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Abstract 

The use of SCMs (supplementary cementitious materials) to replace part of the clinker in cement industry is gaining 
an increasing interest in order to reduce the CO2 footprint. The abundantly available clay minerals are potential 
sources of SCMs. Thermal treatment of kaolinite clay under moderate temperatures (700-1000K) yields an 
amorphous phase called metakaolinite, a material that has great promise as a mineral admixture for cement and 
concrete. However, the optimum properties of metakaolinite are highly dependent on operating temperature and 
residence time during thermal treatment. This article presents the development of a numerical model for the 
simulation of dehydroxylation of kaolinite clay using gPROMS (general PROcess Modeling System). Accordingly, a 
1D dehydroxylation model is used to examine the thermal transformation of kaolinite into different phases. This 
model is used to predict the temperature and residence time at which the kaolinite particle attains optimum 
pozzolanic reactivity. The usefulness and validity of the method is evaluated by comparing the predicted variables 
with experimental values collected from a gas suspension calciner (GSC).  
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1. Introduction 

   A drive towards environmental sustainability in construction industry is shaping our attitude towards 
alternative admixtures that can be applied in cement and concrete industry. Kaolinite, being one of the 
most abundant clay mineral on earth’s crust, has got an increasing interest from cement and concrete 
manufacturing industry as clinker replacement. This allows a reduced emission of CO2 from cement 
industry that is associated with the manufacture of clinker.   

The use of metakaolinite as partial cement constituent in mortar and concrete has been studied widely 
[1-3]. The work demonstrated that metakaolinite is an effective pozzolan and partial substitution of 
clinker with metakaolinite enhances the strength and pore structure of the cement paste. The key to 
producing high-quality metakaolinite is to achieve a near-complete dehydroxylation, without overheating. 
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Thermal treatment beyond dehydroxylation may result in the formation of crystalline products such as 
mullite, which is not pozzolanic. 

A complete structural transformation of kaolinite mineral during thermal treatment may pass through a 
sequence of reactions [4,5]. For the sake of convenience and ease of getting kinetic parameters, the 
transformation is summarized into the following reactions, where direct transformation of metakaolinite 
to mullite is assumed.  
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From the perspective of modelling, a complete work on the thermal transformation of kaolinite appears 
to be limited. Some attempts has been reported on flash calcination of kaolinite by Salvador et al. [6], 
where a spherical kaolinite particle is plunged into a hot gas atmosphere at 1273 K. Consequently, a 
particle of 100μm in diameter was observed to be dehydroxylated approximately in 0.083 seconds. The 
fast heating rate during flash calcination was suggested for the particle decrepitation [7]. 

The purpose of this paper is to develop 1D distributed model for the thermal transformation of 
kaolinite using gPROMS [8], where the governing equations of energy and transport has been solved by 
built-in solvers in gPROMS. The spatial variables are discretized using centred finite difference method 
of second order over a uniform grid of 20 elements. Several variables including the variations in particle 
density, temperature and conversion are exploited as a function of particle radius and time. A sensitivity 
analysis on the impact particle size and gas temperature on the conversion of kaolinite is investigated and 
discussed. 
 
Nomenclature 

pD        Particle diameter, [m]                                               Subscripts 

radT       Radiation temperature, [K]                                            kk             Kaolinite           
          Density [kg/m3]                                                              mu            Mullite 

gasT        Gas temperature, [K]                                                      mo            Moisture 

           Porosity                                                                           Sil            Silica 

2. Experimental study 

The kaolinite rich clay sample under investigation has initial composition of 90-95% kaolinite and 5-
10% quartz. The calcination test is performed in a gas suspension calciner located in FLSmidth R&D 
Centre, Dania (Denmark). The dried and crushed clay is used as a feed to the GSC. Calcination 
experiments are accomplished at set temperatures of 1073, 1173, 1273 and 1373 K. During this test a drop 
in temperature was noticed along the calciner, as indicated in Table 1 in brackets. In all the tests, the clay 
particles are expected to have about 0.5 s residence time inside the calciner. The calcined clay particles 
are quenched with fresh air and then collected in a bag filter. The true density of the calcines is measured 
using the standard test method by gas pycnometer. 

