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Abstract

In the process of designing a tensegrity system, some constraints are usually introduced for geometry and/or forces
to ensure uniqueness of the solution, because the tensegrity systems are underdetermined in most cases. In this paper, a
new approach is presented to enable designers to specify independent sets of axial forces and nodal coordinates con-
secutively, under the equilibrium conditions and the given constraints, to satisfy the distinctly different requirements
of architects and structural engineers. The proposed method can be used very efficiently for practical applications
because only linear algebraic equations are to be solved, and no equation of kinematics or material property is needed.
Some numerical examples are given to show not only efficiency of the proposed method but also its ability of searching
new configurations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Tensegrity is an acronym, a contraction of tensional integrity, named by Fuller (1975). A strict tensegrity
is composed of a set of continuous cables in tension, and a set of discontinuous struts in compression. How-
ever, many structures developed nowadays from this basic idea do not fit the definition exactly. According
to the mechanical characteristics of each type of tensegrity system, Motro (1996) classified them into three
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classes, which are (a) self-stressing systems (also, degenerated tensegrity systems), (b) prestressed systems
(also, tensegric domes or cable domes), (c) self-stressed systems (also, true tensegrity systems).

Haber and Abel (1982) concluded that the basic parameters involved in the design of tension membrane
structures, also suitable for the case of tensegrity systems, are: (a) topology, (b) internal forces, (c) external
loads, (d) configuration, and (e) geometrical constraints. Among these, topology defines the connectivity of
members and nodes. In the design of tensegrity systems, members are assumed to be pin-jointed and exter-
nal loads are applied at nodes if exist. So the members transmit only axial forces, either in tension or com-
pression. The geometrical configuration is described in terms of nodal coordinates. Determination of
geometrical configuration at the equilibrium state is known as form-finding or shape-finding that is consid-
ered a key step in the design of tensegrity systems. Geometrical constraints, such as locations and directions
of members and symmetry properties, are often needed to ensure a unique solution of the form-finding
problem because most of the tensegrity systems are underdetermined; i.e. the member forces and nodal
locations cannot be determined uniquely only from the equilibrium conditions.

There have been extensive researches on analysis and design of tensegrity systems, such as Hanaor
(1988), Jager and Skelton (2004), Motro et al. (1986), Pellegrino (1990), Pellegrino and Calladine (1986)
and Sultan et al. (2001). Many methods have also been proposed for the form-finding problem. Some of
them, such as dynamic relaxation by Barnes (1999) and Motro (1984) and force density method by Schek
(1974) and Vassart and Motro (1999), have been originally used for the form-finding problem of membrane
structures and cable nets and then extended to tensegrity systems.

Tibert and Pellegrino (2003) classified the existing methods for the form-finding of tensegrity system into
two categories; i.e. kinematical methods and statical methods. The kinematical methods determine the con-
figuration of either maximum total length of the struts or minimum total length of the cable elements, while
the total length of the elements of the other type is kept constant. The statical methods search for equilib-
rium configurations that allow existence of a state of prestress in the structure with given topology and
forces, where the force density method can be effectively used.

For the design of tensegrity systems in architectural application, it is desirable for architects that the
characteristics of configuration, such as directions and locations of members or locations of supports,
can be specified, while structural engineers are concerned with its mechanical properties defined by the
member forces. Hence, the goal of us in this study is to present an effective approach for the form-finding
problem of tensegrity systems for the purpose of satisfying both of these requirements simultaneously.

Ohsaki and Kanno (2003) pointed out that the set of member forces cannot be specified arbitrarily be-
cause the equilibrium conditions and geometrical constraints may be violated. For a tensegrity with fixed
configuration, the number of independent member force vectors at self-equilibrium can be easily found by
investigating the rank of the equilibrium matrix. An efficient approach, which can directly find the number
of independent member directions (force vectors) and nodal locations of tensegrity system with given topol-
ogy, is strongly desired.

In this paper, a new approach is presented for specifying independent set of axial forces and then nodal
coordinates consecutively, under equilibrium conditions and geometrical constraints. The incidence matrix
of a directed graph (Harary, 1969; Kaveh, 2004) is used in the formulation of the equilibrium conditions.
The components of the member force vector are taken as the variables (Williamson and Skelton, 2003) at
the first stage, and then the nodal coordinates at the second stage of the approach.

The effectiveness of the proposed method can be summarized as follows:

(a) The directions of some members can be specified directly based on the designer�s preference.
(b) The numbers of components of the generalized force vector and the nodal coordinate vector to be

specified can be systematically obtained.
(c) The equilibrium conditions in large-deformation range can be formulated as a set of linear equations

in terms of generalized force vector.
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(d) The method presents a general procedure for checking the existence of solution to a form-finding
problem.

