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stem cell mobilization and direct myocardial injection (Deindl

et al., 2006; Orlic et al., 2001a, 2001b), only some of the human

trials reported beneficial effects (Ince et al., 2005; Schachinger

et al., 2004; Wollert et al., 2004), whereas others failed to

increase left ventricular ejection fraction (Engelmann et al.,

2006; Zohlnhofer et al., 2006, 2008). Mechanistically, the original

concept of cardiac regeneration by transdifferentiation of

BM-derived stem cells to cardiomyocytes (CMs) (Orlic et al.,

2001a) was questioned by the identification of paracrine repair

mechanisms such as neovascularization and prevention of

apoptosis (Balsam et al., 2004; Fazel et al., 2006; Murry et al.,

2004; Zaruba et al., 2008). Of note, all of these mechanisms

depend on an efficient homing and subsequent engraftment of

these cells in the ischemic heart. Therefore, modern approaches

have to focus on the process of cardiac homing to improve the

clinical outcome of stem cell therapies.

Although several factors like hepatocyte growth factor (HGF)

and stem cell factor (SCF) play an important role during stem

cell engraftment into ischemic tissue in general, the main axis

of homing is the interaction between myocardial SDF-1a and

the homing receptor CXCR-4, which is expressed on many

circulating progenitor cells (Askari et al., 2003; Franz et al.,

2003). This homing axis represents a basic mechanism that is

not only restricted to the heart. Generally, expression of

SDF-1a is increased in ischemic tissue, as it also plays a promi-

nent role, e.g., in apoplexy (Ceradini et al., 2004; Hill et al., 2004;

Wang et al., 2008). Thus, SDF-1a is the essential target for any

substantial improvement of stem cell homing: SDF-1a emerged

in the mid-1990s as a biological ligand for the HIV-1 entry

cofactor LESTR (Bleul et al., 1996). It is a 7.97 kDa chemokine,

which is secreted from endothelial cells in ischemic tissue (Cera-

dini et al., 2004) and is a chemoattractant reported for human

CD34+ progenitor cells (Aiuti et al., 1997).

SDF-1 binds to CXCR-4 in its active form (1–68) (Crump et al.,

1997) and is cleaved at its position 2 proline by CD26/dipeptidyl-

peptidase IV (DPP-IV), which is a membrane-bound extracellular

peptidase (Christopherson et al., 2004). DPP-IV is expressed on

many hematopoietic cell populations, including stimulated B and

T lymphocytes, endothelial cells, fibroblasts, epithelial cells, and
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Ischemic cardiomyopathy is one of the main causes
of death, which may be prevented by stem cell-based
therapies. SDF-1a is the major chemokine attracting
stem cells to the heart. Since SDF-1a is cleaved
and inactivated by CD26/dipeptidylpeptidase IV
(DPP-IV), we established a therapeutic concept—
applicable to ischemic disorders in general—by
combining genetic and pharmacologic inhibition of
DPP-IV with G-CSF-mediated stem cell mobilization
after myocardial infarction in mice. This approach
leads to (1) decreased myocardial DPP-IV activity,
(2) increased myocardial homing of circulating
CXCR-4+ stem cells, (3) reduced cardiac remodeling,
and (4) improved heart function and survival. Indeed,
CD26 depletion promoted posttranslational stabiliza-
tion of active SDF-1a in heart lysates and preserved
the cardiac SDF-1-CXCR4 homing axis. Therefore,
we propose pharmacological DPP-IV inhibition and
G-CSF-based stem cell mobilization as a therapeutic
concept for future stem cell trials after myocardial
infarction.

INTRODUCTION

Ischemic disorders in general are the main cause of death in

humankind. Among those, ischemic cardiomyopathy following

acute myocardial infarction (MI) is the most important (Dickstein

et al., 2008). Despite advances in medical treatment and inter-

ventional procedures, many patients are waiting for a transplant

as their last resort. As loss of cardiac function is the most impor-

tant prognostic factor, therapeutic approaches to improve

myocardial function are warranted. While animal studies using

BM-derived stem cells (CD45+, CD34+, c-kit+, Sca-1+, lin�)

and endothelial progenitors (CD45+, CD34+, CD31+, CD133+,

Flk-1+) showed increased cardiac function and survival after
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CD34+ stem cells (Huhn et al., 2000; Kahne et al., 1999; Ruiz

et al., 1998; Vanham et al., 1993). Besides, DPP-IV is present

in a catalytically active soluble form in plasma (Durinx et al.,

2000). Other natural substrates of DPP-IV include the chemo-

kines CCL3, CCL5, CCL11, and CCL22; the glucagon-like

peptides; and neuropeptide Y (Christopherson et al., 2002).

