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0. Introduction 

7’he purpose of this paper is to stady the Pioard group of algebraic fibre spaces in 
terms of the Picard group of the fibte and the base. Satisfactory results are obtained 
in case of tibrations which are Io~al?y trivial in the Zariski topology and have rational 
fibres. 

We have divided the material in five sections: 
1. Lull themes. 
2. Fibre spaces. 
3. Principal homogeneous spaces: 
4. Isogenies. 
5. Chevailey groups. 
Section I contains an elementary result on faithfully flat morphisms with integral 

fibres between Krull schemes. 
Section 2 contains notably the following result: Let A- denote an algebraically 

closed field. For an algebraic variety Y over k, let I/#‘) denote the group 
l’(Y, @)/k+, where + stands for multiplicative units. Let E + IJ denote a fibre space 
with fibre F and which is locally trivial in the Zariski topology. If vand Fare smooth 
and t’is rational, then we have an exact sequence 

0 + L$( v) + U&i-) + Uk(F) --+ Pic( v) + Pit(E) + Pit(F) -+ 0. 

In Section 3, more precise results are obtained in case of a principal homogeneous 
space. We get the corollary that a smooth connected linear group G with the property 
that all its principal homogeneous spaces are locally trivial in the Zariski topology has 
vanishing Picard group. 

In Section 4 on isogenies we obtain the following two complementary results: 
(i) (Propositron 4.2) IA G’ + G be a surjcctitle morphism between smooth cormec- 

ted linear ai’ebraic groups whose kernel D’ is diagonalirable. Then there exists mt ex- 
act sequence 
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0 --)r X(G) + X(C’) --+ X(U) 3 Pic(.G) 4 Pic(G’) -+ 0 

whene X( - ) stands fcrr cllaracter group. 
(ii) (Proposition 4.3). Let G be a ~~100th clonPtected linear algebraic group. TIten 

there exists a mquhism c 4 G as in (i) whose kernel is finite land diagonaiizabk +I 

with Pit@?) = 0. 
Applications of these results are given. 
In Section 5, we prove the following: 
For a Chavalley grouj~ G ower 2 (‘tgrw~e deployP reductif 3, the homomorphism 

Pic( G) + Pic(G X z Q) is an isomorphism 
TIte group Pic(G X2 Q) has been computed in 191 in terms of the system of 

roots and coroots. in particular we have. for a simple Chevallcy group G, that Pit(C) 
owing values, depending on the type of the root system 19. Cl : 

1. Krull schemes 

A scheme X is called a KnrN scheme if it is integral and satisfies the following 
conditions. (Let h’, dcncte the functic)*. Gld of X and tilj the set of points of X 
which are distinct from the generic pi. It of X and have the generic point as their 
only generization). 

K.l. IfpEti”, then0 xp 
ing valuatio(n of Kx: 

is a discrete valuation ring. Let up denote the correspand- 

*‘K.2. If l E k’k, then up (‘t) = 0 for all but finitely many p E X? 
K.3. If U is an open set of X, and t E K$+ is such that up(t) 2 0 for all p E U n x(l), 

then t E r(U, Ox)_ 

Let X be a KruH scheme. Put U(X) = I’(X, 0%) and let Ii’M denote the free 

ai$cIian group on the points of $ 1). We let div : Kk --, Div(X) denote the map defined 

bY t w Sv,(rjp, the sum being over all p f X (*I. This makes sense in virtue of K.2 
The kernel of div is U(X) in virtue of K.3. The cokernel of div is denoted by Cl(X). 
In rCsumC, we have an exact sequence 

A morphism f: X + Y of schemes is catied a KnrN morphism if X and Y are Krull 
schemes, the generic point of X is mapped onto the generic point of Y and a point 
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of A? is mapplsd onto the generic point of’ Y or a point of Y(l) (cf. (4, Ej I, condi- 

tion (PDE)]). 
Let f : X -+ I’ be a Kruil morphism and p f A” ) such that y = j(p) E u( ’ ). Then 

we put CI$I) = ~~cf (~!. )) where I denotes a local parameter for 0 y q. 
We let Divu) : II&( %) - Div(d denote the linear map which to q’E Y(l) assigns 

G$pk,, the sum being over all p E x”’ for which &I) = 4. We leave it to the reader 
to establish the cummutativity of $e square 

k”y ^__ ._. ._ _-!I._ . . . . -___._+ A’$ 

I div 

i 

div 

‘ivy’ Div( Y) ----- -4 IX&IT) 

which allows us to define: the homomorphism Cl(j) : CI( u) --, C!(X). It is also left to 
the reader to exhibit Cl and Div as contravariant functors from the Krull category to 
the category of abetian groups. 