The paper is organized as follows: Section 2 describes the equilibrium conditions of the structures by
using graph theory. In Section 3, the geometrical constraints are formulated to represent designer�s prefer-
ences, including (a) member directions, (b) member locations, and (c) symmetry properties, in terms of axial
force vector. Section 4 describes the proposed form-finding approach in detail, and some numerical exam-
ples are presented in Section 5 to illustrate the validity of the proposed method for generating various
shapes. Finally, conclusions are given in Section 6.
2. Equilibrium conditions

In this study, the following assumptions are adopted to simplify the problem:

(a) The topology of the structure, which is defined by the designer, is known.
(b) Members are connected by pin joints.
(c) No external load is applied and the self-weight of the structure is neglected during the design

procedure.

Since the incidence matrix of a directed graph is used for formulating the equilibrium equations in terms
of the member force vectors, we start with a brief description of the graph theory as described by Harary
(1969). The words edge and node in graph theory are called member with direction and node in this paper,
respectively. Let m denote the number of members including cables and struts. The number of nodes includ-
ing the supports of a structure is denoted by n.

Suppose that member k is connected to nodes i and j, and directed from node i to j (i < j). The incidence
matrix B ¼ ½Bðk;pÞ� 2 Rm�n of the structure regarded as a directed graph can be defined as
Bðk;pÞ ¼
1 for p ¼ i

�1 for p ¼ j

0 in other cases

8><
>:
By using B, the equilibrium matrix B is defined as
B ¼ B� I
where � and I 2 Rs�s denote tensor product and identity matrix, respectively, and s is the number of dimen-
sion of the space; i.e. s = 2 or 3.

Let vk 2 Rs denote the axial force vector of member k that is connected to nodes i and j (i < j). We define
the positive direction, i.e., tensile state, of vk as shown in Fig. 1(a), starting from i and directing to j.
Fig. 1(b) shows the negative direction of vk, which means that member k is in compression.
vk vk

a b

Fig. 1. Definition of axial force vector vk (i < j): (a) positive (in tension) and (b) negative (in compression).
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For member k of a two-dimensional structure, its force components of vk are written as vk ¼ ðvxk; v
y
kÞ
>. In

three-dimensional space, vk ¼ ðvxk; v
y
k; v

z
kÞ
>. The axial force vector of all members, called generalized force

vector, is defined as v ¼ ðv>1 ; . . . ; v>mÞ
> 2 Rsm.

Fig. 2 shows a two-dimensional prestressed tensegrity system with n = 6 and m = 8. Nodes 5 and 6 are
the supports that are called fixed nodes in this paper, because their locations are fixed. The equilibrium
matrix B 2 R16�12 can be divided into sub-matrices Ba and Bb that correspond to the equilibrium matrices
of free nodes and fixed nodes, respectively, as

Note that nxi and nyi denote the columns corresponding to the equilibrium in x- and y-directions, respec-
tively, at node i. mx

k and my
k denote the rows corresponding to the x- and y-components, respectively, of

member k.
Since all the free nodes are in self-equilibrium state, the equilibrium equations of a free node, e.g. node 4

in Fig. 2, are written as
� vx5 � vx7 þ vx8 ¼ 0

� vy5 � vy7 þ vy8 ¼ 0
ð1Þ
Eq. (1) can be rewritten by using the equilibrium matrix as
ðB>Þ7v ¼ 0

ðB>Þ8v ¼ 0
where (B>)i denotes the ith row of B>. (B>)7 and (B>)8 correspond to the x- and y-directions, respectively,
of node 4. So the global equilibrium condition of all the free nodes in terms of unknown generalized axial
force vector v can be written as
Ba>v ¼ 0 ð2Þ
5

2 3

1 4

6

(2)

(1)

(4)

(6)

(7)

(3)

(8)

(5)5'

6'

Fig. 2. A two-dimensional tensegrity system.
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In designing tensegrity systems with supports, the locations of the supports should be specified. In Sec-
tion 3, a direct approach is presented for specifying force vectors and member directions. In the proposed
approach, some components of force vectors are first specified. However, if we specify a set of axial force
vectors arbitrarily satisfying Eq. (2), the form-finding process may end up with an undesirable configuration
as shown in the dotted lines in Fig. 2; i.e. nodes 5 and 6 are located unfavorably, because the locations of
the fixed nodes (supports in this example) have not been incorporated in Eq. (2).