Previously, it was shown that intramyocardial injection of a modi-

fied, MMP-2 and CD26 protease-resistant SDF-1 protein may

serve as a therapeutic tool to improve myocardial function and

recruit progenitor cells to the heart (Segers et al., 2007).

However, safety concerns and the need for invasive protocols

limit SDF-1 protein delivery in the ischemic myocardium.

In order to retard the degradation of SDF-1a in a noninvasive

manner, different small molecular weight inhibitors of DPP-IV

are available, such as Diprotin A (Ile-Pro-Ile) or Val-Pyr. In exper-

imental hematological settings, Diprotin A blocked the activity of

DPP-IV and increased the capacity of transmigration of progen-

itor cells toward an SDF-1a gradient (Christopherson et al.,

2004). We aimed to transfer this approach of DPP-IV inhibition

to the treatment after acute MI representative for ischemic

disorders in general. We hypothesized that DPP-IV inhibition

(1) stabilizes active myocardial SDF-1a, (2) leads to enhanced

recruitment of circulating CXCR-4-positive stem cells to the

ischemic myocardium, (3) reduces cardiac remodeling, and,

finally, (4) improves heart function and survival after MI.

Thereupon, we sought proof of concept on a genetic and phar-

macological basis. We induced MI via surgical LAD ligation in

CD26 knockout (KO) mice as well as Diprotin A-treated wild-

type (WT) mice, both in combination with G-CSF-triggered

stem cell mobilization. Then we examined DPP-IV activity,

myocardial SDF-1 expression on (post-)translational levels,

myocardial homing of stem cells, cardiac remodeling, left

ventricular function, and finally survival.

RESULTS

Loss of CD26 Function Stabilizes Active SDF-1 Protein
in Heart Lysates
Based on the fact that CD26 cleaves dipeptides from the

N terminus of the homing factor SDF-1 (Busso et al., 2005), we ad-

dressed the question of whether depletion of CD26 increased

posttranslational stabilization of intact SDF-1 protein. In the first

step, we examined the proteolytic DPP-IV-activity in serum and

myocardium 2 days after MI. In contrast to WT, CD26 KO mice re-

vealed no DPP-IV activity in the heart (Figure 1A). Low levels of

DPP-IV activity in the serum of KO mice are most likely related to

the existence of distinct enzymes displaying DPP-IV-like proteo-

lytic activity (Marguet et al., 2000). Combined application of

G-CSF and Diprotin A in WT mice (‘‘G-CSF-DipA mice’’) lead to

a decreased DPP-IV activity after MI only in the myocardium, but

not in the serum. In addition, we analyzed the quantity of CD26+

cells in infarcted and noninfarcted hearts. WT animals revealed

a significantly increased number of blood-derived CD45+/CD26+

cells after MI, whereas CD26�/� animals showed no detectable

CD26+ cell population in the heart (see Figure S1 available online).

Since SDF-1 mRNA is downregulated during G-CSF-induced

mobilization in the BM (Semerad et al., 2005), we investigated

the possibility of whether SDF-1 is regulated in the heart at

a transcriptional level. Neither saline nor G-CSF ± Diprotin A
314 Cell Stem Cell 4, 313–323, April 3, 2009 ª2009 Elsevier Inc.
treatment resulted in a significant change of SDF-1a mRNA 2

days after MI (data not shown). Next, protein levels of SDF-1a

from tissue lysates of WT and KO hearts were analyzed. Due

to oligomerization or different protein modifications, it was diffi-

cult to quantitate SDF-1a protein by western blot (Vergote et al.,

2006). Therefore, we measured the amount of SDF-1a protein by

quantitative ELISA. After MI, SDF-1a was upregulated in WT as

well as in CD26�/�mice, with no significant differences between

the treatment groups (Figure 1B). This may be due to the fact that

an enzyme-linked polyclonal antibody was used to visualize

SDF-1a, making it impossible to differentiate between the

cleaved (3–68) and the intact active forms of SDF-1a (1–68) by

this assay. To circumvent this limitation, we performed an exper-

iment with mass spectrometry in which recombinant SDF-1 was

incubated with lysates from WT and KO hearts. As shown in

Figure 1C, extracts from CD26 KO hearts treated either with

saline or with G-CSF after MI revealed one peak at 7.978 kDa

representing the active form of 1–68 SDF-1a protein. In contrast,

lysates derived from WT animals also showed high abundance of

a second peak at 7.748 kDa corresponding to N-terminal

cleavage of SDF-1a by DPP-IV. These data clearly show that

CD26 depletion promoted posttranslational stabilization of

active SDF-1 in heart lysates.

