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0. Introduction

The purpose of this paper is to study the Picard group of algebraic fibre spaces in
terms of the Picard group of the fibre and the base. Satisfactory results are obtained
in case of fibrations which are locally trivial in the Zariski topology and have rational
fibres.

We have divided the material in five sections:

1. Krull schemes.

2. Fibre spaces.

3. Principal homogencous spaces:

4. Isogenies.

S. Chevalley groups.

Section 1 contains an elementary result on faithfully flat morphisms with integral
fibres between Krull schemes.

Section 2 contains notably the followirg result: Let k denote an algebraically
closed field. For an algebraic variety Y over &, let Uy (Y) denote the group
I'(Y, 0%)/k*, where * stands for multiplicative units. Let £ - V denote a fibre space
with fibre F and which is locally trivial in the Zariski topology. If ¥ and F are smooth
and F is rational, then we have an exact sequence

0 = Uy (V) Up(E) > Up(F) > Pic(V) > Pic(E) - Pic(F) = 0.

In Section 3, more precise results are obtained in case of a principal homogeneous
space. We get the corollary that a smooth connected linear group G with the property
that all its principal homogeneous spaces are locally trivial in the Zariski topology has
vanishing Picard group.

In Section 4 on isogenies we obtain the following two complementary results:

(i) (Proposition 4.2) Let G' - G be a surjective morphism between sn:0oth connec-
ted linear algebraic groups whose kernel D' is diagonalizable. Then there exists an ex-
act sequence
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0~ X(G) - X(G")~ X(D') = Pic(G) = Pic(G') ~» 0

where X( - ) stands for character group.

(ii) (Proposition 4.3). Let G be a smooth connected linear algebraic group. Then
there exists a morphism G — G as in (i) whose kernel is finite (and diagonalizable)
with Pic(G) = 0.

Applications of these results are given.

In Section 5, we prove the following:

For a Chevalley group G over Z (*“groupe deployé reductif"), the homomorphism
Pic(G) — Pic(G Xz Q) is an isomorphism.

The group Pic(G Xz @) has been computed in [9] in terms of the system of
roots and coroots. In particular we have. for a simple Chevalley group G, that Pic(G)
takes the following values, depending on the type of the root system [9,.C.2}:

An Bn Cn D’ D.’.m +1
Ziintly Z/2) ZK2) ’(’) XZ/(2) ZH4)
EG E-; ES I‘:‘ GZ
Z/(3) Z/(2 0 0 0 .

1. Knull schemes

A scheme X is called a Krull scheme if it is integral and satisfies the following
conditions. (Let K y dencte the functior. ficld of X and X1 the set of points of X
which are distinct from the generic pe.at of X and have the generic point as their
only generization).

KL 1fpexD then Oy X.p 1s a discrete valuation ring. Let Up denote the correspond-
ing valuation of Ky

K.2. If t €K%, then v, (l) 0 for all but finitely many p € x,

K.3.If Uis an open set of X, and r €K% is such thatv (1)90 forallpe unx®,
thenr €U, 0x)

Let X be a Krull scheme. Put U(X) = (X, 0%) and let Div(X) denote the free
abelian group on the points of X). We let div : K% — Div(X) denote the map defined
byt~ Xy (t)p. the sum being over all p € X1). This makes sense in virtue of K.2
The kernel of div is U(X) in virtue of K.3. The cokernel of div is denoted by CI(X).

In résumé, we have an exact sequence

0~ U(X) -+ K% - Div(X) - CI(X) > 0.

A morphism f: X = Y of schemes is calied a Krull morphism if X and Y are Krull
schemes, the generic point of X is mapped onto the generic point of Y and a point



1. Krull schemes 271

of X' js mapped onto the generic point of Y or a point of Y (cf. |4, §1, condi-
tion (PDE))).

Let f: X = Y be a Krull morphism and p € XU such that g=fp)€ YV, Then
we put e (p) =v (/,,(¢,)) where r_ denotes a local parameter for Oy .

