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Abstract

Stem cells play an essential role in cellular specialization and pattern formation during embryogenesis and in tissue regeneration in adults.

This is mainly due to a stem cell’s ability to replenish itself (self-renewal) and, at the same time, produce differentiated progeny. Realization

of these special stem cell features has changed the prospective of the field. However, regulation of stem cell self-renewal and maintenance of

its potentiality require a complicated regulatory network of both extracellular cues and intrinsic programs. Understanding how signaling

regulates stem cell behavior will shed light on the molecular mechanisms underlying stem cell self-renewal. In this review, we focus on

comparing the progress of recent research regarding the roles of the BMP signaling pathway in different stem cell systems, including

embryonic stem cells, germline stem cells, hematopoietic stem cells, and intestinal stem cells. We hope this comparison, together with a brief

look at other signaling pathways, will bring a more balanced view of BMP signaling in regulation of stem cell properties, and further point to

a general principle that self-renewal of stem cells may require a combination of maintenance of proliferation potential, inhibition of apoptosis,

and blocking of differentiation.

D 2005 Elsevier Inc. All rights reserved.
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Introduction

Stem cells are the key subset of cells functioning as

ancestor cells to produce a variety of types of functionally

specialized mature cells in a given tissue, while at the same

time undergoing self-renewal, a process of reproducing

themselves without losing their developmental potentiality.

This self-renewal process is controlled by intrinsic genetic

pathways that are subject to regulation by extrinsic signals

from the microenvironment (called niche) in which stem

cells reside. Stem cells play essential roles ranging from

embryonic development and organogenesis (embryonic/

fetal stem cells) to tissue regeneration (adult stem cells)

(Lin, 2003; Spradling et al., 2001; Watt and Hogan, 2000;

Weissman, 2000). To maintain homeostasis, a precise

balance between self-renewal and differentiation of stem
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cells is essential. Loss of this balance tends to lead to

uncontrolled cell growth or pre-maturation and thus results

in tumors, cancers, or tissue defects. Therefore, under-

standing the complex signal regulation of stem cell

development is crucial for future therapeutic applications.

In this review, we will focus on progress that has been made

in research studying the bone morphogenesis protein (BMP)

signaling pathway in regulation of stem cell properties.

BMPs belong to the transformation growth factor beta

(TGFh) superfamily. They are involved in regulation of cell

proliferation, differentiation, and apoptosis and therefore

play essential roles during embryonic development and

pattern formation (Massague, 1998). To maintain homeo-

stasis in adults, the BMP signal also participates in tissue

remodeling and regeneration, in which regulation of stem

cell behavior is prominent.

There are more than 20 BMPs. Some BMPs have a

distinct function while others have overlapping functions,

depending on the specificity of their interaction with

different types of receptors and the tissues in which they
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are differentially expressed (Mishina, 2003). Accumulated

evidence indicates that BMPs play an important role in

regulation of stem cell properties; however, their functions

are different in the different stem cell compartments. For

instance, in Drosophila germline stem cells (GSCs), Dpp

(homolog of BMP2/4) is essential for the maintenance of

stem cells (Xie and Spradling, 1998); in embryonic stem

cells (ESCs), BMP signaling appears to be required for ESC

self-renewal but this is owing to its ability to block neural

differentiation (Ying et al., 2003a) in addition to its ability to

promote non-neural (mesoderm and trophoblast) differ-

entiation (Xu et al., 2002; Ying et al., 2003a); in me-

senchymal stem cells, the BMP signal induces osteoblastic

differentiation through Bmpr1b but inhibits osteoblastic

differentiation through Bmpr1a (Chen et al., 1998); in

intestinal stem cells (ISCs), BMP signaling inhibits stem

cell activation and expansion (He et al., 2004); and in

hematopoietic stem cells (HSCs), BMP signaling through

Bmpr1a restricts stem cell number by controlling the niche

size (Zhang et al., 2003). A critical and comparative review

of the roles of BMPs in different settings and in different

stem cell compartments is necessary for a balanced view

towards BMP function in the regulation of stem cell

properties, and thus will provide important insight into

understanding the complex signaling regulation of stem cell

self-renewal and fate determination.
Stem cell self-renewal—an event independent of other

cellular events or the result of a combination of other

cellular events?