Enhanced Recruitment of CXCR4+ Stem Cells
to Myocardium after CD26 Inhibition and Treatment
with G-CSF
To show the extent of stem cell mobilization, FACS analyses

from peripheral blood (PB) samples of WT and CD26 KO mice

were performed. G-CSF treatment of WT (± Diprotin A) and

CD26 KO mice revealed a significantly increased mobilization

of CD45+/CD34+ progenitors compared to saline-treated WT

and KO controls (Figure S2A). Further analysis revealed high

expression of CD26 on hematopoietic cells derived from blood

and BM of WT mice (Figures S2B–S2D). Since active SDF-1 che-

moattracts angiogenic CD34+ progenitors (Askari et al., 2003;

Naiyer et al., 1999), we analyzed the numbers of CD34+ cells in

the heart. The hematopoietic marker CD45 was used to track

the fate of cells derived from PB. As shown in Figure 2A,

sham-operated WT as well as KO animals revealed a small pop-

ulation of cardiac CD45+/CD34+ cells. After MI, genetic and

pharmacological inhibition of CD26 in combination with G-CSF

treatment significantly revealed the highest amount of CD45+/

CD34+ progenitors in the heart as compared to other groups

(Figure 2A). More than 80% of CD45+/CD34+ cells derived

from hearts of G-CSF-treated CD26�/� mice expressed the

myocardial homing factor receptor CXCR4 and revealed high

coexpression of the stem cell markers c-kit or Sca-1

(Figure 2B). These expression patterns were similar in the other

treatment groups after MI (data not shown). In contrast to the

heart, CD45+/CD34+ progenitors obtained from PB revealed

a significantly lower expression of CXCR4, suggesting that

mainly the CXCR4+ fraction of CD34+ cells migrated from the

PB to the heart (Figure 2B). Figures 2C and 2D show that genetic

or pharmacological inhibition of CD26 in combination with

G-CSF treatment significantly enhanced the recruitment of

CD45+/CD34+/c-kit+, CD45+/CD34+/Sca-1+, CD45+/CD34+/

CXCR4+, and CD45+/CD34+/Flk-1+ progenitor cells as well as

lin�c-kit+Sca-1+ hematopoietic stem cells into ischemic
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Figure 1. Loss of DPP-IV Activity in G-CSF-Treated CD26 KO Mice Is Associated with Stabilization of Active SDF-1a in Heart Lysates

(A) Diagrams show the activity of DPP-IV in hearts and serum of CD26 KO or WT ± Diprotin A mice 2 days after MI.

(B) Bar graph showing the increase of SDF-1a protein in the hearts of CD26 KO or WT animals after MI by ELISA. Data represent mean ± SEM (n = 3);

*p < 0.05; n.s., not significant.

(C) Mass spectrometry demonstrates that full-length recombinant SFD-1 (7.97 kDa) is only cleaved in heart lysates of WT mice, but not in CD26 KO animals

after MI.
(Broxmeyer et al., 2005). Notably, the migration of CD34+/

CXCR4+ stem cells after MI was only reversed after genetic or

pharmacological inhibition of CD26, suggesting preservation of

the cardiac SDF-1-CXCR4 homing axis (Figure 2E).
myocardium. In order to address the question of whether the

enhanced migration was regulated via an intact SDF-1-CXCR4

homing axis, we treated G-CSF-stimulated CD26�/�, WT, or

G-CSF-DipA mice with the CXCR4 antagonist AMD3100
Cell Stem Cell 4, 313–323, April 3, 2009 ª2009 Elsevier Inc. 315
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Figure 2. CD26�/� and Diprotin A-Treated Mice Reveal Enhanced Numbers of Stem Cells in the Ischemic Heart after G-CSF Application

(A) Representative cardiac FACS analyses showing the mean numbers of CD45+/CD34+ cells within the hearts of WT (upper row), CD26�/�, or Diprotin A-treated

WT mice (lower row) treated either with saline or G-CSF. Data represent mean ± SEM (n = 6); *p < 0.05 versus sham.

(B) (Left) Gating of CD45+/CD34+ cells (gate E) revealed high expression of the homing factor receptor CXCR4 (second row). (Right) Bar graph representing the

antigen expression of stem and progenitor markers on CD45+/CD34+ cells obtained from the heart (black bars) compared to blood (white bars) showing that

CXCR4 is highly expressed on CD34+ cells in the heart.

(C and D) Histograms representing the percentage of myocardial CD45+/CD34+c-kit+, CD45+/CD34+Sca-1+, CD45+/CD34+CXCR-4+, CD45+/CD34+Flk-1+, and

lin-c-kit+Sca-1+ cells 2 days after MI.