We let Div(f): [{i)v( 1’) - Div(Xg denote the linear map which to g € YV assigns
Zedp)p. the sum being over allp € X'V for which fl p) =q. We leave it to the reader
to establish the commutativity of the square

. i <
Ka)tr U SN ' ‘»
l div 1 div
[)iV( Y) __,,BE_‘:,.L—»—-) DW(X )

which allows us to define the homomorphism CI(f) : CI(Y) = Ci(X). It is also left to
the reader to exhibit Cl and Div as contravariant functors from the Krull category to
the category of abelian groups.

Let £:X - Y be a Krull morphism with generic fibre W. Then W is a Krull scheme
and the canonical map i : W - X is a Krull morphism.

For the proof we may assume that Y is affine. Then W obviously satisfies K.1 and
K.2. As for the verification of K.3, we may assume that X is affine (as a consequence
of K.3 applied to X). The result now follows from the general lemma:

Let A denote a Krull domain, S a multiplicative subset of A not containing 0. Then
SV A is a Krull domain [4, §1, No.4, Proposition 6].

Propaosition 1.1. Let f: X - Y be a morphism berween Krull schemes. Suppose f is
Jaithfully flat with integral fibres. Then fis a Krull morphism, the generic fibre W of
[ is a Krull scheme and we have an exact sequence

0 - U(Y) » U(X) » UW)/KY, = CI(Y) - CI(X) > C{W) > 0.

Proof. We are first going to prove that fis a Krull morphism. For this we may assume
X and Y affine. So let fbe represented Spec(B) = Spec(4). Then f faithfully flat im-
plies that 4 - B is injective.

The result now follows from [4, § 1, No. 10, Proposition 15]. From this and the
remarks preceding Proposition 1.1 it follows that W is a Krull scheme and that the
canonical map W - X is a Krull morphism.

Next we are going to prove that f: X - Y satisfies the condition:

For all g € Y1) there exists precisely one p € X M such that fip) = q.
Moreover, for that p we have et(p) =1.

By the same argument we used in proving that W is a Krull scheme, we may make
the base change Spec(0 Y.q)~ Y, i.e., we may assume that Y is the spectrum of the
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discrete valuation ring A. Lei ¢ be a local parameter for A. Then fAr)EN(X, Oy ) is
not a unit. The map [ is surjective, whence the stalk of f{t) at a point x € X which
is mapped onto q is a non-unit. By K3wecantindap€ X such that vp(t) >0.
Obviously fip) = q. The rest is now clear.

From the preceding remarks, it is immediate to verify that we have the following
exact commutative diagram:

0 - » Kp e Ky s K3 /K% s 0
| |
| l |
0 s DIV(Y) e DIV(X) s DIV(W) o =0 .

The snake lemma will give us the long exact sequence in question if we can identify
the kernel of the verical arrow to the right with U(W)/K¥§. This, however, is accom-
plished by the exact commutative diagram

0 - emes K e B o N
| i j
0 — s UW) s K&, —— s Div(W) = 0

and the snake lemma.

Remark 1.2. Let f: X = Y be a Krull morphism which satisfies:

Forallg € YD there exists precisely one p € XD such that iy =q.
Moreover, for that p we have e {p) = |.

Then Proposition 1.1 still holds as it foll- ws from its proof.

2. Fibre spaces

Throughout this section, k denotes an algebraically closed field. For an algebraic
variety Y over k, we let Up(Y) denote the group I'(Y, 0% )/k*.
The key to the geometric case is the following lemma of Rosenlicht {12].

Lemma 2.1. For varieties X and Y over k, the canonical map Uy (X) ® U (Y)
-+ Ui (X X Y) is an isomorphism.

Proof (F. Qort). The injectivity is obvious. To prove the surjectivity, we may assume
that Y is an open subset of a normal projective variety Y and that X is normal. Let
now u : X X Y > G, be a morphism. Then u extends to a rational function u on

X X Y. Let D be the divisor of &. Then D is of the form p3 £, where E is a divisor
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on Y If H is an irreducible component of the support of D, then p,(H ) equals all
of ¥ or has codimension 1 (since P, is flat). We can now rule out the first possibility
since HN X X Y is empty.

Now let x,, and x be points of X. The rational {unction on ¥,

y =u(x, y) g, 1)
is constant on Y. its divisor is £ - £ = 0 and Y is complete. Whence we can write
u(x, v)= U(x“. yux),

where v is a nowhere vanishing function on X. This v is obviously regular.

