles in mammalian hibernation

Function Gene symbol Protein name Species examined Refs.

Metabolism fabp1 Fatty acid binding protein 1 Little brown bat (Myotis lucifugus),

Thirteen-lined ground squirrel

(Ictidomys Tridecemlineatus),

Arctic ground squirrel

(Urocitellus parryii)

[11,25–28]

ppargc Peroxisome proliferator activated receptor gamma,

coactivator 1 alpha

M. lucifugus, I. tridecemlineatus [5,29]

pdk4 Pyruvate dehydrogenase kinase, isozyme 4 I. tridecemlineatus [30]

pdk1 Pyruvate dehydrogenase kinase, isozyme 1 U. parryii [27]

ucp1 Uncoupling protein 1 U. parryii [31]

cpt1a Carnitine palmitoyltransferase 1A U. parryii [27]

acat1 Acetyl-CoA acetyltransferase 1 U. parryii [11,27]

akr7a2 Aflatoxin B1 aldehyde reductase member 2 U. parryii [11]

Apoptosis bax Bcl-2-like protein 4 Golden hamster (Mesocricetus auratus) [32]

bcl2l1 Bcl-2-like protein 1 I. tridecemlineatus [33]

cdkn1a Cyclin-dependent kinase inhibitor 1A I. tridecemlineatus [34]

cdkn1b Cyclin-dependent kinase inhibitor 1B I. tridecemlineatus [34]

Hypoxia hif1a Hypoxia-inducible factor 1 alpha M. lucifugus, I. tridecemlineatus [15,16]

slc2a1 Glucose transporter protein type 1 U. parryii [11]

hk1 Hexokinase 1 Richardson’s ground squirrel

(U. richardsonii)

[35]

ldha Lactate dehydrogenase A U. parryii, I. tridecemlineatus [11,28]

pklr Pyruvate kinase, L and R type I. tridecemlineatus [28]

Protein chaperones hspb1 Heat shock 27 kda protein U. parryii [11]

hspa8 Heat shock 70 kda protein U. parryii [11]

hsp90b1 Heat shock 90 kda protein beta, member 1 U. parryii, I. tridecemlineatus [11,28]

dnajb1 Heat shock 40 kda protein U. parryii [11]

pdia3 Glucose regulated protein, 58 kda I. tridecemlineatus [28]

gadd45a Growth arrest and DNA-damage-inducible, alpha U. parryii [11]

Antioxidant defense fth1 Ferritin, heavy polypeptide 1 U. parryii [11]

sod1 Superoxide dismutase 1, soluble European ground squirrel (I. citellus) [36]

sod2 Superoxide dismutase 2, mitochondrial I. citellus [36]

prdx1 Peroxiredoxin 1 U. parryii, I. tridecemlineatus [11,21]

prdx2 Peroxiredoxin 2 U. parryii, I. tridecemlineatus [11,21]

Note: Urocitellus parryii and U. richardsonii is the synonym of Spermophilus parryii and S. richardsonii, respectively, whereas Ictidomys tride-

cemlineatus and I. citellus is the synonym of Spermophilus tridecemlineatus and S. citellus, respectively.
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regulation of the lemur. In kidney tissue, a significant increase
in hk1 expression (8.97 ± 1.24-fold) was observed, along with

a significant decrease in the expression of genes involved in
apoptosis and heat shock response including bax (to
49 ± 9% of controls), bcl2l1 (33 ± 3% of controls), gadd45a
(50 ± 6% of controls), hspb1 (44 ± 16% of controls), hsp90b1
(29 ± 9% of controls), and pdk4 (10 ± 4% of controls)
(Figure 2; P < 0.05). Importantly, hk1 regulates the rate-

limiting step in glycolysis. Its upregulation could implicate a
potential change in glycolytic flux in the kidney, suggesting
possibly differential preference of metabolic fuels between tis-
sues during torpor.

In contrast to liver and kidney tissues, no significant change
in gene expression was found in response to torpor in either the
skeletal muscle (Figure 3), or heart (Figure 4) tissues. It could

be possible that the relative short duration of lemur torpor
(compared to other hibernators) might not be sufficient to
induce significant changes in expression of genes examined in

this study. This would suggest that the torpor-adaptive
responses in the muscle tissues are likely unique in lemurs
when compared to other hibernators.
In BAT, the expression of dnajb1 (1.87 ± 0.16-fold), fth1
(1.82 ± 0.05-fold), hspb1 (2.61 ± 0.28-fold), and ppargc

(1.78 ± 0.21-fold) were found to increase significantly in
response to torpor, whereas the expression of cdkn1a
(42 ± 10% of controls) was found to decrease significantly

during torpor (Figure 5; P < 0.05). Overall, the transcriptional
profiling of genes showed tissue-specific patterns in key cellular
processes that regulate metabolic functions and stress

responses.