(E) In contrast to cytokine-treated WT animals, G-CSF treatment of CD26 KO and G-CSF-DipA animals with the CXCR4 antagonist AMD3100 reversed the recruit-

ment of CD34+/CXCR4+ cells into the heart after MI. All data represent mean ± SEM (n = 6); *p < 0.05; n.s., not significant.
316 Cell Stem Cell 4, 313–323, April 3, 2009 ª2009 Elsevier Inc.
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Loss or Inhibition of DPP-IV Function in Combination
with G-CSF Treatment Attenuates Infarct Remodeling
and Increases Neovascularization
At day 6 after LAD occlusion, LV-infarct sizes were comparable

among the groups, which altered at day 30, when the sizes of LV

infarction (scar tissue) were smaller in G-CSF-treated CD26 KO

animals or G-CSF-DipA mice (Figures 3A–3D; Figure S3A). In

contrast to untreated WT, G-CSF-treated CD26 KO animals or

G-CSF-DipA mice significantly ameliorated the thickness of the

left ventricular wall (Figures 3E and 3F). Since circulating

CD34+ cells are known carriers of angiogenic growth factors,

we analyzed the amount of neovascularization. Consistent with

the attenuated infarct remodeling, heart sections of G-CSF-

treated CD26 KO animals or G-CSF-DipA mice revealed a signif-

icantly increased number of CD31+ capillaries at the infarct bor-

derzone (Figures 4A–4C). Costaining of CD31+ endothelial cells

with Ki67 antibodies demonstrated proliferation and sprouting

of CD31+ endothelial cells supporting neovascularization

(Figure S3B).

G-CSF Treatment Reduces Apoptotic Cell Death
in WT and CD26�/� Mice
Besides the beneficial effect of neovascularization on cardiac

repair, early apoptosis of CMs is a major target for prevention

of ischemic cardiomyopathy. Therefore, we analyzed apoptotic

cell death in the border zone by TUNEL staining. In contrast to

saline, G-CSF treatment of WT and CD26�/� animals reduced

E

A 

F

C

B 

D

Figure 3. G-CSF-Treated CD26 KO and

G-CSF-DipA Mice Show Attenuated Infarct

Remodeling

(A–D) Bar graphs representing the size of infarction

at day 6 (granulation tissue and cell necrosis) and at

day 30 (scar tissue) after MI.

(E and F) Histograms showing that G-CSF-treated

CD26 KO and G-CSF-DipA mice reveal signifi-

cantly improved thickness of the LV wall at day

30 after MI. Data represent mean ± SEM (n = 6);

*p < 0.05; n.s., not significant.

the number of TUNEL-positive CMs in

the border zone, suggesting intrinsic anti-

apoptotic effects of cytokine treatment

(Figures 5A and 5B). Inhibition of CD26

alone did not show a significant effect on

apoptosis of CMs.

Genetic or Pharmacological
Inhibition of CD26/DPPIV Combined
with G-CSF Treatment Improved
Survival and Myocardial Function
after MI
Four weeks after MI, pressure volume

relations were measured in vivo from

surviving sham-operated, saline, or

G-CSF+/� Diprotin A-treated WT and

CD26 KO mice (Figure S3C). Compared

to nontreated WT, G-CSF treatment of

CD26 KO or Diprotin A-treated mice re-

vealed a significantly improved systolic function, reflected by

an increased ejection fraction (Figures 6A and 6B), cardiac

output and contractility (Table S1). Furthermore, G-CSF-treated

CD26 KO and G-CSF-DipA mice revealed attenuated ventricular

dilation, measured by enddiastolic volumes (Figures 6C and 6D),

and improved diastolic heart function, calculated by the isovolu-

metric relaxation parameter Tau weiss (Table S1). Arterial after-

load was markedly reduced in G-CSF-treated CD26 KO and

G-CSF-DipA animals, reflected by a decreased arterial elastance

(Table S1).

Finally, G-CSF-treated CD26 KO mice showed a significantly

increased survival rate compared to cytokine-treated WT

animals (75% versus 55%, p < 0.05) as well as to CD26

KO mice or WT mice (45% versus 40%, not significant) receiving

saline (Figure 6E). In analogy, WT mice receiving combined treat-

ment of G-CSF and the DPP-IV inhibitor Diprotin A revealed the

highest survival rates (70%) (Figure 6F). Mortality was high within

the first 7 days, in particular among saline-treated animals, but

declined thereafter in all groups.

DISCUSSION

We present experimental evidence that genetic or pharmaco-

logical inhibition of DPP-IV in combination with G-CSF admin-

istration leads to (1) decreased myocardial DPP-IV activity, (2)

stabilization of active SDF-1a in heart lysates, (3) enhanced

myocardial homing of circulating CXCR-4+ stem cells, (4)
Cell Stem Cell 4, 313–323, April 3, 2009 ª2009 Elsevier Inc. 317
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reduced cardiac remodeling, and (5) improved heart function

and survival after MI (Figure 7).