Corollary 2.2 (Rosenlicht [12]). Ler G be a smooth connected algebraic group over
k and T a torus. Then any morphism of varieties f: G =+ T with fle) = e is a morph-
ism of algebraic groups.

Proof. We may assume T = G,,,. We can find morphisms 4, and 4, from G tc G,
such that fig,. 1) = k(g ) h,(g7). Modifying b} and h, with a constant, we may
assume A, (e) = hy(e) = e. Substitute g; = ¢ 1o see that i; = f.

Propasition 2.3. Let f: E = V denote a fibre space with fibre F, locally rrivial in the
Zarisky topology. Let | : F - F induce an isomorphism between F and a fibre of f.
Iy V and F are smivoth and F is rational, then there exists an exact sequence

Pic(f)

., U F) > Pic(r) 220 pice)

0= U ()~ U (E)

ke | Pic(E) - 0.

.l_»__‘vl

Proof. Let v € V denote the point onto which f*j maps F and let £, denote the
fibre of fatv ¢ : F X E ). The proof is based on the existence of spcuahzanon maps
(let g denote the generic point of V)

5, U(E )fKV - (E ) ¥ t, :Pic(l';' )—»Pic(E ).

Put £, =E Xy Spec(Oy,) and letj, : E, = E ) denote the map induced by
the inclusion of £, in E. Applying Prope-.ion 1.1 1o p, : £, - Spec(Qy ) and
noting that Cl(Spec( Oy ) =0, we get an exact sequence

U(Oy,,) = UE ) > UE KT ~

and an isomorphism

Pic(E,)) = Pic(E o)
Noting that the composite U(( v.p) = UE ® ) Uk(E ) is zero, we can factor the
last map through U(E YK The resultis s, )/K ¥ = Up(E,). Similarly 7,

Pic(Eg) = Pic(E)) is ubtamed by composing the mverse of the isomorphism
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Pic(E ) > Pic(E,;) obtained above and Pic(j, ).
It is clear that we have commutative diagrams

Uy (E) ~—————— UE, VKT Pic(E) ———-—— Pictky)
\\ o o i'z.

» g,

U, E)) Pic(£ )
where the unlabelled arrows are the obvious ones.
Applying Proposition 1.1 to f: £ — V, we see that the specialization maps are 150-
morphisms in this case. In order to prove this it suffices to treat the case
py: VX F-V.Wehave £, =K}, X F. We remark that the composite of the map
Up(F) = U(F X Ky)/K}- induced by py : K- X F-> Fand s, is the identity. A simi-
lar remark applies to t,. Whence it suffices to prove the next lemma.

Lemma 2.4. Let F denote a normal variety over the algebraically closed field k and
let L denote a finite type field extension of k. Then U(F)/k* = U(F X, L)/L* isan
isomorphism. If moreover L is a purely transcendental extension of k, then

CI(F) = CI(F X, L) is an isomorphism.

Proof. The well-known fact that the tensor product of two integral domains over an
algebraically closed field is an integral domain ensures that £ X, L is an integral
- scheme and that the fibres of p : F X L — F are integral.

According to [3, §1, No.7|, F X; L is a Krull scheme. The projection p, is faith-
fully flat, so we mzey apply P.oposition 1.1 1o get an exact sequence

0->UF)~»UF X, L)> viKpey L)KE —~ CUF) > CUF X, L)
"’C](Kl; @ L)—=0.

Let us remark that if 4 and B are integral domains over k, then the canonical map
Ur(A4) @ Uy (B) > Up(A ® 4 B) isanisomorphism as follows by applying Lemma 2.1
to the finite type subalgebras of 4 and B.

This remark implies that U(F X, L) » (K@ L)/K} is surjective. Modifying it

slightly we also get that U(F)/k* - U(F X, L)/L* is surjective.
The long exact sequence above now gives th> short exact sequence

0->CU(F)=>CUF X, L)>ClKp3, L)—0.
Now if F is rational of dimension n, we have

Kpe L=k(X,,..X)®, L
which is a factorial ring, that is, CK ¢ €,1) =0.