Discussion

This study of gene expression is poised as one of the initial
steps in comparing classical models of torpor-hibernation
(e.g., squirrels and bats) to the torpor-response of a primate

(i.e., the lemur). The genes selected for analysis in the present
study were previously shown to be involved in the torpor
response of hibernating arctic ground squirrels (Urocitellus

parryii), a species that can sustain continuous torpor for many
days/weeks with core body temperature falling as low as �3 �C



Figure 1 Relative transcript expression of 28 selected genes in liver of gray mouse lemurs

Histogram shows expression levels of different genes after standardization against b-actin expression. Data are means ± SEM, for 3–4

independent samples from separate animals. * Indicates significant difference from the corresponding control (P < 0.05). The genes

analyzed are listed in Table 1.

Figure 2 Relative expression of the 28 genes in kidney of gray mouse lemurs

Expression levels of different genes were normalized against b-actin expression. Data are means ± SEM, for 3–4 independent samples

from separate animals. * Indicates significant difference from the corresponding control (P < 0.05).

114 Genomics Proteomics Bioinformatics 13 (2015) 111–118
[11]. By contrast, the gray mouse lemurs analyzed in the pre-
sent study were held under conditions where they exhibited

daily torpor during their non-active hours (they are nocturnal)
and showed relative small decreases in body temperature
(nadir Tb was 30.8 ± 1.6 �C for the 4 animals in the torpor

group). Interestingly, we observed unique patterns of tissue-
specific gene expression in the torpid lemur, when compared
to a classical model of mammalian hibernation. Although only

expression of some selected genes was upregulated during
lemur torpor, many of the proteins encoded by these genes
play important survival and adaptational functions.
A previous study documented the expression of heat shock
proteins (HSPs) during torpor in the thirteen-lined ground

squirrel (Ictidomys tridecemlineatus) [12]. A significant change
in the protein expression of HSP70 was detected in the liver,
kidney, heart, intestine, or skeletal muscle between active

and torpid squirrels. In addition, the abundance of 75 kDa glu-
cose regulatory protein (GRP75) protein was found to be sig-
nificantly higher in liver, skeletal muscle, and intestine of

torpid squirrels when compared to active squirrels [12].
Nonetheless, no significant changes in hsp70, also known as
(AKA) hspa8, mRNA expression were detected between



Figure 3 Relative expression of the 28 genes in skeletal muscle of gray mouse lemurs

Expression levels of different genes were normalized against b-actin expression. Data are means ± SEM, for 3–4 independent samples

from separate animals.

Figure 4 Relative expression of the 28 genes in the heart of gray mouse lemurs

Expression levels of different genes were normalized against b-actin expression. Data are means ± SEM, for 3–4 independent samples

from separate animals.
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euthermic and torpid states in any of the examined tissues of
the gray mouse lemur (Figures 1–5), which is different from

the significant HSP70 protein response seen in torpid
thirteen-lined ground squirrels. It should be noted that the
torpor-responsive differences in expression of this chaperone

between the two species may result from a decrease in
HSP70 auto-proteolysis during periods of cold torpor in the
hibernator, and not from changes in gene expression [13].

Interestingly, expression of two other chaperone-encoding
genes, including dnajb1 (AKA hsp40) encoding the partner
protein of HSP70 and hspb1 (AKA hsp27), was elevated
in response to torpor in BAT, the thermogenic tissue
(Figure 5). This may be a reflection of the necessary physiolog-
ical role that BAT plays in metabolism and energy supply,

along with regulating non-shivering thermogenesis during
arousal from torpor.