In our approach, we achieved a reduced myocardial DPP-IV

activity by genetic and pharmacological means. We concen-

trated on DPP-IV, although SDF-1a may also be cleaved by

neutrophil elastase (NE), cathepsin G (CG), and various MMPs,

including MMP-2 and MMP9 (Nervi et al., 2006). However,

SDF-1a degradation by leukocyte-secreted MMPs may play

a minor role in injured tissue due to predominant accumulation

of inactive MMP-9 precursor forms and the presence of endog-

B

CA

WT WT

WT WT

Figure 4. Increased Neovascularization in

G-CSF-Treated CD26 KO and G-CSF-DipA

Animals

(A and B) Histograms showing the numbers of

CD31+ capillaries at the infarct border zone in

CD26 KO and WT animals after saline, G-CSF,

Diprotin A, or G-CSF + Diprotin A treatment,

respectively, 6 days after MI. Data represent

mean ± SEM (n = 6); *p < 0.05; n.s., not significant.

(C) Representative immunohistochemical staining

of CD31 (brown) in infarcted hearts 6 days after MI.

enous MMP inhibitors (Valenzuela-Fer-

nandez et al., 2002). Moreover, studies in

mice genetically lacking NE and CG

showed that these proteases are not

responsible for SDF-1 proteolysis during

G-CSF-dependent stem cell mobilization

(Levesque et al., 2004). The underlying

hypothesis of our concept is the stabilizing

impact of genetic and pharmacological

DPP-IV inhibition on functional myocardial

SDF-1a-protein. After MI, SDF-1a is upre-

gulated for 24–72 hr (Askari et al., 2003;

Hofmann et al., 2005), as confirmed by

ELISA. Using a polyclonal antibody, we

detected the whole amount of cleaved

and intact SDF-1a without differentiating whether DPP-IV inhibi-

tion prevents cleavage of active SDF-1a protein in the ischemic

heart. In order to address this key point of our hypothesis, we

analyzed heart lysates by mass spectrometry. These analyses

showed for the first time that recombinant SDF-1a (MW,

7.97 kDa) was DPP-IV dependent cleaved at the NH2 terminus

between Pro2 and Val3 (MW, 7.74 kDa) in heart lysates of WT,

but not in CD26 KO mice, as was previously demonstrated in

serum by others (Busso et al., 2005). The absence of MMP-2-

or MMP-9-related cleavage products (7.56 kDa) between
A B WT

WT

WT + MI

WT + MI + G-CSF

Figure 5. G-CSF Treatment Decreased Apoptotic Cell Death in WT and CD26�/� Animals

(A) Bar graph representing the number of TUNEL-positive CMs in the border zone 2 days after MI. Data represent mean ± SEM (n = 3); *p < 0.05; n.s., not

significant.

(B) Representative TUNEL staining (brown nuclei) in WT or CD26�/� mice receiving either saline (upper row) or G-CSF (lower row) 2 days after MI.
318 Cell Stem Cell 4, 313–323, April 3, 2009 ª2009 Elsevier Inc.
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Figure 6. G-CSF-Treated CD26 KO and G-CSF-DipA Mice Reveal Improved Survival and Myocardial Function after MI

(A and B) Corresponding bar graphs representing the ejection fraction (EF) of CD26 KO or WT mice receiving saline, G-CSF, Diprotin A, or both at day 30 after LAD

ligation.

(C and D) Diagrams show enddiastolic volume of CD26 KO or WT mice at day 30 after MI. Data represent mean ± SEM (n = 8); *p < 0.05; n.s., not significant.

(E and F) Kaplan-Meier curves showing survival rates of CD26 KO or WT mice treated either with saline, G-CSF, Diprotin A, or both after MI. All mice (n = 20 in each

group) revealed histologically confirmed MIs.
zation via the CXCR4 antagonist AMD3100 diminished the

number of CXCR4+ progenitors only in KO or Diprotin A-treated

mice, emphasizing the essential role of an intact SDF-1-CXCR4

homing axis. However, whereas SDF-1a-CXCR4 interactions

play important roles in homing of bone marrow-derived stem

cells, they are not the only players. It is possible that CD26 is

acting to cleave other chemokines or factors, which may also

have effects on the homing ability of the cells.

Since SDF-1a has an outstanding status as the major

chemokine for initiating stem cell migration and homing to the

site of ischemia (Smart and Riley, 2008), several studies were

targeted on enhancement of myocardial SDF-1a levels by

invasive means. They performed either transplantation of
residues Ser4 and Leu5 of SDF-1a (Valenzuela-Fernandez et al.,

2002) suggests that proteolytic DPP-IV activity plays a critical

role in SDF-1a degradation.