To present a unified approach to shape design of structures with and without supports, we introduce
auxiliary members called fixed members to connect the supports. For the structure shown in Fig. 2, we con-
nect nodes 5 and 6 with the auxiliary member 9 as shown in Fig. 3. The locations of the auxiliary members
are to be fixed in Section 3 to transform the supported tensegrity into a self-stressing or self-stressed system.

Let mf and nf denote the numbers of fixed members and nodes, respectively, where mf = 1 and nf = 2 for
the structure in Fig. 3. Note that the members and nodes are numbered such that the nodes {1, . . . ,n � nf}
and members {1, . . . ,m � mf} correspond to free nodes and members, respectively. So Bf 2 Rsmf�snf corre-
sponding to fixed members and nodes is placed in the lower-right of B as

This way, all the fixed nodes are converted to free nodes, and the equilibrium equation of the structure
can be written as
B>v ¼ 0 ð3Þ
5

2 3

1 4

6

(2)

(1)
(4)

(6)

(7)

(3)

(8)

(5)

(9)

Fig. 3. The two-dimensional tensegrity system with fixed members.
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3. Geometrical constraints in terms of generalized force vector

3.1. Member directions

In the design process of tensegrity systems, it is desirable that the directions of some members can be
directly specified. The direction of a member, however, should coincide with that of its force vector, because
members of a tensegrity system can transmit only axial forces.

Consider a tensegrity system in three-dimensional space, and let ek ¼ ðexk; e
y
k; e

z
kÞ
> denote a vector in the

direction of member k, where the vector ek of some members are given by designer�s preference. The direc-
tion vector ek and the force vector vk of member k should satisfy the relation ek · vk = 0 which can be
explicitly written as
exkv
y
k ¼ eykv

x
k

eykv
z
k ¼ ezkv

y
k

ezkv
x
k ¼ exkv

z
k

ð4Þ
Define T as
T ¼
0 1 0

0 0 1

1 0 0

0
B@

1
CA
Eq. (4) can be written as
diagðekÞTvk � diagðTekÞvk ¼ 0 ð5Þ

where diag(x) is the diagonal matrix of which the ith diagonal component is equal to the ith component xi
of x. By letting
Dk ¼ diagðekÞT� diagðTekÞ

Eq. (5) can be rewritten as
Dkvk ¼ 0 ð6Þ

By assembling Eq. (6) through all members for which the directions are specified, the following linear rela-
tion is derived for v:
Dv ¼ 0 ð7Þ
3.2. Directions of fixed members

In order to consider the fixed nodes (supports) in a similar manner as free nodes (internal nodes) in the
self-equilibrium equation, we have introduced the concept of auxiliary fixed members, of which the direc-
tions are to be specified.

For a three-dimensional structure, let Xi = (xi,yi,zi)
> denote the coordinate vector of node i. The

coordinate difference vector dk ¼ ðdx
k; d

y
k; d

z
kÞ
> of member k that connects nodes i and j (i < j) is defined

as
dk ¼ Xj � Xi ð8Þ

which is illustrated in Fig. 4.



dk=Xj - Xi 

i

j

k

Xi

Xj

Fig. 4. Coordinate difference vector dk of member k (i < j).
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Using the relation between the direction of a member and its force vector, dk · vk = 0 should be satisfied;
i.e.
dx
kv

y
k ¼ dy

kv
x
k

dy
kv

z
k ¼ dz

kv
y
k

dz
kv

x
k ¼ dx

kv
z
k

ð9Þ
Since Eq. (9) has the same form as Eq. (4), the relation similar to Eq. (5) can be easily obtained as
diagðdkÞTvk � diagðTdkÞvk ¼ 0 ð10Þ

dk can be expressed as follows using Eq. (8):
dk ¼ �BkX ð11Þ

where the rows of Bk 2 R3�3n consist of the (3k�2)th, (3k�1)th, and (3k)th rows of B for a three-dimen-
sional structure.

Let df 2 R3nf denote the vector consisting of the coordinate difference vectors of the fixed members. The
relation between df and Xf is written as
df ¼ �BfXf ð12Þ

The vector consisting of force vectors of the fixed members is denoted by vf 2 R3mf . Let If 2 Rmf�mf denote
the identity matrix. By using Tf ¼ If � T, Eq. (10) for fixed members is assembled as
diagðdf ÞTf vf � diagðTf df Þvf ¼ 0 ð13Þ

In Eq. (13), df is known after the coordinates Xf of the fixed nodes are specified, and Tf is a constant matrix.
Since vf is the selected components of v, it is easy to see that Eq. (13) can be rewritten by using a known
matrix C as
Cv ¼ 0 ð14Þ
3.3. Symmetry properties

The configuration of a tensegrity system usually has symmetry properties; i.e. invariance conditions to
reflection with respect to some planes and/or rotation around some axes. Therefore, the member direction
vectors should be specified to satisfy such symmetry conditions. The same axial forces should be assigned to
the symmetrically located members.