Let ~5% u* Y be a Krull morphism wifh generic fibre W. Then W is a Krull scheme 
and the canonical map i : W + X is a Krull morphism. 

For the proof we may assume that Y is affne. Then hJ obviously satisfies K.1 and 
K.2, As for the verification of K.3, we may assume that X is affine (as a consequence 
of K.3 applied to X). The result now follows from the generai lemma: 

Let A denote Q KruN &main, S a mul~iplicdve subset ~rf’A not conraining 0. Then 
23-l A is u Kndl domain 14, 5 1, No.4, Proposition 63 _ 

Proposition 1.1. Let j‘: X + Y be a morphism between Kndi schemes. Suppose f is 

faithfully jkt with irttegd jibres. Then f is a K&l morphism, the generic j?bre W of 
f is TV K&I scheme und we have un exact sequence 

Rmf. We are first going to prove that f is a Krull morphism. For this we may assume 
X and Y affine. So let fbe represented Speclf3) + Spec(A). Then f faithfully flat im- . 

plies that A + B is injective. 
The result now follows from 14, g 1, No. 10, Proposition 151. From this and the 

remarks preceding Proposition I. I it follows that W is a Krull scheme and that the 
canonical map W --+ X is %L Krull morphism. 

Next we are going to prove that f: X + Y satisfies rhe condition: 

For all q E Y(l) there exists precisely one p E X(t) such that m) = Q. 
Moreover, for &at p we have ep) = 1. 

By the same argument we used in proving that W is a Krull scheme, we may make 
the base change Spec(o~ rl) + Y, i.e., we may assume that Y is the spectrum elf the t 
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discrete valuation ring A. Lei t be a IocaI parameter for A. Then fit) E L-(X, (>x) is 
not a unit. The map fis surjectivc, whence the stalk of_/(f) at a point x E X which 
is mapped onto y is a non-unit. By K.3 we can find a p E Ir” ‘such that up(r) > 0. 
Obviously m) = q. The rest is now cfeltr. 

From the preceding remarks, it is immediate to verify that we have the following 
exact commutative diagram: 

(‘) _ -....._-_..-._ -_ -..-+ piv( ,‘) ---_---__-.j Djv(,Q _-_.._____+ I)iv( &?) _.__. ,_. ____ + 0 . 

The snak.c lemma will give us the lung exact sequenoc in question if we can identify 
the kernel of the vericaf arrow to the right with U( W)lk’~. This, however, ts acc\om- 
phshed by the exact commutative diagram 

0 ___--.._ _-__.___+ q _____-____________.._+ A’f - _... ,.. I-. __ __ j  0 ^ _. - . .I -.+ () 

0 _..___ --._+ (j( &I) ..__ .--_- Kg, _. _-.__ .-._.._ --, Div( Iv) __----, 0 

and the snake lemma. 

Remah 8.2. Let/: X -+ Y be a Kruil morphism which satistics: 

For all y E Yt j ’ there exists pre&ely one ip E x” ) such that I@) = y. 
Moreover, for that F we have e,(p) = I. 

Then Proposition 1. f still holds as it fc# tic’s from its proof. 

2. Fibre spaces 

Throughout this section, k denotes an algebraically closed field. For an algebraic 
variety Y over k, WC let Ukj Y) denote the group r( Y. OF ,/k*+ 

The key to the geometric case is the following lemma of Rosenlicht f I 21. 

Proof ( F. Oort ). The injectivity is obvious. To prove the_surjectivity , we may assume 
that Y is an open strbset of a normal projective variety Y and that X is normal. Let 
now u : X >! Y -+ GP1 be a morphism. Then u extends to a ratianal functi(Bn ‘;I on 
X X F. Let D be the divisor of Z. Then .D is of the form p$E, where E is $1 divisor 
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_-,w.._ 
ore p: If H is an irreducible wmpurnent of the support of B, then p#j equals all 
ot Y or has uodimension 1 (since ~2 is flat). WC can now rule out the first possibility 
since H n X X Y is empty. 

is constant on E its divisor is E --_ E = 0 and p is complete. Whence we can write 

&K. _V) = Z(.$ ,\)) u(X), 

where u is a nowhere vanishing function on X. This u is obviously regular. 