Although we could proof posttranslational stabilization of

active SDF-1a only in heart lysates, our data provide indirect

evidence that implicates CD26 inhibition in preservation of func-

tional SDF-1a in the heart in vivo. (1) Proteolytic DPP-IV activity in

the myocardium was either absent or markedly decreased after

CD26 depletion or inhibition, respectively. (2) After MI, SDF-1a

protein was equally upregulated in WT and in KO mice. Never-

theless, depletion or inhibition of CD26 significantly increased

the amount of CXCR4+ cells in the ischemic myocardium, most

likely by an enhanced response to its active ligand. (3) Antagoni-
Cell Stem Cell 4, 313–323, April 3, 2009 ª2009 Elsevier Inc. 319
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SDF-1a-expressing fibroblasts (Askari et al., 2003) or adenoviral

SDF-1a gene delivery (Abbott et al., 2004). More recently, Segers

et al. showed that intramyocardial transplantation of a modified,

MMP-2 and DPP-IV protease-resistant SDF-1a protein may

serve as a therapeutic tool to improve heart function and recruit

progenitor cells to the heart (Segers et al., 2007). However, the

invasive nature of these strategies limits exogenous delivery of

SDF-1a to the ischemic myocardium. Therefore, we intended

to establish a noninvasive pharmacological strategy for SDF-1a

stabilization to minimize the risk for patients treated after MI.

The beneficial effects of combined DPP-IV inhibition and

G-CSF treatment most probably are due to two different path-

ways. On the one hand, CD26 depletion most likely stabilized

intact SDF-1a, which consecutively increased the amount

of CD45+CD34+CXCR4+ progenitors after mobilization with

G-CSF. These progenitors are known to express elevated levels

of angiogenic growth factors and cytokines (Majka et al., 2001),

which may contribute to increased neovascularization. Conse-

quently, G-CSF-treated CD26 KO and G-CSF-DipA mice

demonstrated decreased scar expansion and concurrent

increase in microvasculature. This scenario is supported by

others showing that intramyocardial transplantation of a SDF-1a

protein, which is DPP-IV protease resistant (Segers et al., 2007),

revealed elevated numbers of angiogenic CD34+/CXCR4+ cells

in the ischemic heart, associated with increased neovasculariza-

tion and improved left ventricular function.

On the other hand, our data revealed G-CSF-dependent reduc-

tion of apoptosis in WT as well as in CD26�/� animals, suggesting

additional intrinsic cytokine-mediated mechanisms like Jak/Stat-

dependent reduction of apoptosis (Harada et al., 2005; Ohtsuka

et al., 2004). Reduced cardiac remodeling and increased neovas-

cularization finally led to improved left ventricular function in

G-CSF-treated CD26 KO and G-CSF-DipA animals. Although

only the combination of DPP-IV inhibition and G-CSF treatment

markedly reduced postinfarct remodeling, we can not rule out

Figure 7. Therapeutic Concept of CD26/

DPP-IV Inhibition Combined with G-CSF

After MI, G-CSF application exerts direct anti-

apoptotic effects on ischemic myocardium and

mobilizes stem cells from bone marrow. These

stem cells circulate to the damaged heart, where

they are incorporated by interaction of intact

myocardial SDF-1a (1–68) and the homing

receptor CXCR-4. Genetic or pharmacological

inhibition (by Diprotin A) prevents the degradation

of intact SDF-1a by DPP-IV. Thus, an increased

amount of SDF-1a (1–68) improves homing of

mobilized stem cells and directly stimulates pre-

apoptotic CMs. Altogether, G-CSF and CD26/

DPP-IV inhibition reduce cardiac remodeling after

MI, enhance cardiac function, and finally increase

survival by attenuating the development of

ischemic cardiomyopathy.

the possibility that SDF-1a alone—at least

in part—acts in a direct manner to prevent

apoptosis of CMs and enhance angiogen-

esis via upregulated phosphorylation of

Akt (Hu et al., 2007; Sexana et al., 2008).

Previous reports presumed an impaired chemotaxis of stem

cells after G-CSF treatment via N-terminal cleavage of the che-

mokine receptor CXCR4 in vitro (Levesque et al., 2003). Addi-

tionally, G-CSF-dependent upregulation of DPP-IV on CD34+

progenitors (Christopherson et al., 2006), which we reversed

by genetic or pharmacological DPP IV inhibition, may also

contribute to a diminished chemotactic response after cytokine

treatment. Thus, our data suggest a pivotal role of DPP-IV in dis-

rupting the SDF-1a-CXCR4 homing axis after MI especially in

combination with G-CSF.