The above conditions of the GSC are implemented in the model by considering two cases as shown in 
Table 1. The first case addresses the calciner set temperatures, while the second case addresses the 
temperature drop along the calciner.     
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Table 1. Summary of calcination conditions used for operating GSC and model inputs. The calcination temperatures in brackets are 
the measured average temperatures of the calciner during which it experiences a drop in temperature.      

    Method       Calcination T[K] Particle size     Initial composition radT  [K] 
Experimental  1073 

(964) 
1173 
(1058) 

1273 
(1126) 

1373 
(1214) 

Mean=14μm 3/2420 mkgkk ; 3/210 mkgsil  
3/99 mkgmo  

-- 

Model  Case-I 1073 1173 1273 1373 14μm 3/2420 mkgkk ; 
3/210 mkgsil  

Not 
Consid. 

Case-II 964 1058 1126 1214  3/99 mkgmo  

3. Result and discussion 

3.1 Comparison between Experimental data and model prediction 
 

Figure 1 shows the true density of calcined clays as a function of calcination temperature, from which 
a good agreement can be observed between the experimental data (GSC) and model prediction. At 
temperatures 1073K (964K) only reactions (1) and (2) occur and major product is metakaolinite (ρ=2550 
kg/m3). As temperature increase to 1373K, reaction (3) starts to be part of the reaction where mullite 
(ρ=3100 Kg/m3) formation becomes significant; causing a slight increase in the density of calcined clays.  

          
 

 
 
 
 
 
  
 
 
 
 
 
 
 

3.2 Detailed model results 
   Dehydroxylation of a reacting kaolinite particle with mean particle size 14μm under GSC conditions at 
gas temperature of 1173K is picked. The predicted temporal and spatial temperature distributions are 
shown in Figure 2. The particle experiences a temperature gradient between the centre and the surface due 
to transfer of heat by convection and later by conduction to the particle centre. It is also realized that the 
particle gets fully dehydroxylated before it gets similar temperature as the surrounding gas. This 
observation is consistent with literature [6].  In the same figure, as the temperature increases water vapour 
begins to generate from the particle and eventually diffused out of the particle in 0.15s, signifying full 
dehydroxylation. The two peaks shown represent the evaporation and dehydroxylation reactions.  

Sensitivity analysis on particle size show larger kaolinite particles display longer time to attain 
complete conversion to metakaolinite, as shown in figure 3(A). As the conduction/diffusion is the 
dominant heat and mass transfer mechanism inside the particle, the larger the particle the longer time for 
the transfer process to the center or to the surface. In Figure 3(B), the temperature-time correlations are 
established based on model results. Temperatures below 1273K allow flexible residence time 
management during operation. In other words, at lower calcination temperatures the depletion of 
metakaolinite happens slowly, as a result the residence time could be fairly relaxed inside the calciner. 
However, for high calcination temperatures (>1273 K) control over residence time is difficult, as the 
generation and depletion of metakaolinite happens quickly.  

Figure 2. Model predicted temperature and mass 
fraction of water vapour in 14μm clay particle. 

Figure 1. comparison of modelling and experimental 
results of the GSC. 
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The applicability of this model is to monitor the behaviour of calcined kaolinite clay material inside the 
calciner based on the prediction of optimum pozzolanic reactivity of the material which is revealed by the 
optimum amount of metakaolinite attained. Thus, the optimum calcination temperature and calcination 
time predicted by the model are crucial inputs in designing the calciner and its operating conditions.   

  
 
 

 

 

 

 

 

 

 
 Figure 3. The impact of particle size on the time where maximum mass fraction of metakaolinite is obtained (A).  The 
Temperature-Time correlation on full conversion and depletion of metakaolinite (B).   

4. Conclusion 
The conversion of kaolinite particles during flash calcination is achieved in a very short time due to 

fast heating rate. Based on the kinetic data, physical and thermodynamic data used in this work, a 
kaolinite particle of 100μm in diameter plunged in to a hot gas at 1273K, gets fully dehydroxylated in 
0.35 seconds. Temperatures 1173K to 1273K are recommended for operation of a calciner, as it 
compromises both the residence time and optimum mass fraction of metakaolinite. However, lower 
temperatures (≤ 1073K) might need longer dehydroxylation time (>5 seconds). 
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