The molecular mechanisms that control stem cell self-

renewal remain largely unknown, albeit a large body of

literature has been published with regard to stem cell self-

renewal and the related signaling pathways. In the literature,

self-renewal is generally described as a parallel cellular

event of proliferation, differentiation, and apoptosis. How-

ever, accumulated evidence suggests that self-renewal of

stem cells requires a combination of events: maintenance of

their proliferation potential, inhibition of apoptosis, and

blocking of differentiation.

Multiple signaling pathways have been reported to

contribute to the regulation of stem cell self-renewal.

However, different molecules and the underlying pathways

may play different and overlapping roles in this regard.

Maintaining proliferation potential is an obvious principle

required for self-renewal of stem cells. However, it is

worthwhile to point out that proliferation potential (defined

as the capacity of stem cells to undergo continuous division)

is different from proliferation per se in that the more the

stem cells undergo active proliferation, the more they tend

to lose their potential for proliferation. Therefore, stem cell

proliferation potential is a functional property which can

only be measured by continuous in vitro cell culture, or in

vivo repopulation functional assay, rather than by measure-
ment of the rate of proliferation. Recently, several lines of

evidence have suggested that the Wnt signaling pathway

through h-catenin is important for self-renewal of HSCs

(Austin et al., 1997; Brandon et al., 2000; Murdoch et al.,

2003; Reya et al., 2003; Van Den Berg et al., 1998; Willert

et al., 2003), hair follicle stem cells (DasGupta and Fuchs,

1999; Gat et al., 1998; Huelsken et al., 2001), ISCs (He et

al., 2004; Sancho et al., 2003; Sancho et al., 2004), and

ESCs (Sato et al., 2004). In addition to its function in

lineage fate determination, the prominent role of Wnt

signaling favors cell proliferation and promotes cell growth.

Abnormal activation of h-catenin leads to over-proliferation

of stem cells and results in tumors in the intestines and in

hair follicles (Gat et al., 1998; Sancho et al., 2004). In

contrast, deletion of a Wnt downstream factor, Tcf4, leads to

loss of stem cells in the intestines (Korinek et al., 1998).

These observations suggest that Wnt/h-catenin signaling is

important for the proliferation potential of stem cells as h-
catenin may stimulate Tert (encoding the catalytic subunit of

telomerase) expression via activation of Myc (He et al.,

1998; Wang et al., 1998; Zou et al., 2005). The idea that

limiting the proliferation potential affects stem cell self-

renewal has been well demonstrated by studies of telomer-

ase (Morrison et al., 1996), HoxB4 (Antonchuk et al., 2002;

Helgason et al., 1996; Kyba et al., 2002; Sauvageau et al.,

1995), p18 (Yuan et al., 2004), P21(Cheng et al., 2000), and

Bmi (Lessard and Sauvageau, 2003; Molofsky et al., 2003;

Park et al., 2003).