Proof. We msy assume T = G,. We c’an ilnd morphisms k, and tr, from G to G,, 
such that flRt, g$ = ht(gt)h2(B2). Modifying h, and II, with a constant, we may 
assume k l(~) = hz(t~) = e. Substitute gi = v to see that hi = f. 

Roof. Let u E V denote the point onto which J+’ maps F and let KU denote the 
fibre off at u (j : F 3 E, ). The proof is based on the existence of spec‘ialization maps 
(let g denote the generic point of V) 

su : u@pc; -* U(E”)JP, t, : Pic(q --* Pic(EJ 

Put qu) = E X V Spec&J, and let j, : E, + A?&~ denote the map induced by 
the inclusion of E, in f?. Applying Pqopcbr_.;ion 1.1 to 92 : Etul + Spec( 0 t:u), and 
noting that C.(Spec( 0 v,u j) = 0, we get an exact sequence 

U( 0 17, “) 3 U(Etu)) + U(Eg )lq -+ 0 

and an isomorphism 

Noting that the composite U(0 & -+ U(E(,,) -+ Uk(Eu) is zero, we can factor the 
fast map through L&$/4+. The result is s, : U@‘JK~r + Uk(Eu). Similarly t, : 

pic(Eg) + Pic(Ev) is obtained by composing the inverse of the isomorphism 
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Pic(EttI) -+ Pic(E$ obtained above and Pi@/, ). 
It is clear that we have commutative diagrams 

where the unlabelled arrows are the obvious ones. 
Applying Proposition 1.1 to /: E -+ b’, we see that the specialization maps are ISO- 

morphisms in this case. In order to prove this it sufftces to treat the case 
pI: YXF+I’.WehaveE’R = Kv X F. We remark that the composite of the map 
U#)-+ U(F X Kv)/Kt8 induced by pz : Kfe X F + Fand s,, is the identlty. A sirni- 
lar remark applies to t,. Whence it suffices to prove the next lemma. 

Proof. The well-known fact that the tensor product of two integral domains over an 
algebraicalty closed field is an integral domain ensures that F Xk I, is an integral 
scheme and that the fibres ofjpt : F Xk L *F are integral. 

According to [ 3, $j 1, No.7 j, F Xk L is a Krull scheme. The projection p1 is faith- 
fully flat, so we mz.y apply Proposition I,1 m get an exact sequence 

Let us remark that if A and B aie integral domains over k, then tile canonical map 
Uk(A) ff, &(8) -+ &(A QO k B) is an isomorphism as follows by applying Lemma 2.1 
to the finite type subalgebras of A alld B. 

mis remark implies that U(F Xk L) --+ I/(K@k L)/KF is sujective. Modifying it 
slightly we also get that U(F)Ik+ + U(F Xk t)/P is sujective. 

The long exact sequence above now gives thz short exact sequence 

Now if F is rational of dimension n, we have 

which is a factorial ring, that is, Cl(KF QL) = 0. 

Corollary 2.5. Let X and T be smooth varieties over k, (L,),,T an algebraic family 
of line bundies ori X, If X is mtional, then (L, JrE T is constant. 
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ROOF. For a c E T, let il : X + X X Tdenotc the map given by i,(x) = (x, 1). Let L 
be a line bundle on X X Tsuch that iF/, = L,. Put )T,, = L,(o, for some fixed r(0) E T. 
Consider the sheaf L 8 PT Lo * . It follows from Proposition 2.4 that L ~b it Loi is the 
pullback of an invertible sheaf on T along pz. 

In f IO, g IS], Mumford implicitly establishes the following result: 
Let Htc smooth connected linear a&+wuic group G act on the nmmal, projective 

variety V, Xhen them exists un exact sequence 

0 -* X(G) + Pi@(V) -+ pic( V) + Pit(G). 

Using precisely the same technique, it is easy to establish the same sequence 
when V instead of normal and projective is smooth and rational. Namely, G acts triv- 
ially on Pic( 1;3 m this case, as follows from Corollary 2.5. 