For example, consider a part of a two-dimensional structure shown in Fig. 5(a), whose members are
rotationally arranged by h (= p/3). Select two adjacent members k and k 0 as shown in Fig. 5(b) to illustrate



θ
θ

θθ
θ θ

a b

θ
θ

Xi' Xi(Xj')

Xj

Fig. 5. Rotational symmetry property of a two-dimensional structure (i < j and i 0 < j 0): (a) configuration of a two-dimensional
structure and (b) rotational symmetry of members k and k 0.
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the process of formulating their rotational symmetry properties. Members k and k 0 connect pairs of nodes
(i, j) and (i 0, j 0), respectively. The rotation matrix is defined as
Ml ¼

cos h sin h 0

� sin h cos h 0

0 0 1

0
BB@

1
CCA
Then the relation between the coordinate difference vectors of members k and k 0 is written as
dk0 ¼Mldk
From Figs. 1 and 4, we know that the direction of dk is same as the positive direction of vk. So the sym-
metry property of axial forces of members k and k 0 can be written as
vk0 ¼Mlvk ð15Þ
By letting Sl ¼ ð0 � � � Ml � � � � I � � � 0Þ, Eq. (15) can be rewritten as
Slv ¼ 0 ð16Þ
The rotational symmetry of all other members of the structure can be formulated in a similar way. Reflec-
tional symmetry can be also written in a similar form as Eq. (16). By combining Eq. (16) through all the
symmetry conditions, the following linear equations are obtained:
Sv ¼ 0 ð17Þ
4. Form-finding process

In this section, we introduce an algorithm for directly specifying the member axial forces and nodal coor-
dinates consecutively. Linear equations are formulated based on the equilibrium equations and geometrical
constraints in terms of the generalized force vector.
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4.1. Axial forces

From the equilibrium conditions (3) and the geometrical constraints (7), (14) and (17), we obtain
B>

D

C

S

0
BBBB@

1
CCCCAv ¼ 0 ð18Þ
By letting H> = (B,D>,C>,S>), Eq. (18) can be rewritten as
Hv ¼ 0 ð19Þ

At this stage, our task is to find a nontrivial solution v 5 0 to Eq. (19). Let h = 3m � rank(H) for a three-
dimensional structure. If h = 0, then there exists only trivial solution v = 0. If h > 0, then the static relation
(19) is underdetermined. Tensegrity systems will often fall into this category. So we will focus only on the
underdetermined case in this paper.

The solution of Eq. (19) can be written by using a matrix G 2 R3m�h as
v ¼ Ga ð20Þ

where the columns of G are self-equilibrium modes and the ith element ai of a 2 Rh is the coefficient of the
ith self-equilibrium mode. Since a has no explicit mechanical meaning, we will obtain a by specifying �v that
consists of a set of independent components of generalized force vector.

LetI � f1; . . . ; 3mg denote the set of indices of components of v to be specified. �v is defined as the vector
consisting of the component vj ðj 2 IÞ of v. By assembling the corresponding rows of G to generate a sub-
matrix G, the relation between �v and a is written as
�v ¼ Ga ð21Þ

If G 2 Rh�h is full-rank, Eq. (21) can be solved as
a ¼ G
�1
�v ð22Þ
By substituting a back to Eq. (20), the force vector v of all members is obtained as
v ¼ GG
�1
�v ð23Þ
Let (G)k denote the kth row vector of G. P = {p(l)jl = 1,2, . . . , 3m} denotes a permutation of 3m indices
1,2, . . . , 3m, where p(l) stands for the location of index l in P. The following algorithm generates I and G,
where the reduced row-echelon form (RREF) (Borse, 1997) summarized in Appendix A is effectively used:

Algorithm 1

Step 0: Let I ¼ ;, feasible set A ¼ f1; 2; . . . ; 3mg, P0 = {p0(l)jl = 1,2, . . . , 3m} and p0(l) = l (l = 1, . . . , 3m).
Set i :¼ 0.