Recent reports indicate that suppression of apoptosis

plays an essential role in stem cell self-renewal (Domen and

Weissman, 2000; Domen et al., 2000; Opferman et al.,

2005; Yamane et al., 2005). This idea is further enforced by

the fact that the role of h-catenin in promoting HSC self-

renewal is prominent in the Bcl2-transgenic mouse (Reya et

al., 2003), indicating that a coordination between Bcl2,

which inhibits apoptosis, and h-catenin, which is important

for proliferation potential, is required for stem cell self-

renewal. Likewise, transgenic expression of the activated

form of h-catenin alone tends to lead to crypt cell apoptosis,

as shown in the intestinal system (Wong et al., 1998). It is

also reported that Akt is activated during intestinal stem cell

activation and division (He et al., 2004), as well as during

hair follicle stem cell activation (Zhang and Li manuscript,

submitted). As Akt is a cell survival factor in general,

activation of Akt during stem cell activation and division

may be necessary to protect stem cells from apoptotic stress

including that from partial anoikis, a phenomenon caused by

detachment from the extracellular matrix during cell

division (Khwaja et al., 1997). Consistent with this

conclusion, activation of PI3K/Akt, as a consequence of

the loss of PTEN-function, has been reported to result in

expansion of embryonic and neural stem cell populations

(Groszer et al., 2001; Kimura et al., 2003).

An important feature of stem cell self-renewal is to

maintain the stem cell in an undifferentiated state. Inhibition

of stem cell differentiation can lead to an accumulation of
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stem cells (Chen and McKearin, 2003a,b; Shivdasani and

Ingham, 2003). Therefore, some signaling pathways that

function as fate determination factors to induce certain

lineage commitment during development actually play a

role in maintenance of stem cells by blocking stem cell

differentiation under appropriate circumstances (Gat et al.,

1998; Huelsken et al., 2001; Ying et al., 2003a). In this

context, multiple-signal-mediated balanced control of line-

age fate in stem cells can sustain the stem cell in an

undifferentiated state by mutual antagonization (Ying et al.,

2003a). This is exemplified by BMP signaling and its roles

in regulation of stem cell self-renewal, as discussed below.
The BMP signaling pathway

BMP functions through receptor-mediated intracellular

signaling and subsequently influences target gene tran-

scription. Two types of receptors are required in this

process, type I and type II. While there is only one type II

BMP receptor (BmprII), there are three type I receptors:
Fig. 1. BMP signal transduction pathways. Upon ligand binding, BMP type II rece

phosphorylation. There are at least two signaling pathways involved in BMP rece

Smad pathway is mediated by receptor-regulated R-Smad (Smad1/5/8) phosphoryla

Co-Smad complex is formed, it transfers to the nucleus where it regulates target

regulated MAPK pathway is mediated by TAK1, a MAPKKK tyrosine kinase w

activation is still unknown. It has been reported that XIAP links the receptor to T

TAK1 activation. GFs/CKs induce activation of the Ras/Raf/Mek/Erk cascade. Act

blocks Smad nuclear transfer.
Alk2, Alk3 (Bmpr1a), and Alk6 (Bmpr1b). Different

combinations of type II with any one of the type I receptors

may determine the specificity and result in different

consequences. There are two well-defined signaling path-

ways involved in BMP signal transduction (Fig. 1)

(Derynck and Zhang, 2003). The canonical BMP pathway

is through receptor I mediated phosphorylation of Smad1,

Smad5, or Smad8 (R-Smad). Two phosphorylated R-Smads

form a heterotrimeric complex with a common Smad4 (co-

Smad). The Smad heterotrimeric complex translocates into

the nucleus and cooperates with other transcription factors

to modulate target gene expression (Derynck and Zhang,

2003; Massague, 2000; Miyazono et al., 2000; Moustakas et

al., 2001; Shi and Massague, 2003). A parallel pathway for

the BMP signal is mediated by TGFh1 activated tyrosine

kinase 1 (TAK1, a MAPKKK) and through mitogen

activated protein kinase (MAPK) (Derynck and Zhang,

2003; Massague et al., 2000; Yamaguchi et al., 1999), which

also involves cross-talk between the BMP and Wnt path-

ways (Behrens, 2000; Ishitani et al., 2003; Ishitani et al.,

1999; Smit et al., 2004; Yamaguchi et al., 1999). In addition,
ptor recruits type I receptor to form a complex and mediates type I receptor