Interestingly, beneficial effects concerning heart function and

survival only occurred in G-CSF-treated CD26 KO and G-CSF-

DipA mice. Our data suggest that the combination of homing of

progenitor cells, enhancement of neovascularization, and direct

effects of G-CSF and SDF-1a on preapoptotic CMs has to pass

a certain threshold until it translates into significant improvement

of cardiac function and survival. It seems that DPP-IV inhibition by

itself is not strong enough to sufficiently attenuate cardiac remod-

eling and enhance cardiac function; sole G-CSF treatment was

not able to increase global cardiac function in human studies

(Engelmann et al., 2006; Zohlnhofer et al., 2006, 2008).

These findings may contribute essential aspects for design of

future stem cell trials, since the key issue of all therapeutic stem

cell approaches emerges to be the process of cardiac homing.

Therefore, we propose the use of combined DPP-IV inhibition

and G-CSF application as a therapeutic concept for future

stem cell trials.

EXPERIMENTAL PROCEDURES

Mice

C57BL/6 mice were purchased from Charles River (Sulzfeld, Germany). CD26

KO mice (on a C57BL/6 background) were kindly obtained from Dr. N. Wagt-

mann (Novo Dordisk, Blagsvaerd, Denmark) with approval from Dr. D. Marguet

(Centre d’Immunologie de Marseille Luminy-INSERM, Marseille Luminy,

France) (Marguet et al., 2000).
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Animal Model

MI was induced in 10-week-old male CD26 KO or C57BL/6 mice by surgical

occlusion of the left anterior descending artery (LAD), as described previously

(Deindl et al., 2006). Experiments concerning survival and cardiac function

were performed by two different operators ([1] Figures 6A, 6C, and 6E, Table

S1A; [2] Figures 6B, 6D, 6F, Table S1B). Animal care and all experimental

procedures were performed in strict accordance with the Guide for the Care

and Use of Laboratory Animals published by the U.S. National Institutes of

Health (NIH publication no. 85-23, revised 1996).

Administration of G-CSF and Diprotin A

Experimental design is shown in Figure S4. Mice were randomly divided into

the following groups: sham-operated animals (n = 20); infarcted wild-type

(n = 20) (WT) receiving either saline (0.9% NaCl), G-CSF (100mg/kg/d i.p.),

Diprotin A (70 mg/kg/twice per day), or G-CSF + Diprotin A; and CD26 KO

animals (n = 20) receiving either saline (0.9% NaCl) or G-CSF (100 mg/kg/d)

for up to 6 days. G-CSF and/or Diprotin A treatment was initiated immediately

after the surgical procedure.

Functional Parameters

For evaluation of pressure-volume relationships in vivo, mice were anesthe-

tised with thiopental (100 mg/kg, i.p.), intubated, and ventilated (MiniVent,

HUGO SACHS, Freiburg, Germany). After catheterization via the right carotid

artery, an impedance micromanometer catheter (Millar Instruments, Houston,

Texas) was introduced into the left ventricle. Raw conductance volumes were

corrected for parallel conductance by the hypertonic saline dilution method as

described previously (Zaruba et al., 2008). Hemodynamic measurements as

well as data analyses were performed by a blinded person using PVAN anal-

ysis software (HUGO SACHS, March, Germany).

Histology and Immunohistochemistry

At days 6 (n = 6) and 30 (n = 6), hearts were excised. After fixation in 4% phos-

phate-buffered formalin, the hearts were cut transversally into 2 mm thick sli-

ces and embedded in paraffin. Sections 4 mm thick were cut and mounted on

positively charged glass slides. Standard histological procedures (hematoxylin

and eosin and Masson’s trichrome) and immunostaining were performed.

Infarct size and wall thickness were determined according to Deindl et al.

(2006).

For immunostaining, the following primary antibodies were used: CD45 (rat

anti-mouse, BD Pharmingen), CD31 (goat anti-mouse, Santa Cruz), and Ki67

(goat anti-mouse, Santa Cruz). AEC was used as chromogen. Double staining

for CD31 and Ki67 was performed using DAB as additional chromogen (all

from Dako). Apoptotic cells were detected according to Harada et al. (2005)

using the TUNEL assay (ApopTag, MP Biomedicals). Digital photographs

were taken at a magnification of 4003, and ten random high-power fields

(HPFs) from the border zone of each heart sample (n = 3) were analyzed. Quan-

tification of blood vessels was assessed by CD31+ immunohistochemistry in

the granulation tissue at the border zone. The numbers of CD31+ capillaries

were quantified from ten random HPFs with 4003 magnification.