Step 1: If i = h, then G :¼ Ĝ, and STOP. Otherwise, set i i + 1.
Step 2: Choose j 2A. Update I :¼ I [ j. Define Pi = {pi(l)jl = 1,2, . . . , 3m} by
piðlÞ ¼
pi�1ðlÞ ðl < jÞ
3m ðl ¼ jÞ
pi�1ðlÞ � 1 ðl > jÞ

8><
>:
Step 3: Generate Q by eliminating (G)k ð8k 2 IÞ from G. Let Ĝ be the matrix consisting of (G)k ð8k 2 IÞ.
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Step 4: Compute the RREF of the matrix ðĜ>;Q>Þ in a form of
W ¼ I WU

O WL

 !
where WU 2 Ri�ð3m�iÞ and WL 2 Rðh�iÞ�ð3m�iÞ.
Step 5: Update A as
A ¼ fl j ðWLÞpiðlÞ 6¼ 0 ðpiðlÞ ¼ 1; . . . ; 3m� iÞg
and go to Step 1.
4.2. Nodal coordinates

Knowing only the generalized force vector v, we are still unable to determine configuration uniquely.
Since vk for all members are known by using the procedure presented in Section 4.1, Eq. (10) is rewritten
as
diagðTvkÞdk � diagðvkÞTdk ¼ 0 ð24Þ

Let I 2 Rm�m denote the identity matrix. By using T ¼ I� T, Eq. (24) is assembled through all members as
diagðTvÞd� diagðvÞTd ¼ 0 ð25Þ

where d ¼ ðd>1 ; . . . ; d>mÞ

>.
Incorporating Eq. (11) into Eq. (25), the constraints on X can be written in the following form:
FX ¼ 0 ð26Þ

where
F ¼ diagðTvÞB� diagðvÞTB

is a known matrix. Since the same axial forces have been assigned to the symmetrically located members,
the symmetry conditions (17) are included in Eq. (26).

Let c = 3n � rank(F) and suppose an underdetermined case c > 0. The solution of Eq. (26) can be written
as
X ¼ Pb ð27Þ

where b 2 Rc is the coefficient vector and P 2 R3n�c. The nodal coordinates are divided into unknown com-
ponents Xc 2 R3nc of the free nodes and specified components Xf 2 R3nf of the fixed nodes (supports). The
matrix P is divided into Pc and Pf, accordingly. Hence, Eq. (27) is rewritten as
Xc

Xf

� �
¼

Pc

Pf

� �
b ð28Þ
Let rf = rank(Pf). Select rf independent rows from Pf to obtain matrix P utilizing RREF forms. The vector
X of independent nodal coordinates are selected from Xf accordingly. If rf = c, we can calculate the coor-
dinate vector X directly by
X ¼ PP
�1
X ð29Þ
Otherwise, we are able to specify (c � rf) nodal coordinates to obtain X by using the same procedure
described in Section 4.1.
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4.3. Stress states of members

For a tensegrity system, it is important to know whether each member is in tension or in compression.
From Figs. 1 and 4, we can see that the direction of dk is same as that of the member force vector in tension.
So the inner product gk of dk and vk have the following properties:
gk ¼ v>k dk

> 0 tension

< 0 compression

¼ 0 member k is removable

8><
>: ð30Þ
For the case of gk = 0, member k can be removed because

(a) If vk = 0, then there exists no force in member k, and its existence is unnecessary.
(b) If dk = 0, then nodes i and j coincide. So member k and node i or j can be removed.

4.4. Design procedure of tensegrity systems

In Sections 4.1 and 4.2, we have presented the procedure and algorithm for designing a tensegrity system.
In order to show how to design a tensegrity system systematically, we summarize the design procedure as
follows:

Design procedure:

Step 1: Generate the self-equilibrium system by replacing the supports with the auxiliary fixed members.
Step 2: Give the topology, represented by the incidence matrix B.
Step 3: Assign the directions of some members, and coordinates of supports so as to define D and C,

respectively. Give the symmetry properties by the matrix S.
Step 4: Specify �v and obtain G by using Algorithm 1. Compute v from Eq. (23).
Step 5: Specify X and obtain P by using the algorithm described in Section 4.2. Compute X from

Eq. (29).
Step 6: Remove member k satisfying v>k dk ¼ 0. Convert the auxiliary fixed members back to supports.
5. Numerical examples

In this section, a simple two-dimensional and a rotationally symmetric three-dimensional prestressed
tensegrity systems are presented firstly to show how the auxiliary fixed members can be used effectively.
Diamond-shaped and prism-shaped tensegrity systems are then investigated to demonstrate the capability
of the proposed method for generating various shapes.