The hypoxia inducible factor (HIF-1) transcription factor is

well known to respond to low oxygen levels and has been
established to function in the adaptation and protection of
cells to hypoxia-related damage [14]. The protection role of

HIF-1 includes the upregulation of genes that are necessary
to improve oxygen delivery and to enhance the cellular rate
of anaerobic glycolysis [15]. A recent study reported differen-
tial hif-1a gene expression in the little brown bat (Myotis



Figure 5 Relative expression of the 28 genes in BAT of gray mouse lemurs

Expression levels of different genes were normalized against b-actin expression. Data are means ± SEM, for 3–4 independent samples

from separate animals. * Indicates significant difference from the corresponding control (P < 0.05).
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lucifugus) and the thirteen-lined ground squirrel in response to
hibernation [16]. These opposing patterns of hif-1a expression
suggest dependence on hibernacula and its oxygen availability
(i.e., overwintering in caves vs. underground burrows), rather

than a torpor-specific response [16]. hif-1a mRNA levels were
increased in the skeletal muscle and liver tissues of little brown
bat, as well as in the liver tissue of the squirrel. In contrast with

these hibernators, hif-1a mRNA levels did not change during
torpor in any of the lemur tissues examined. However, expres-
sion of ldha (encoding lactate dehydrogenase), a downstream

gene target of HIF-1a, was upregulated in response to torpor
in lemur liver (Figure 1), suggesting that the activity of
HIF-1a may be regulated post-transcriptionally, such as that

reported for other hibernating animals [16], although it is also
possible that ldha may be regulated by another transcription
factor, such as the cAMP-responsive element-binding protein
CREB.

Similar to ldha expression, liver was the only tissue to
display a torpor-response by gadd45a, which encodes
GADD45a. GADD45a is an integral component of the stress

response and is typically involved in arresting the cell cycle
under stressful conditions, which are not favorable for growth
or cause DNA damage [17]. Although no comparable studies

exist for other models of torpor, a similar response has been
seen to oxygen deprivation in anoxia-tolerant red-eared slider
turtles (Trachemys scripta elegans) [18]. In this regard, it is pos-
sible that the increased expression of gadd45a is part of the

hypometabolic program that is implemented during periods
of environmental stress.

The generation of free radicals, such as superoxide (O2
�),

can be coupled with changes in metabolic rate. Key enzymatic
players in the defense mechanism against reactive oxygen spe-
cies include peroxiredoxins (antioxidant enzymes that play a

major role in the decomposition of H2O2 to H2O and O2)
and superoxide dismutases (both Mn-SOD, the mitochondrial
isoform and CuZn-SOD, the cytosolic isoform) [19,20]. There

are also several auxiliary proteins that are involved in the
antioxidant defense system, including ferritin (composed of
heavy and light chains), which is commonly induced under
stress conditions. Ferritin is an iron storage protein that
sequesters iron in cells so as to minimize the free Fe3+ avail-

able to catalyze the Haber–Weiss reaction. A recent study
explored the regulation of peroxiredoxins and their contribution
to antioxidant defense during torpor in thirteen-lined ground

squirrels. It was found that the expression of peroxiredoxin
(prdx2) mRNA increased by 1.7- and 3.7-fold in the BAT and
the heart, respectively, during squirrel torpor [21]. Although

our study failed to see any torpor-responsive changes in prdx1
or prdx2 expression in the lemur, a significant elevation of fth1
transcripts was identified in both liver and BAT (Figures 1

and 5). The increased fth1 expression suggests a key role for fer-
ritin in the torpid lemur for iron storage as one mechanism for
protection from iron catalyzed oxidative damage.

The switch from carbohydrate to lipid based metabolism is

one of the most significant changes typically observed during
torpor [11,22]. In many hibernating species, animal do not
ingest food for several months, switch to a primary reliance

of stored lipids for fuel, and strictly conserve existing carbohy-
drate reserves for tissues that cannot utilize lipids. Recent
microarray analyses of Arctic ground squirrels have shown

increased expression of genes involved in fatty acid metabolism
during torpor [11]. In contrast, results from our study found
changes in genes associated with an increase in glycolytic rate
during torpor in the gray mouse lemur. The gene expression of

ppargc, which encodes peroxisome proliferator-activated
receptor gamma coactivator, was elevated significantly in both
liver and BAT of torpid lemurs (Figures 1 and 5). ppargc is

associated with PPAR activation, resulting in lipid uptake in
adipocytes and non-oxidative glucose metabolism. The
increase in ppargc expression in these tissues may function to

increase lipid catabolism in BAT, while shutting down pyru-
vate oxidation in the liver [5]. Additionally, expression of genes
such as hexokinase (hk1) and ldha was upregulated in kidney

and liver, respectively (Figures 1 and 2). It is possible that an
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increase in rate-limited enzyme expression is a preparatory
change take place for torpor exit when glycolytic rate can
increase. Indeed, glycolytic rate is known to increase quickly

during arousal in hibernators such as the deer mouse
(Peromyscus maniculatus), where the respiratory quotient
(RQ) values rise from �0.75 during torpor to �1.0 upon the

transition to arousal [23]. As these are direct measurements
of metabolic rate and fuel utilization, it is possible that gene
changes take place during torpor to accommodate the gly-

colytic demand during arousal.