ptor-mediated signal transduction: Smad and TAK1/MAPK. The canonical

tion and R-Smad/Co-Smad (Smad4) complex formation. After the R-Smad/

gene expression by cooperating with other transcription factors. The BMP-

hich has multiple substrates. The mechanism of receptor-mediated TAK1

AK1 to engage in TAK1 activation. TABs are required for fully mediated

ivated Erk inhibits the Smad signal by phosphorylation of its link region and
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X-linked inhibitor of apoptosis (XIAP) links the BMP

receptor signal to TAK1, and TAK1 binding proteins

(TAB1/2/3) are also required for BMP-mediated TAK1

activation (Massague, 2003; Yamaguchi et al., 1999).

Furthermore, TAK1 can also activate Jun N-terminal kinase

(JNK) and NF-nB (Lee et al., 2002; Silverman et al., 2003;

Takaesu et al., 2003).

Intriguingly, there is additional communication between

the BMP signaling pathway and other growth factor/

cytokine (GF/CK)-mediated signaling. Erk, in response to

GF/CK signaling through Ras/Raf/Mek, can also inhibit

Smad function by inhibiting Smad nuclear translocalization

(Aubin et al., 2004; Kretzschmar et al., 1997a, 1999). Re-

ciprocally, the BMP signal can also inhibit Mek/Erk activity

through a yet undetermined mechanism (Qi et al., 2004).
BMP4 in ESCs—required for ESC self-renewal

through a balanced inhibition of ESC lineage

commitment

Embryonic stem cells (ESCs) derived from an inner cell

mass (ICM) of blastocysts are pluripotent and form all

types of cells in the body. ESCs can expand without losing

their pluripotency in a proper in vitro culture condition

(Rossant, 2004; Rossant and Tam, 2004), thus providing

an attractive system for studying stem cell self-renewal and

fate determination.

Mouse ESCs (mESCs) can be cultured with a layer of

mouse embryonic fibroblast (MEF) cells which produce

certain factors important for maintenance of mESCs.
Fig. 2. BMP blocks ES cell neural differentiation and maintains ES cell pluripote

BMP signal inhibits growth factor/MAPK signal-mediated neural differentiation a

non-neural differentiation and cooperate with BMP in ES cell self-renewal regula
Leukemia inhibitory factor (LIF) is one factor produced

by MEF cells that can support mESC growth (Bard and

Ross, 1991; Gough et al., 1989; Smith et al., 1988; Williams

et al., 1988). LIF belongs to the cytokine family that signals

through cytokine receptor complexes, including a common

receptor gp130, resulting in activation of transcription factor

Stat3 (Boeuf et al., 1997; Burdon et al., 2002; Matsuda et

al., 1999; Niwa et al., 1998; Smith, 2001). Stat3 can support

mESC self-renewal as shown by over-expression of Stat3 in

culture conditions containing serum (Matsuda et al., 1999;

Niwa et al., 1998; Raz et al., 1999). However, phenotypes

resulting from inactivation of Stat3 and gp130 appear to not

affect ESC self-renewal, suggesting the existence of an

alternative pathway that can control ESC self-renewal as

well (Smith, 2001). Intriguingly, LIF function is only

effective for maintenance of mESCs in culture conditions

containing serum. Furthermore, even with serum, LIF is not

adequate to support self-renewal of human ESCs (hESCs)

(Daheron et al., 2004; Humphrey et al., 2004; Thomson et

al., 1998). In fact, LIF alone cannot maintain the pluri-

potency of mESCs and induces neural differentiation in a

serum-free culture condition (Wilson and Edlund, 2001;

Ying and Smith, 2003; Ying et al., 2003b), suggesting the

existence of another factor(s) that cooperates with LIF in the

maintenance of mESCs. Indeed, BMP4 was found to

coordinate with LIF to maintain mESC pluripotency in a

serum-free culture condition (Ying et al., 2003a).