Let us also remark that the special case of Proposition 2.3 where V is quasi-projec- 
tive and E is a vector bundle can be found in [ 5,4 -35 1. This was the departure of 
our investigations. Various cases of exactness of the middle part of the exact sequence 
of Proposition 2.3 are established by Raynaud in [ 11, p. 106j. 

3. Plincipd hcmogeneous spaces 

Liet ff be a smooth. connected algebraic group over k and+f: E + V a principal 
hotrrc%eneous (right ) II-space locally trivi,ll in the BAsKi topology. 

ht c : X(II) + pi@“) zienote the :nap which to a character )r G x(H) associates 
the line bundle r*(x) --* V obtained as follows. IIre space L(x) is the orbit space for 
the action ofH on E X G, given by (_v, x) h = (y, h, x(h’l )x). The first projection 
EXG, + E induces L(x) --* E 

Now let e be a point of E and let ie : H -+ E denote the map given by i&h) = e h. 
Lea us remark that, by Corollary 2.2, we may identify U&f) and X(H). 

Proposition 3.1. With the notation above, if H is a lirtenr algebraic group and V is 
smooth, then the following sequence is exact 

Proof. Let us first recall that a smooth connected linear algebraic group is rational. 
11, 15.8 I. The exactness of the two rows is contained in Proposition 2.3. We can now 
proceed by identifying c with the corresponding map of Proposition 2.3. We think, 
however, that it is more illustrative to proceed directly. It is then convenient to work 
with principal homogeneous G,-bundles instead of line bundles. So for a given 
x E x(H), let L*(x) denote the orbit space for the action of H on E X G, given by 
@, x)h = (y h, x(h-1 )x). The projection pt : E X G, + E’ will induce a map 
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L+( xl+ v and the action of C, on the second factor will induce the structure of 
principal homogeneous G,- s p ace. Recall that L*(k) is trivial if and only if it has a 
gIobd section. 

PrOOja that Uk {E) -+ X(/f) --, piu( V) is exact: Let x E X(H). A prolongatiun of 
y to all of E is easily seen to define a global section in L*(x). Conversely, suppose that 
L*(x) admits a global section over K The corresponding section over E of the pull- 
back of L*(x) atong$(which we may identify with 15’ X G,) has the form 
JJ b+ (J-, t(j!)), where t : E + G, satisfies 

t (j h) = t@) y&(K1 ). 

Substitute y = e to obtain the desired prolon@on of x. 
Prrqf &at X(H) + Pic( 19 -+ Pie(E) is exact: Let D be a principal homogeneous 

C&-bundle on t’. If 0 = L*(x) for some x E X(H), it obviously has a section over E. 
Conversely, suppose f‘* D has a section s, say. Interpret s as a map from E to D. Con- 
sidcr the map Q : E X ff + G, defined by s (g/l) = ~@)a@, h). According to Lemma 
2. I and Corollar) 1 2.2, a has the form Q(JJ. II) = b(y) ,x(h), where 8 E U(E) and 
x E .Y(t”r). Recapitulating, s Q h) = s(y )b(~) x(h). Substituting h = 4, one sees that b 
is constant 1. The map (~9, z) +-+ S(J) x(z) will now induce an isomorphism D 1 L(x). 

We are now going to give some general remarks concerning Proposition 3.1. 
If H is a smooth connected solvable hnear algebraic group, then ah principal homo- 

geneous spaces (locally trivial in the faithfully flat topology) are locally trivial in the 
Zariski topology [S, IV, §4,3.7]. Moreover picol) = 0 in that case [S, IV. §4,3.8]. 

If G is a smooth connected linear algebraic group and P a parabolic subgroup, then 
(; -, S/P is locally trivial in the Zariski topology. The case in which G is reductive can 
be found in [2,4. I 3 1. The general case follows immediately by applying the above 
remark to 6’ -+ G/R,,(G), where R,(C) i& tk unipotent radicaL 

The exact sequence we obtain, 

0 + X(G) -9 X(P) + Pk(G/P) --+ pie(C) + Pit(P) + 0, 

generalizes the one obtained m 19, Corollary 31. 