Corollary 2.5. Let X and T be smooth varieties over k, (L), 1 an algebraic family
of line bundles on X. If X is rational, then (L,),c  is constant.
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Proof. Forat € T, leti, : X » X X T denote the map given by i(x)=(x,t). Let L
be a line bundle on X X T'such thatifL = L,. Put L, = L,,, for some fixed t(O)E T.
Consider the sheaf L ® pf Lyl. It follows from Proposition 2.4 that L e pf Lyl is the
pullback of an invertible sheaf on T along p,.

In [10, §13], Mumford implicitly establishes the following result:
Let the smooth connected linear algebraic group G act on the normal, projective
variety V. Then there exists an exact sequence

0 - X(G) - PicG (V) = Pic(¥) - Pic(G).

Using precisely the same technique, it is easy to establish the same sequence
when FV instead of normal and projective is smooth and rational. Namely, G acts triv-
ially on Pic(¥) in this case, as follows from Corollary 2.5.

Let us also remark that the special case of Proposition 2.3 where V is quasi-projec-
tive and £ is a vector bundle can be found in (5, 4 —35]. This was the departure of
our investigations. Various cases of exactness of the middle part of the exact sequence

of Proposition 2.3 are established by Raynaud in [11, p. 106].

3. Principal homogeneous spaces

Let H be a smooth, connected algebraic group over k and¥: £ — V a principa!
homogeneous (right) H-space locally trivial in the Zarisxi topology.

Let ¢ : X(H) - Pic(V) denote the :nap which to a character x € X(H) associates
the line bundle L(x) = V obtained as follows. The space L(x) is the orbit space for
the action of H on E X G, given by (v, x)h = (3, h, x(th™1)x). The first projection
EXG, - E induces L(x)~> V.

Now let e be a point of £ and let i, : H - E denote the map given by ip(h) = eh.
Let us remark that, by Corollary 2.2, we may identify Uy (H) and X(H).

Proposition 3.1. With the notation above, if H is a linear algebraic group and V is
smooth, then the following sequence is exact

0~ U (V) 2L g, (8) Y2,

hictie) | pic(Hny - 0.

— X (H) Pic( V) Pic(E)

Proof. Let us first recall that a smooth connected linear algebraic group is rational.
[1, 15.8]. The exactness of the two rows is contained in Proposition 2.3. We can now
proceed by identifying ¢ with the corresponding map of Proposition 2.3. We think,
however, that it is more illustrative to proceed directly. It is then convenient to work
with principal homogeneous G,,-bundles instead of line bundles. So for a given

X € X(H), let L*(x) denote the orbit space for the action of H on £ X G, given by
(. x)h = (v h, x(h™ 1) x). The projection p, : E X G, - E will induce a map
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L*(x)— V and the action of G,,, on the second factor will induce the structure of
principal homogeneous G,,-space. Recall that L*(x) is trivial if and only if it has a
global section.

Proof that U (E) ~ X(H) = Pic(V) is exact: Let x € X(H). A prolongation of
x to all of £ is easily seen to define a global section in L*(x). Conversely, suppose that
L*(x) admits a global section over V. The corresponding section over £ of the pull-
back of L*(x) along f (which we may identify with £ X G,,,) has the form
v =y, t(y)), where t : E - G,,, satisfies

t(y i) =) xh ).
Substitute ¥ = e to obtain the desired prolongation of x.

Proof that X(H) = Pic(V) = Pic(E) is exact: Let D be a principal homogeneous
G,,-bundle on V. If D = L*(x) for some x € X(H), it obviously has a section over E.
Conversely, suppose f * D has a section s, say. Interpret s as a map from £ to D. Con-
sider the mapa: £ X H = G, defined by s(gh) = s(v)a(y, h). According to Lemma
2.1 and Corollary 2.2, a has the form a(y, h) = b(y) x(h), where b € U(F') and
X € X(H). Recapitulating, s (y i) = s(y) b(y) x(h). Substituting h = e, one sees that b
is constant 1. The map (¥, z) = s(») x(z) will now induce an isomorphism D = L(x).

We are now going to give some general remarks concerning Proposition 3.1.

If H is a smooth connected solvable linear aigebraic group, then all principal homo-
geneous spaces (locally trivial in the faithfully flat topology) are locally trivial in the
Zariski topology [8, IV, §4, 3.7]. Moreover Pic(H) = 0 in that case [8, IV, §4, 3.8].