The ability of BMP4 to maintain the pluripotency of

mESCs is prominent only in coordination with LIF. A

mutual and balanced inhibition between the LIF and BMP

signals is critical for the maintenance of ESCs (Fig. 2). The
ncy by forming a balance with growth factor (LIF and FGF) signaling. The

nd induces non-neural differentiation. LIF and FGF block BMP-stimulated

tion through the Erk/P38 MAPK pathway or LIF/Stat3 signaling.
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BMP signal is well known for its function to inhibit neural

differentiation in both embryos (Wilson and Edlund, 2001)

and ESCs (Tropepe et al., 2001; Ying et al., 2003a), as well

as to induce the lineage fates of mesoderm, endoderm, and

trophoblast (Li et al., 2001; Nakayama et al., 2000; Pera et

al., 2004; Xu et al., 2002; Ying et al., 2003a). In contrast,

LIF through Stat3 can block mesoderm and endoderm

differentiation but favors neural differentiation (Ying et al.,

2003a). This is supported by the observation that over-

expression of Smad1/4 or introduction of the constitutively

active BMP receptor into mESCs, overrides the effects of

LIF and causes non-neural differentiation (Ying et al.,

2003a). The inability to generate mESCs from Bmpr1a�/�

blastocysts indicates that Bmpr1a is involved in the BMP4-

LIF balanced control of ESCs (Qi et al., 2004).

Id2 expression controlled by Smad-mediated transcrip-

tional regulation has been shown to be involved in

inhibition of ESC neural differentiation (Ying et al.,

2003a). The BMP function in maintaining mESC cannot

be replaced by TGFh. This is due to Smad1-, 5-, or 8-

dependent regulation of Id2 expression by BMPs but not by

TGFh. Over-expression of Id2 can replace BMP function in

inhibition of neural differentiation, and its induction role in

non-neural differentiation is blocked by LIF (Ying et al.,

2003a). However, the ability to establish mESCs from

Smad4�/� blastocysts argues that an alternative BMP

signaling pathway may also be involved in maintenance

of ESCs (Qi et al., 2004).

Unlike mESCs, which require LIF to support their self-

renewal, human (h) ESCs require basic fibroblast factor

(bFGF) to maintain their self-renewal when cultured with a

layer of feeder cells or fibroblast-conditioned medium (Amit

et al., 2000; Thomson et al., 1998). Recently, it was found

that hESCs have a high level of BMP activity in uncon-

ditioned culture medium (without feeder cells or fibroblast-

conditioned medium). A higher level of bFGF alone, or

lower bFGF in combination with the BMP antagonist

Noggin, is required to reduce the BMP activity and thus

supports the long-term undifferentiated proliferation of

hESCs in this culture condition (Xu et al., 2005).

Furthermore, signaling by either LIF or bFGF through Erk

and P38 MAP kinase favors neural differentiation and

inhibits non-neural differentiation (Fig. 2). This result again

indicates that balanced inhibition of ESC lineage commit-

ment is essential to maintain stem cells.

Erk and P38 MAP kinase, which are subject to

regulation by either LIF or FGF signaling pathways, play

critical roles in induction of ES cell differentiation

(Burdon et al., 1999a,b, 2002). FGF signaling through

activation of Mek/Erk induces mESC neural differentia-

tion (Ying and Smith, 2003; Ying et al., 2003b). It has

also been reported that enhancement of ES cell self-

renewal by the phosphatidylinosital-3 kinase (PI3k)/Akt (a

serine/threonine kinase) signaling pathway is through

inhibition of Erk and P38 MAP kinase activity and the

subsequent differentiation (Paling et al., 2004). Therefore,
the balance between BMP and LIF signals in maintenance

of mESCs is also at least partially due to inhibition of

Erk and P38 MAP kinase pathways (Qi et al., 2004).