Corollary 3.2. Let C be a smcwth connectgcI linear algebmic group with the property 
that all principal homogeneous G-spaces (in the &ale topology) are kwally trivial in 
the Zun*ski topdogy (a ‘4spe~Yal”gtwp in the terminology of [ 5, expos6 I] ). Then 
k(G) = 0. 

Proof. Choose a closed immersion G --1’s Cl,. The fibration Cl, + GI,/G is locally tri- 
vial in the Zariski topology by assumption. Proposition 3.1 gives the exact sequence 

Rc(Gl,/C) --, Fic(G1,) + k(C) + 0. 

bt PiC(Gln ) = 0, whence Pk(C) = 0. 
A semi-simple group G with Pit(G) = 0 is simply connected as will be seen in Corol- 

lary 4.5 below. For a complete classification of special semi-simple groups see [S, 
ExposC 51. 
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4. tsogenies 

First the group-theoretical part. 

Lmma 4.1. Let G denm Q smooth connected timar algebraic group and D a noma 
diogonalizable subgrcmp fD wed not be smovtk~. Then D is conturiwd in any rrzaxdrnal 

tcM7rs of G. 

Rwf. Let T be a maximal torus. Let T operate on D by inner conjugation. By rigidity 
of diagonalitable groups, this operation is trivial, that is, R C Zu(7’), the fixed point 
scheme for inner conjugation of Ton G. Now Z,;(T) is smooth by [8, $5, 2.81 and 
connected by f 1, 1 I. 121. In conclusion, D is contained in the Cartan subgroup Ccor- 
responding to 7’. But c’is nilpotcn t 11, 1 I.71 and therefore a product of T and a uni- 
potent grrrup. Since D is diagonalizable we get I) C T. 

hposith 4.2. Let f: (3’ -+ U btx u sujec five morphism between smooth connoted 
linear algebraic groups whose kernel D’ is diapnalizabte. Then there exists an exact 
sequence 

0 *X(G) -+ X(G’) + X(D’) -+ Pit(G) + Pic(G’) + 0. 

h&f. Pick 3 maximal torus 7’ of G. Then 7’ = j”t (7’) is a maximal torus of G’: Let 
T1 be a maximal torus of G’. Then flTt ) is a maximal torus of G by [ I. 11.14). 

Whence, by the conjugacy theorem for maximal tori, we can find a conjugate Tz of 
T, such that RT2)= T. Now Tr contains@ by Lemma 4.1: therefore Tz =f”(T) = 
7? 

Pick a Bore1 subgroup R of G, containing T. Then H’ =f‘“lCB) IS a Bore! su5group 
of G’: Let H, be any Bore1 subgroup of G’ containing I’. Now f(B,) is 3 Bore1 sub- 
group of G by [ 1, 1 I. 14). By the conjugacy theorem for Bore1 subgroups, we can 
find a conjugate B2 of LI, such that AB2) = B; B, I> D’, whence B, = B’ =f-l(B). 

The exact, commutative diagram below and the snake lemma will conclude the 
proof: 

0 0 
4 4 “. 

X(G) ----, X(G’) 
J t- 

0 + X(T) --- --) XVI -I_) X(D’) + 0 

1 4 4 

03 Pic(G/B) ---=--+ Rc(G’/B’) - 0 - 0 

4 4 
Pit(G) -+ Pic(G’) 

4 J 
0 0. 
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Proposition 4.3. Lut G be u smooth connected linear algebraic gmup. Thett thm ex- 
ists aM isogeny n : 6 -+ G with diagonaiizable kernel, wrtere CT is a smooth connected 
limar dgebruic gn )t~p with Pic( c ) = 0. 

Proof. Let T be a maximal torus of G and B a Bore1 subgroup of G containing T. The 
proof of f9, ‘I’hcoren-r 3.7f shows that there exists an isogcny n : c + G with diagonal- -_... 
izabie kernel such that B = f-l(B) (resp. ;i” = f-* (T)) is a Bore1 subgroup (resp. a ._- 
maximal torus) of G (by the proof of Proposition 4.2) and such that X(F) + Pi&/@ 
is surjec tire. 

By virtue of Proposition 3.1, we have an exact sequence 

X{ Tj -+ Pic(i?/&) + Pi&) + 0. 