5.1. A simple two-dimensional prestressed tensegrity system

The initial topology of a two-dimensional structure in this example is shown in Fig. 2. It may be reduced
from a three-dimensional structure by using some of its geometrical characteristics; e.g. symmetry proper-
ties (Ohsaki and Kanno, 2003).

We have discussed in Section 2 that the supports can be converted into free nodes by using the concept of
auxiliary fixed member in order to obtain the desirable configuration. After implementation of form-finding
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using the method proposed in Section 4, the auxiliary fixed member may be removed to convert the two
nodes connected by it back to the supports.

To illustrate the procedure of specifying the member directions, member 5 is assigned to be vertical. The
nodal coordinates of the two supports are specified as (0,0) and (7,0). By connecting the two supports with
auxiliary fixed member 9, the new topology of the structure is shown in Fig. 3. After defining the directions
of members 5 and 9, the rank of matrix H has been computed to obtain h = 6; i.e. we are able to specify 6
axial force components.

As Example 1, if we specify �v ¼ ðv2; v4; vy5; vx6Þ
> ¼ ðð1; 0Þ; ð0;�1Þ; 1;�1Þ> consecutively based on Algo-

rithm 1, the axial force components of all the members are obtained as v = ((�1,�1), (1,0),
(1,�1), (0,�1), (0,1), (�1,1), (1,0), (1,1), (�2,0))>.

The rank of matrix F is computed to obtain c � rf = 4 � 3 = 1. So we can specify one nodal coordinate
except those of the defined fixed nodes 5 and 6. If X x

1 ¼ 2, the structure as shown in Fig. 6(a) is obtained,
where the thick lines represent members in compression, the thin lines are in tension, and the auxiliary fixed
member 9 has been removed. If X y

2 ¼ 1.5 as Example 2, we will achieve the configuration in Fig. 6(b).
The direction of member 4 is not necessarily vertical. If we specify v4 = (0.5,1)> as Example 3, and spec-

ify other variables the same as in Example 2, the configuration as shown in Fig. 6(c) is obtained. This way,
the directions of the struts can be easily controlled based on the designer�s preference.

5.2. A three-dimensional prestressed tensegrity system

The three-dimensional prestressed tensegrity system shown in Fig. 7(a) consists of 24 free nodes, 8 fixed
nodes and 60 members. Its fixed nodes are located on a circle, the radius of which is 15 m. Auxiliary fixed
members, which are shown in dashed lines in Fig. 7(b), are utilized to substitute the fixed nodes to free
nodes, and to transform the prestressed structure into a self-stressing structure. Therefore, there are 66
members but no fixed node in the substituted model.
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Fig. 6. Two-dimensional tensegrity system: (a) Example 1, (b) Example 2 and (c) Example 3.
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Fig. 7. Perspective view of a three-dimensional prestressed tensegrity system: (a) initial model and (b) substituted model.
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Without introducing any geometrical or mechanical constraint, there are totally (h =)99 independent
components of axial forces that can be specified arbitrarily. This may be thought as a burden rather than
benefit since a large number of axial forces have to be specified by designers. Since the structure used as an
architecture usually has symmetric properties, we classify its cables into eight groups; six cables in each
group. The cables in each group are rotationally symmetric around z-axis by p/3. This way, there are only
(h =)15 independent components of axial forces needed to be specified.

As Example 1, we specify 15 independent axial forces as �v> ¼ ðv1; v7; vx13; v
y
13; v

x
19; v25; v31Þ ¼

ðð�1; 1.7321; 0Þ; ð�1; 1.7321; 0Þ;�1; 1.7321;�3; ð�1;�1.7321;�0.5Þ; ð�3;�5.1963;�1.5ÞÞ as indicated in
Fig. 7(b). The number of independent nodal coordinates that can be specified is calculated to be c � rf = 2
in this case. If we specify the x-coordinates of nodes 2 and 8 as �5 and �10, respectively, we can obtain
configuration of the structure as shown in Fig. 7(a) and Fig. 8, where the auxiliary fixed members have been
removed.

Consider Example 2, where we change the values of vx31 and vy31 in Example 1 to �2 and 3.4642, respec-
tively, without changing the values of other parameters, we can achieve a configuration as shown in Fig. 9.