If G is a smooth connected linear algebraic group and P a parabolic subgroup, then
G — G/P is locally trivial in the Zariski topology. The case in which G is reductive can
be found in [2, 4.13]. The general case follows immediately by applying the above
remark to & = G/R,,(G), where R (G) i< th: unipotent radical.

The exact sequence we obtain,

0 = X(G) = X(P) = Pic(G/P) ~ Pic(G) = Pic(P) ~+ 0,
generalizes the one obtained in [9, Corollary 3].

Cordllary 3.2. Let G be a smooth connected linear algebraic group with the property
that all principal homogeneous G-spaces (in the étale topology) are locally trivial in
the Zariski ropology (a *‘special” group in the terminology of {S, exposé 1]). Then
Pic(G) = 0.

Proof. Choose a closed immersion G - Gl,,. The fibration Gl, -~ Gl,,/G is locally tri-
vial in the Zariski topology by assumption. Proposition 3.1 gives the exact sequence

Pic(Gl,,/G) = Pic(Gl,,) = Pic(G) > 0.

But Pic(Gl,;) = 0, whence Pic(G) = 0.

A semi-simple group G with Pic(G) = 0 is simply connected as will be seen in Corol-
lary 4.5 below. For a complete classification of special semi-simple groups see [5,
Exposé 5).



4. Isogenies 277

4. Isogenies
First the group-theoretical part.

Lemma4.i. Ler G denote a smooth connected linear algebraic group and D a normal
diagonalizable subgroup (D need not be smooth). Then D is contained in any maximal
toris of G,

Proof. Let T be a maximal torus. Let T operate on D by inner conju

of diagonalizable groups, this operation is trivial, thatis, D C Z (T, the fixed point
scheme for inner conjugation of T on GG. Now Z(T)is smooth by [8, §5,2 8] and
connected by [1. 11.12]. In conclusion, D is contained in the Cartan subgroup C cor-
responding to T. But Cis nilpotent [1, 11.7] and therefore a product of T and a uni-
potent group. Since D is diagonalizable we get DC T.

Proposition 4.2, Let f: G' — G be a surjective morphism between smooth connected
linear algebraic groups whose kernel D' is diagonalizable. Then there exists an exact
sequence

0 - X(G) ~ X(G") = X(D') -~ Pic(G) - Pic(G') - 0.

Proof. Pick a maximal torus T of G. Then T’ = f~1(T) is a maximal torus of G': Let
Ty be a maximal torus of G'. Then AT ) is a maximal torus of G by [1., 11.14].
Whence, by the conjugacy theorem for maximal tori, we can find a conjugate T, of
T, such that AT,) = T. Now T, contains D' by Lemma 4.1: therefore T, = ruUn=
T

Pick a Borel subgroup B of G, containing 7. Then B’ = £ "1(B) 1s a Bore! subgroup
of G": Let By be any Borel subgroup of G’ containing 7°. Now f{B,) is a Borel sub-
group of G by [1, 11.14]. By the conjugacy theorem for Borel subgroups, we can
find a conjugate B, of By such that f{B,) = B: B, 2 D', whence B, = B' = f"1(B).

The exact, commutative diagram below and the snake lemma wili conclude the
proof:

0 0
i i
X(G) ———— X(G)
i i

0-+X(T) ———— X(T') — X(D)~0
{ 1] +

0 - Pic(G/B) —~— Pic(G'/B') ———— 0 —— 0
i )
Pic(G) ———— Pic(G")
i !

0 0.
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Proposition 4.3. Let G be a smooth connected linear algebraic group. Then there ex-
ists an isogeny n . G — G with diagonalizable kernel, wnere G is a smooth connected
lienar algebraic group with Pic(G') =0

Proof. Let 7 be a maximal torus of G and B a Borel subgroup of & containing T. The
proof of [9, Theorem 3.7] shows that there exists an isogeny 7 : G = G with diagonal-
izable kernel such that B = f"1(B) (resp. T = f "1(T)) is a Borel subgroup (resp.a
maximal torus) of G (by the proof of Propusition 4.2) and such that X( T) - Pic(G/B)
is surjective.

By virtue of Proposition 3.1, we have an exact sequence

X(T) - Pic(G/B) = Pic(G) ~ 0.