The conjugation of Propositions 4.2 and 4.3 is very powerful. Let us illustrate 
this by a series of more clr icss well-known theorems. 

Proof. Apply Proposition 4.2 to the isogeny n : t% + G of Proposition 4.3. Another 
proof using intersection theory can be found in (5, 5 - 2 I ) . 

Let us now make a general remark on Proposition 3. I. The three groups in the 
first row are finitely generated and Gee ( 12, Theorem 11. The last one in tic second 
row is finite. 

We are now going to generalize the construction of universal covering spaces. An 
isogeny 1’: CT -+ G is called special if G -. lb G’ are smooth connected linear groups and 
the kernel of ]‘is finite and diagona’ttabie. A linear algebraic group G is called sim& 
connected if any special isogenv 0” --, G’ is an isomorphism. 

f'bdlary 4.5. Let G be a srncroth connected iineur algebraic grtmp with X(G) =: 0. 
T;cten G is simp/j cotmected ijkd only if Pie(C) = 0. 

Roof. Suppose G is simply connected. By Proposition 4.3, we can find a special iso- 
geny a : t? + G with I%:(e) = 0. Now II has to be an isomorphism. Conversely, sup- 
pose Pit(G) = 0, and let C’ -+ @ be a special isogeny with kernel D’. Proposition 4.2 
#ves us the exact sequence 

0 + X(G’j --, X(D’) -+ 0. 

Now X(G’) is torsion free and X(5’) is finite, whence X(5”) = 0, and therefore 5’ = 
0 since 5’ is diagonalizable. 

Corollary 4.6. Let G be a smooth connected linear al’ebraic group with X(G) 3 0. 
Then there ex&ts a special isogeny 2: + G with z simply connected (the rniwersal 
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Roof. L.et 6” + G be a special isogeny with Pit(G) = 0 and let nl (G) denote its ker- 
nel. Proposition 4.2 gives us the exact sequence 

where X(c) is torsion free and X@t (G)) is finite; whence X(c)\ = 0. According to 
Corollary 4.5, c”is simply connected. Consequently, Pit(c) Z X@t (C)). 

Corollary 4.7. Let G be a reductive algebraic group. Then there exists u central i.so- 
geny G’ X T + G, where G’ is semisimple and T is a torus. 

Proof. Let T denute the reduced connected centre of G and let G’ denote the univer- 
sal covering space of the semi-simple group G/T. It suffices to prove that G’ -+ G/T 
c’dn be factored through G -+ G/T. Pulling G + G/T back along G’ + G/T, it suffices 
to prove: 

Let H be a simply connected semi-simple group and f : K + H a mqphism of a 
linear algebraic grt3up. If Kcr(j”) is diugonalizable, then f admits a section {as morph- 
&m of algebraic grl3ups). 
IVooJ Replacing h’ by A$&7 we may assume that K is smooth and connected. Propo- 
sition 4.2 yields an exact sequence 

0 -, 0 -+ X(K) -+ X(KerCf’)) -+ 0 -+ 0. 

Recall that K/[K, K) is diagonalizable [ 1, 14.2j. Whence Ker(_#) + k’/[K, K] is an 
isomorphism, i.e., the inclusion of KerV’) in A’ has a retraction r’, say. The map 
K -+ K defmed by x --* &xW1)x is a group homomorphism and factors through 
f: K -+ H ia @ve the required section. 

5. Chvalley groups 

By a C&Q&Y group G we undcrstend a reductive group scheme over 2 which has 
a maximal torus T which is diagonalizable over 2 (see [ 71). 

hoposition 5.1. Let G be a Chevalley group. Let R = (M, MS, R, R + M*) be its q-s- 
tem of roots and coroots (“depiziement de G relative a T” (7. 3.161) and let S be a 
basis for R. Then Pit(G) is isom(3rphic to tha cokernel of M * Zs, m + ((9, mQsES. 

Roof. The canonical map C -+ Spec(2) is smooth with non-empty integral fibres. It 
follows that G is a regular scheme. In particular it is a Krull scheme and we may iden- 



ti fy Pic( G) and CI(G). Let GQ denote the base cx tension of G t cl Q. The exam t se- 
quence of Proposition 1. I gives us an exact sequence 

The group Pic( G$ is evaluated as above in [9, Appendix C] (see the remarks at the 
end of the introduction). 
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