5.3. Diamond-shaped tensegrity

Consider a tensegrity system that consists of 6 nodes and 13 members as shown in Fig. 10. The config-
urations are found for the following cases:
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Fig. 8. Example 1 of the three-dimensional prestressed tensegrity system: (a) top view and (b) side view.
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Fig. 9. Example 2 of the three-dimensional prestressed tensegrity system: (a) perspective view and (b) side view.
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Fig. 10. Example 1 of diamond-shaped tensegrity.
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Consider firstly Example 1 without any explicit geometrical constraint. The rank of matrix H has been
computed to find h = 22; i.e. there are 22 axial force components needed to be specified. By using the algo-
rithm presented in Section 4.1, we specify the forces in members 5, 6, 7 and 8 as shown in Variables in Table
1. The feasible set obtained by using the RREF form is ðv1; v2; v3; v4; v9; v10; v11; v12; vz13Þ. The axial forces
ðv1; v2; v9; vz10Þ have been selected from the feasible set consecutively by using Algorithm 1 as shown in Vari-

ables in Table 1. Then the results computed by Eq. (23) are shown in Results.
The rank of matrix F has been computed to find c = 4; i.e. there exist four nodal coordinates needed to

be specified. The specified four nodal coordinates and the results using a method similar to Algorithm 1 for
specifying force components are shown in Table 2. The obtained configuration is as shown in Fig. 10. Note
Table 1
Axial forces of Example 1 of diamond-shaped tensegrity

Variables vk Results vk

k 1 2 5 6 7 8 9 10 3 4 10 11 12 13

x 1 1 �1 1 1 �1 0 �1 1 0 0 0 0
y �1 1 0 0 0 0 1 1 1 �1 �1 1 0
z 0 0 1 1 �1 �1 1 1 0 0 �1 �1 �4



Table 2
Nodal coordinate of Example 1 of diamond-shaped tensegrity

Variables Xi Results Xi

i 5 6 1 2 3 4 5

x 0 �2 0 2 0 0
y 0 0 �2 0 2 0
z 4 0 2 2 2 2
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that the locations and force vectors of members 1–4 have been obtained to be rotationally symmetric
around z-axis by p/2, although only the force vectors of members 1 and 2 have been specified.

If we specify vz10 ¼ 3, which is different from vz10 ¼ 1 in the previous example, then all nodes will be degen-
erated into one node with only three nodal coordinates that can be specified; i.e. c = 3. It means that we
cannot obtain the desirable configuration although the generalized force vector v satisfies the equilibrium
conditions and all geometrical constraints.

In the following examples of the diamond-shaped tensegrity system, we will show how to search new
configuration practically by changing the values of some variables to be specified. To reduce the number
of independent variables or to assign geometrical characteristics, we introduce some explicit geometrical
constraints such that members 1–4 are symmetrically located around z-axis by p/2, and member 13 is
chosen as a fixed member; i.e. the nodal coordinates of nodes 5 and 6 are given as (0,0,4) and (0,0,0),
respectively. In this case, there are only 13 components of axial forces needed to be specified; i.e. h = 13,
and no nodal coordinate can be given because rf = c = 4.

Consider Example 2 with the symmetric geometrical constraints as described above. In this example, we
specify (v1)e2 = 2(v1)e1, where (v1)ei denote the axial force vector of member 1 in Example i. The axial forces
of members 5, 6, 9 and 10 are same as those in Example 1. The specified variables and computed results of
axial forces are shown in Table 3. The results of nodal coordinates are listed in Table 4.

We can see from Fig. 11 that the compressive element consisting of symmetrically arranged members 1–4
is located at a higher place than in Example 1, because larger values have been given for the force compo-
nents of member 1.

If we let (v1)e3 = 0.2(v1)e2 and the other variables of axial forces remain the same as those in Example 2,
then we obtain a new configuration as shown in Fig. 12 as Example 3.
Table 3
Axial forces of Example 2 of diamond-shaped tensegrity

Variables vk Results vk

k 1 5 6 9 10 2 3 4 7 8 10 11 12 13

x 2 �1 1 0 2 �2 2 3 �3 0 0 0 0
y �2 0 0 1 2 2 2 0 0 �1 �3 3 0
z 0 1 1 1 1 0 0 0 �1 �1 �1 �1 �4

Table 4
Nodal coordinates of Example 2 of diamond-shaped tensegrity

Variables Xi Results Xi

i 5 6 1 2 3 4

x 0 0 �3 0 3 0
y 0 0 0 �3 0 3
z 4 0 3 3 3 3



Fig. 11. Example 2 of diamond-shaped tensegrity.

Fig. 12. Example 3 of diamond-shaped tensegrity.
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If we define the symmetry property such that the members 7, 8, 11 and 12 are symmetrically located with
members 6, 5, 10 and 9, respectively, as shown in Fig. 10, instead of rotational symmetry, then there exist
only seven components of the generalized force vector to be specified.