BMP signaling represses activation of Erk and P38 MAP

kinase and thereby inhibits neural differentiation. Thus,

blocking Erk/P38 activity can replace the combined

functions of BMP and PI3k/Akt in the maintenance of

ESC pluripotency (Paling et al., 2004; Qi et al., 2004)

(Fig. 2).

Although the molecular mechanism by which the BMP

signal inhibits Erk and P38 MAP kinase needs further

investigation, a study of ESCs derived from Bmpr1a�/�

mouse suggests that Bmpr1a is required for suppression of

Erk/P38 activity; otherwise, ESCs cannot be established

from Bmpr1a�/� mouse blastocysts without inhibition of

P38 kinase activity (Qi et al., 2004). Thus, both Smad

pathway activation and MAPK pathway inhibition are

involved in BMP-mediated maintenance of ESCs. It is

important to investigate how these two pathways coordinate

in this regard. Smad proteins, important BMP signaling

transducers, have two conserved globular domains—MH1

and MH2. A linker region with variable sequence and length

lies between the MH1 and MH2 domains. The activity of

Smad proteins is regulated through phosphorylation at

different sites by different kinases (Massague, 2003).

BMP receptor-mediated Smad phosphorylation occurs at

the carboxy-terminal sequence SXS, which leads to signal

activation (Shi and Massague, 2003). Recently, it has

become clear that FGF signaling through the MEK/Erk

pathway can inhibit Smad activation through phosphoryla-

tion of the link region of Smad1 (Aubin et al., 2004;

Kretzschmar et al., 1997a,b, 1999). Reciprocally, Erk/P38

activity can be inhibited by the BMP-TAK1 cascade

(Goswami et al., 2001; Qi et al., 2004), and possibly

through the Smad-Id pathway as well. Regardless, the

mutually antagonistic interaction between BMP and Erk

MAPK signaling pathways is important for ESC self-

renewal and maintenance. The fact that multiple signals

are required for a balanced control of ESCs, inhibiting both

neural and mesoderm differentiation, strongly supports the

idea that inhibition of differentiation is required for self-

renewal of stem cells.
The role of BMP signaling in maintenance of germline

stem cells in Drosophila through inhibition of

bam-mediated differentiation

Germline stem cells (GSCs) located at the tip of the

germarium in the Drosophila ovary provide another premier

system for studying stem cell self-renewal and fate

determination. Cap cells adjacent to GSCs, together with

terminal filament cells, form the niche supporting GSCs

(Lin, 2002; Xie and Spradling, 2000). Signals generated

from the niche, including BMP, regulate the proper behavior

of GSCs (Lin, 2002; Spradling et al., 2001).
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BMPs generated by cap cells include Dpp and Glass

bottom boat (Gbb) and have been shown to play a role in

regulation of GSC self-renewal. This is evident by the fact

that over-expression of Dpp results in uncontrolled

expansion of GSCs, while disruption of Dpp/Gbb signal-

ing by deletion of either gene leads to loss of GSCs and

germ cells (Lin, 2002; Song et al., 2004; Xie and

Spradling, 1998, 2000). Recent studies from several

groups indicate that the role of Dpp/Gbb in maintenance

of GSCs is mainly attributable to its ability to repress

transcription of bag of marbles (bam), a differentiation-

promoting gene (Casanueva and Ferguson, 2004; Chen

and McKearin, 2003a,b; Song et al., 2004). Dpp/Gbb is

proposed as a short-region signal emanating from the

niche cells, which mainly inhibits bam expression in

GSCs, thereby preventing stem cell differentiation. In

contrast, expression of bam is exclusive in cytoblasts (the

progeny of stem cells) and cyst cells, thus leading to cell

differentiation.