Flow Cytometry of Peripheral Blood and Nonmyocyte Cardiac Cells

Ten-week-old CD26 KOs (n = 6) were either treated with G-CSF (100 mg/kg/d)

or saline daily for 6 days, and/or C57BL/6 mice (n = 6) were treated with saline,

G-CSF, Diprotin A, or both daily for 6 days. Cells were separated as described

previously (Deindl et al., 2006). The following monoclonal antibodies were

used: CD45-PerCP, CD34-FITC, CD31-PE, c-kit-PE, Sca-1-PE, CXCR4-PE,

Flk-PE, CD3-biotin, CD45R/B220-biotin, CD11b-biotin, TER-119-biotin, and

Ly-6G-biotin (all from BD Pharmingen). Matching isotype antibodies (BD Phar-

mingen) served as controls. Cells were analyzed by three-color flow cytometry

using a Coulter Epics XL-MCLTM flow cytometer (Beckman Coulter). Each

analysis included 50,000 events.

Cardiac cells from sham-operated and infarcted hearts of WT and CD26 KO

mice were analyzed 48 hr after MI (n = 6). Therefore, a ‘‘myocyte-depleted’’

cardiac cell population was prepared, incubating minced myocardium in

0.1% collagenase IV (GIBCO BrL) 30 min at 37�C, lethal to most adult mouse

CMs (Zhou et al., 2000). Cells were then filtered through a 70 mm mesh. To

exclude spurious effects of enzymatic digestion, BM cells with or without colla-

genase treatment were stained, revealing no significantly changed staining of
labeled cell antigens (data not shown). Cells were stained with CD45-PerCP,

CD34-FITC, CD26-FITC, c-kit-PE, Sca-1-PE, CXCR4-PE Flk-1, Flk-PE, CD3-

biotin, CD45R/B220-biotin, CD11b-biotin, TER-119-biotin, and Ly-6G-biotin

Abs (all from BD Pharmingen) and subjected to flow cytometry using EPICS

XLMCL flow cytometer and Expo32 ADC Xa software (Beckman Coulter).

For evaluation of SDF-1-CXCR4-dependent homing, G-CSF-stimulated

CD26 KO mice were treated i.p. with the CXCR4 antagonist AMD3100

(1.25 mg/kg). Cardiac cells were analyzed 8 hr after the last AMD3100 applica-

tion. Each analysis included 50,000 events.

ELISA/DPP-IV Activity Assay

Hearts were extracted from C57/Bl6 WT mice and CD26 KOs on day 2 after MI.

After digestion in 0.1% collagenase for 45 min, cells were lysed by ultrasonic

pulse echo instrument. SDF-1a protein was determined using a commercially

available Quantikine kit (R & D Systems, MCX 120) according to the manufac-

turer’s instructions. Enzyme activity of DPP-IV was measured according to

Scharpé et al. (1988) with the following modifications: the activity was deter-

mined as substrate rate-time curve (H-Gly-Pro-AMC; 353 nmem, 442 nmex),

and one reaction well contained 5 mM H-Gly-Pro-AMC with 10 mL sample in

100 mM Tris-HCL (pH 8). From this kinetic curve, the increase was defined

as the activity. The fluorescence signal was converted into amount of product

via conversion of the maximal fluorescence signal after complete substrate

turnover.

Mass Spectrometry

Samples were purified from recombinant SDF-1a that has been incubated with

various amounts of heart extract, as indicated in a total volume of 40 ml PBS.

After incubation, the cleavage products were incubated for at least 3 hr with

5 ml of an anti-SDF1 antibody (Torrey Pines Biolabs) and 10 ml of a 1:1 slurry

of protein G Sepharose (Sigma) in PBS (Busso et al., 2005). After incubation,

beads were collected by centrifugation and washed three times with 100 ml

of IP buffer (140 mM NaCl, 0.1%N-octyle glycopyranoside 10 mM Tris-HCl

[pH 8.0], 5 mM EDTA) and two times with 100 ml of H2O. Finally, all the buffer

solution was aspirated from the beads, and the semidried beads were incu-

bated with 10 ml of a 50% ACN, 0.6% TFA solution for 5 min to elute the bound

peptide. Of the eluted sample, 4 ml was mixed with a saturated CHCN solution,

spotted completely to a stainless steel target plate, and analyzed in a Voyager-

STR MALDI-TOF mass spectrometer. For the acquisition of the spectra, 500

laser shots were collected using a mass window of m/z values between

3,000 and 10,000. Spectra were calibrated using an external calibration stan-

dard, manually inspected, and quantified using Data Explorer (Applied Biosys-

tems, Framingham, MA).

Statistical Analyses

Results were expressed as mean ± SEM. Multiple group comparisons were

performed by one-way analysis of variance (ANOVA) followed by the Bonfer-

roni procedure for comparison of means. Comparisons between two groups

were performed using the unpaired Student’s t test. Data were considered

statistically significant at a value of p % 0.05. Mortality was analyzed by the

Kaplan-Meier method.

SUPPLEMENTAL DATA

The Supplemental Data include four figures and one table and can be found

with this article online at http://www.cell.com/cell-stem-cell/supplemental/

S1934-5909(09)00068-X.
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