The conjugation of Propositions 4.2 and 4.3 is very powerful. Let us illustrate
this by a series of more or less well-known theorems.

Corollary 4.4. If G is a smooth connected linear algebraic group, then Pic(G) is a finite
group.

Proof. Apply Proposition 4.2 to the isogeny 7 : & - G of Proposition 4.3. Another
proof using intersection theory can be found in |5, 5-21}.

Let us now make a general remark on Proposition 3.1. The three groups in the
first row are finitely generated and free [12, Theorem 1]. The last one in the second
row is finite.

We are nuw going to generalize the construction of universal covering spaces. An
isogeny f: G = G is called special if G - «d G’ are smooth connected lincar groups and
the kernel of f'is finite and diagona‘.zable. A linear algebraic group G is called simply
connected if any special isogenv G’ = G is an isomorphism.

Corollary 4.5. Let G be a smooth connected linear algebraic group with X(G) = 0.
Then G is simply connected if and only if Pic(G) = C.

Proof. Suppose G is simply connected. By Proposition 4.3, we can find a special iso-
geny 7: G - G with Pic (G) 0. Now 7 has to be an isomorphism. Conversely, sup-
pose Pic(G) = 0, and let G’ - G be a special isogeny with kernel D'. Proposition 4.2
gives us the exact sequence

0-X(G"y - X(D')-~0.
Now X(G') is torsion free and X(D') is finite, whence X(D') = 0, and therefore D' =
0 since D' is diagonalizable.

Corollary 4.6. Let G be a smooth connected linear algebraic group with X(G) = 0.
Then there exists a special isogeny GG withG simply connected (the niversal
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covering space). Let n,(G) denote the kernel of(:" -+ G. Then
Pic(G)> X(n(G)).

Proof. Let G + G be a special isogeny with Pic(G) = 0 and let 7 (G} denote its ker-
nel. Proposition 4.2 gives us the exact sequence

0 - X(G) - X(7,(G)) = Pic(G) ~ 0,

where X(G )is torsion free and X(n(G)) is finite; whence X((; )= 0. According to
Corollary 4.5, G is simply connected. Consequently, Pic(G) = X(m,(G)).

Corollary 4.7. Let G be a reductive algebraic group. Then there exists a central iso-
geny G’ X T~ G, where G’ is semisimple and T is a torus.

Proof. Let T denote the reduced connected centre of G and let G’ denote the univer-
sal covering space of the semi-simple group G/T. It suffices to prove that G' - G/T
can be factored through G - G/T. Pulling G - G/T back along G’ - G/T, it suffices
to prove:

Let H be a simply connected semi-simple group and f: K = H a morphism of a
linear algebraic group. If Ker(f) is diagonalizable, then f admits a section {as morph-
ism of algebraic groups).

Proof. Replacing K by KU, we may assume that K is smooth and connected. Propo-
sition 4.2 yields an exact sequence

0 - 0+ X(K) - X(Ker(f)) » 0 0.

Recall that K/[K, K] is diagonalizable [1, 14.2]. Whence Ker(f) - K/[K, K] is an
isomorphism, i.e., the inclusion of Ker(f) in K has a retraction r, say. The map

K - K defined by x ~ r(x"!)x is a group homomorphism and factors through

f: K = H to give the required section.

S. Chevalley groups

By a Chevalley group G we understzand a reductive group scheme over Z which has
a maximal torus T which is diagonalizable over Z (see [7]).

Proposition 5.1. Let G be a Chevalley group. Let R = (M, M*, R, R = M*) be its sys-
tem of roots and coroots (“‘deploiement de G relativea T” |7, 3.16]) and let S be a
basis for R. Then Pic(G) is isomorphic to the cokernel of M =25, m — ({s*, m))es-

Proof. The canonical map G - Spec(Z) is smooth with non-empty integral fibres. It
follows that G is a regular scheme. In particular it is a Krull scheme and we may iden-
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tify Pic(G) and CHG). Let G denote the base extension of G to Q. The exact se-
quence of Proposition 1.1 gives us an exact sequence

Pic(Z) - Pic(G) ~ Pic(Gg) = 0.

The group Pic(Gg) is evaluated as above in [9, Appendlx C] (see the remarks at the
end of the introduction).
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