A similar phenomenon is also seen in the Drosophila

testis where Hub cells, instead of cap cells, function as the

niche to support GSCs (Kiger et al., 2001; Tulina and

Matunis, 2001; Yamashita et al., 2003). Dpp/Gbb signaling

is active in GSCs and gonialblasts, the immediate daughter

cells of GSCs, but is inactive in other differentiated germ

cells. Disruption of the Dpp/Gbb signaling pathway results

in GSC loss (Kawase et al., 2004; Shivdasani and Ingham,

2003). Dpp and Gbb cooperate in their function to

maintain GSCs in the Drosophila testis (Kawase et al.,

2004). The role of Dpp/Gpp signaling in maintenance of

male GSCs also occurs through inhibition of bam

expression, which controls GSC and gonialblast differ-

entiation (Kawase et al., 2004; Shivdasani and Ingham,

2003), although the phenotype is not as dramatic as that
Fig. 3. BMP signaling maintains GSC stemness by blocking differentiation in th

gradient. This Dpp/Gbb gradient mediates a short region of BMP activity that rep

cyst cells, there is no detectable BMP activity and bam expression is released

Disruption of bam functioning or inhibition of bam expression leads to GSC acc
observed in female ovary. This suggests that alternative

pathways are also involved in male GSC regulation.

Indeed, in male GSCs, unpaired (Upd), a Hub cell-secreted

factor, activated JAK/STAT signaling plays a critical role

in GSC self-renewal (Kiger et al., 2001; Tulina and

Matunis, 2001).

In summary, the role of Dpp/Gbb in the maintenance of

GSCs in Drosophila is consistent with the role of BMP4 in

ESCs through inhibition of cell differentiation (Fig. 3).

These observations again support the argument that sup-

pression of differentiation is an important mechanism for

stem cell self-renewal. Recently, Nanos was shown to be

required for GSC self-renewal through suppression of

differentiation (Wang and Lin, 2004). As Nanos is required

for general translational regulation, this observation rein-

forces the idea that suppression of differentiation is

important for stem cell self-renewal.

The importance of BMP signaling in regulation of GSCs

is also conserved in mammals. For example, BMP4 and

BMP8b (a member of the Gbb-60A class of the BMP

superfamily) have been shown to play critical roles in the

induction of mouse primordial germ cells (PGC) during

early embryonic development (Lawson et al., 1999; Ying et

al., 2000). BMP4 and BMP8b enhance PGC production

from the embryonic body (Toyooka et al., 2003) and from

the epiblast in in vitro culture (Hayashi et al., 2002;

Okamura et al., 2005; Pesce et al., 2002; Ying et al.,

2001). On the other hand, mice with a BMP4 or BMP8b

mutation lack PGC formation (Lawson et al., 1999; Ying et

al., 2000, 2001). Furthermore, PGC induction produced by

BMP4 and BMP8b depends on receptor Alk2 and tran-

scription factors Smad1 and Smad5 (Chang and Matzuk,

2001; de Sousa Lopes et al., 2004; Hayashi et al., 2002;

Tremblay et al., 2001).
e Drosophila ovary and testis. GSC niche cell secreted Dpp/Gbb forms a

resses bam transcription in GSCs and cystoblasts/gonialblasts. In germline

from BMP inhibition. Bam plays important roles in GSC differentiation.

umulation, even GSC-like tumor formation.
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BMPs and hematopoietic stem cell regulation—the niche

size controls stem cell number

The hematopoietic system serves as the pioneer paradigm

for studying stem cells (Schofield, 1978; Spangrude et al.,

1988; Till and McCulloch, 1961). Hematopoietic tissue is

derived from embryonic mesoderm and the location of

hematopoiesis dynamically changes at the different devel-

opmental stages: from yolk sac to Aorta Gonad Mesoneph-

ros (AGM) (Dzierzak, 1999; Dzierzak and Medvinsky,

1995), to placenta (Gekas et al., 2005; Ottersbach and

Dzierzak, 2005), to fetal liver (Ikuta et al., 1990; Jordan et

al., 1990), and finally to bone marrow after birth (Dzierzak,

1999, 2003; Dzierzak and Medvinsky, 1995). BMPs have

been shown to play important roles in induction of

hematopoietic tissue during early embryonic development

(Dzierzak, 2003; Maeno et al., 1996). BMP4 has also been

shown to be able to maintain the reconstitution ability of

HSCs under in vitro culture conditions (Bhatia et al., 1999).