5.4. Prism-shaped tensegrity

Consider a prism-shaped structure consisting of 6 nodes and 12 members as shown in Fig. 13. Member
sets {1,2,3}, {7,8,9} and {10,11,12} are arranged, respectively, in rotationally symmetric locations. The
rank of H has been computed to find that there are seven axial force components to be specified.

If we specify ðvx1; v
y
1; v

z
1; v

z
4; v

x
9; v

y
9; v

z
9Þ consecutively to be (0.866,�0.5,0,1,1,0,0) for �v> by using Algorithm

1 as Example 1, then we can specify four nodal coordinates by computing the rank of F. By specifying
(x1,y1,z1,x2) = (0,0,0,4) for X

>
, we obtain a configuration as shown in Fig. 13.

Let vy9 ¼ 2 and vy9 ¼ 0.5 for Examples 2 and 3, respectively, which are equal to twice and half of the value
in Example 1. The configurations for Examples 2 and 3 are obtained as shown in Figs. 14 and 15, respec-
tively, where the sizes of the top and bottom triangles are different.

5.5. Evaluation of design

If the tangent stiffness matrix of a tensegrity structure is positive-definite, when its rigid-body motions
are constrained, then the structure is stable. Using this criterion, stabilities of the examples shown above
have been confirmed by checking eigenvalues of tangent stiffness matrix of the structure (Murakami, 2001).
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Fig. 13. Example 1 of rotationally symmetric prism-shaped tensegrity: (a) top view and (b) side view.
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Fig. 14. Example 2 of rotationally symmetric prism-shaped tensegrity with vy9 ¼ 2: (a) top view and (b) side view.
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By using Eqs. (19) and (26), the errors ef and ec of force vectors and nodal coordinates, respectively, for a
three-dimensional structure are defined as
ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHvÞ>Hv=ð3mÞ

q
ð31Þ

ec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFXÞ>FX=ð3nÞ

q
ð32Þ
For each example given in Section 5, the calculation errors of forces and nodal coordinates are within 10�15

and 10�14, respectively, by using Eqs. (31) and (32), which confirms the accuracy of the proposed method.
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Fig. 15. Example 3 of rotationally symmetric prism-shaped tensegrity with vy9 ¼ 0.5: (a) top view and (b) side view.
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6. Discussions and conclusions

A general method has been presented for direct design of member directions, internal forces and nodal
locations of tensegrity systems with given topology, which is defined as a directed graph. The system of
equilibrium equations is written in terms of the components of the member force vectors by using the inci-
dence matrix.

The directions of members and symmetry properties are first assigned as geometrical constraints, and the
member force vectors are computed from the constrained equilibrium equations. The locations of some
nodes including the supports are then assigned to obtain the locations of all nodes. A concept of auxiliary
(fixed) members is introduced to present a unified approach for tensegrity systems with or without supports.

The solution obtained by this method satisfies the equilibrium conditions and the geometrical constraints
exactly. By using the proposed method, designers can directly control the axial forces and the configuration
simultaneously, which is considered to be a major advantage of the method. New configurations can also be
obtained by changing the forces and geometrical constraints.

The proposed method is very efficient because only linear equations needed to be solved. A general algo-
rithm has been presented to find the independent variables consecutively. Unfortunately, it is not an easy
task to specify the members to be in tension or compression because the equilibrium shape is not known a
priori.

In the case where the number of independent variables that should be specified is large, the geometrical
constraints including the symmetry properties should be extensively used. In some cases, the obtained con-
figuration may not be feasible, which means that some nodes may contact and/or some members may inter-
sect with each other. For these cases, the variables to be specified should be gradually varied from a feasible
solution. Introducing more geometrical constraints may be another way to prevent infeasible solutions.
Appendix A. Reduced row-echelon form (RREF)

Any (possibly not square) finite matrix A can be reduced by a finite sequence of linear elementary row
operation E1, E2, . . . ,El, each of which invertible, to RREF U :¼ Em � � � E2E1A characterized by the follow-
ing three properties:

(a) The first nonzero element in any nonzero row is 1.
(b) The leading 1 of each nonzero row 1 appears in a column of which all the other elements are 0.
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(c) Each such leading 1 comes in a column after every preceding row�s leading zeros.

For example, the RREF of matrix
A ¼

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

0
BBB@

1
CCCA
is

It can be proved that rank(A) = rank(U). We can easily see that the rank of U is 3. From the fact that we
have applied only row operations on A to get U, we can know from U that the first three columns of A are
independent.
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