Conclusion

In summary, the present study provides insight into the regu-
lation of selected genes that are involved the torpor response
in species that are studied as models of mammalian hiberna-

tion. Overall results for lemurs indicate an increase in the
expression of genes that are involved in fatty acid metabolism
and antioxidant defense pathways, with limited correlation to

the gene expression changes known to accompany hibernation
in ground squirrels. These results provide an indication that
the molecular mechanisms of torpor may not be as conserved
as previously assumed. Future studies utilizing transcriptomic

analysis of gene expression in the gray mouse lemur could
greatly improve current scientific knowledge in the field and
identify key targets for manipulation if research on natural

models of hypometabolism is to be translated into applications
that could improve human health.

Materials and methods

Animals

Gray mouse lemurs used for this study consisted of 8 adult
females (2–3 years of age) born in the authorized breeding col-

ony at the National Museum of Natural History (Brunoy,
France; European Institution Agreement # D91-114-1). All
experiments were carried out as described in greater detail by

Biggar and his colleagues [24]. Briefly, control (aroused) ani-
mals were sacrificed at the end of a daily torpor bout (i.e., after
spontaneous rewarming, Tb 35–36 �C), whereas torpid mouse

lemurs were sacrificed during a torpor bout (when Tb was at
its minimum, 30–33 �C). All animal experiments were per-
formed in accordance with the Principles of Laboratory
Animal Care (National Institutes of Health publication

86–23, revised 1985) and the European Communities Council
Directive (86/609/EEC). Tissue samples were rapidly excised
and immediately frozen in liquid nitrogen. Frozen samples were

packed in dry ice and air freighted to Carleton University where
tissues were stored continuously at �80 �C until use. All
imported tissues were logged as per the Convention on

International Trade in Endangered Species of Wild Fauna
and Flora (CITES) regulations (export permit No:
FR1009118231-E and import permit No: 10cA02291/QWH).

Total RNA isolation

Total RNA was isolated from the liver, kidney, skeletal mus-

cle, heart, and BAT of euthermic and torpid lemurs with stan-
dard procedures using Trizol� (Invitrogen, Waltham, MA).
RNA quality was assessed by the 260/280 nm ratio as well as
gel electrophoresis on a 1% agarose gel stained with 1·
SYBR Green I (Invitrogen) to check for integrity of the 18S

and 28S rRNA bands. All RNA samples were diluted to the
concentration at 1 lg/ll using DEPC-treated ddH2O.

Gene expression analysis

A RT2 First Strand kit (Cat. No 330401) and a custom-designed
RT2 Profiler PCR array (Cat. No 330131) were obtained from

SABiosciences (Mississauga, ON). Gene info used for primer
design is listed in Table S1. For first-strand cDNA synthesis,
1 lg of total RNA was reversely transcribed in a final volume

of 10 ll according to manufacturer’s instructions. The cDNA
was diluted to 100 ll by adding RNase-free water and stored
at �20 �C. PCR was performed using a BioRad MyIQ2 thermo-
cycler (BioRad, Hercules, CA). For one 48-well experiment,

1225 ll of 1 · PCRMaster Mix and 49 ll of diluted cDNA were
combined in a microcentrifuge tube and an aliquot of 25 ll was
added to each well. Profiler PCR arrays were run as indicated by

the manufacturer (SABiosciences). Melting curves were acquired
for all samples for quality control purposes.

Statistics

Endogenous control b-actin (actb) was present on each PCR
array and used for data standardization. Each cycle threshold
(Ct) was normalized to the Ct of the endogenous control. The

comparative DDCt method was used to calculate relative quan-
tification of gene expression. Statistical significance of the gene
expression difference between the control and torpor samples

was assessed using the Student’s t-test with SigmaPlot V.11
software. Significant differences were determined at P < 0.05.
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