The in vivo function of BMP signaling in the regulation of

HSCs has been elusive until recently. In our analysis of a

conditional Bmpr1a mutant mouse model, we found that the

pool size of HSCs is controlled by the volume of trabecular

bone (Zhang et al., 2003); the larger the volume, the greater

the HSC number. This observation is consistent with a

simultaneous study using a transgenic mouse model in

which parathyroid hormone receptor (PTHR) is expressed

(Calvi et al., 2003). These two studies led to the

identification of a subset of osteoblastic cells (N-cadherin+)

lining the bone surface as the niche supporting HSCs. In the

hematopoietic niche, N-cadherin and h-catenin form an

adhesion complex at the interface between HSCs and

osteoblastic cells (Zhang et al., 2003), facilitating HSC

anchoring to the niche. Jagged–Notch interaction is also

important for the maintenance of HSCs (Calvi et al., 2003;

Duncan et al., 2005). In this study, we provided solid

evidence to support the conclusion that BMP signaling

mediated by Bmpr1a plays a role in controlling the HSC

number through regulation of the niche size (Zhang et al.,

2003) (Fig. 4).
Fig. 4. BMP signaling through BMPR1A indirectly regulates HSCs by

controlling the HSC niche size. The SNO cell represents the spindle-shaped

osteoblast, one of the key components of the bone marrow HSC niche

(Zhang et al., 2003). The direct roles of BMP in HSC regulation are yet to

be determined.
Recently, by studying BMP signaling in the intestinal

stem cell compartment, we found that BMP signaling also

plays a direct role in restriction of stem cell activation and

expansion through suppression of Wnt/h-catenin activity

(for details, please see He et al., 2004). This BMP-Wnt

antagonism has also been seen in different systems and by

different groups (Haramis et al., 2004; Jamora et al., 2003).
Closing remarks

In this review, we have compared the different roles that

BMP signaling plays in different stem cell compartments.

The data from ESC studies indicate that the balance between

BMP and LIF/bFGF signaling, for mutual inhibition of

neural and mesoderm/endoderm differentiation, respec-

tively, is critical for ESC maintenance. This mechanism

may also hold true in some adult stem cells, including

germline stem cells. Indeed, the role of Dpp/Gbb in

maintenance of GSCs in Drosophila is through inhibition

of bam-mediated cell differentiation. The difference is that

Drosophila GSCs can only give rise to a single lineage—

cystoblast in the ovary or gonialblast in testis. Blocking

differentiation tends to result in an accumulation of GSCs,

while in most tissue stem cells with multipotentiality,

blocking one lineage fate often drives the cells to alternative

lineages, and may not result in accumulation of stem cells.

Therefore, coordination between at least two or more signals

is required to maintain a balanced control of stem cell

differentiation, insuring the maintenance of stem cells in

their undifferentiated state. All of these indicate that

differentiation inhibition is an important mechanism for

stem cell self-renewal.

The study of Bmpr1a mutant mice in HSC regulation

indicates that the influence of BMP signaling on stem cells

can be direct or indirect. Stem cells need a homeostatic

niche for proper regulation. Alterations in the stem cell

population could be due to the secondary effect of micro-

environmental change, emphasizing the complicated net-

work within stem cells, signaling between niche and stem

cells, and circulating signals, all of which can impose

additional layers of regulation on stem cell behavior. The

study of different stem cell systems provides a comple-

mentary view regarding the role of BMP signaling in

regulation of stem cell properties, and also provides

important insight into understanding the principles used

by stem cells in self-renewal, including at least three

elements: blocking differentiation, suppressing apoptosis,

and maintaining proliferation potential.
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