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Abstract

Extremal problems of Markov type are studied, concerning maximization of a local extremum of the
derivative in the class of real polynomials of bounded uniform norm and with maximal number of zeros
in [−1, 1]. We prove that if a symmetric polynomial f , with all its zeros in [−1, 1], attains its maximal
absolute value at the end-points, then | f ′

| attains maximal value at the end-points too. As an application of
the method developed here, we show that the classic Zolotarev polynomials have maximal derivative at one
of the end-points.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction

An algebraic polynomial that has all its zeros on the real line R is termed oscillating poly-
nomial. For example, the orthogonal polynomials constitute an important class of oscillating
polynomials. Sometimes we shall restrict our study to the class of polynomials f of a fixed de-
gree n which have n zeros in a given finite interval [a, b] on R. In such a case we shall say that
f is oscillating on [a, b].

In this paper we concentrate on certain general properties of polynomials with real zeros that
are relevant to the following

Conjecture 1. Assume that the polynomial

P(x) = (x − x1) · · · (x − xn), −1 < x1 ≤ x2 ≤ · · · ≤ xn < 1,
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with symmetric zeros, attains its maximal absolute value at the end-points. Then P ′ (x) attains
its maximal absolute value at the end-points too.

The conjecture without the requirement of symmetry was formulated first by Aleksei Shadrin
and then, independently, by Geno Nikolov. However, a counterexample constructed by Naide-
nov [15] showed that it cannot be true in that former form and the present corrected formulation
of the problem was proposed by the second author. Our main result is a proof of the above conjec-
ture. Then we give some applications of the result to orthogonal polynomials and the Zolotarev
polynomials.

Our motivation to study the conjecture comes from Duffin and Schaeffer extension of the
Markov inequality (see [7]). They proved that

| f (k)(x + iy)| ≤ |T (k)
n (1 + iy)|, x ∈ [−1, 1], − ∞ < y < ∞,

for every k = 1, . . . , n and every algebraic polynomial f of degree n such that

| f (η j )| ≤ 1, j = 0, . . . , n,

where η j := cos (n− j)π
n , j = 0, . . . , n, are the extremal points of the Tchebycheff polynomial

Tn(x) := cos n arccos x, −1 ≤ x ≤ 1.

A crucial ingredient of their proof was the following property of the Tchebycheff polynomials:

|Tn(x + iy)| ≤ |Tn(1 + iy)|, x ∈ [−1, 1], − ∞ < y < ∞.

It was conjectured in [2] (see Question 5 and the comments after it) that the last property holds
for every symmetric oscillating polynomial P on [−1, 1] that attains its maximal absolute value
at the end-points. Note that the last mentioned conjecture is stronger than Conjecture 1. This
follows from a result of Bernstein [1] and de Bruijn [6], according to which the inequality

|Pn(x + iy)| ≤ |Pn(1 + iy)|,

for every y ∈ (−∞, ∞) and a fixed x ∈ [−1, 1], implies the same inequality for every derivative
of Pn provided all zeros of Pn are situated in the half plane x < 1.

Hopefully, being verified, Conjecture 1 could be useful in the effort to extend further the
remarkable result of Duffin and Schaeffer [7] to polynomials f that satisfy the assumption

| f (t j )| ≤ |Pn(t j )|, j = 0, . . . , n,

where t0 = −1, tn = 1 and t1 < · · · < tn−1 are the zeros of P ′(x), P being an oscillating
polynomial, described in Conjecture 1 (see [20,21,17,18] for research in this direction).

We prove even stronger proposition than that in Conjecture 1. Namely, for every oscillating
polynomial P on [−1, 1] such that |P(−1)| = ‖P‖, we show that each local extremum of P ′

from the first half (i.e., with an index less than or equal to ⌊(n − 1)/2⌋) is smaller in absolute
value than |P ′(−1)|. Our main tool is Lemma 1.

Here, and in what follows, ‖ f ‖ denotes the uniform norm of f on the interval in consideration
and πn is the class of all real algebraic polynomials of degree less than or equal to n.

2. Preliminaries

Let [a, b] be any given finite interval on the real line. Often we take [a, b] = [−1, 1]. With
any oscillating polynomial P on [a, b] we associate the set h(P) of its local maximal absolute
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values, including the values at the end-points. More precisely, for any oscillating polynomial P
of degree n on [a, b], we define

h(P) := (h0(P), h1(P), . . . , hn(P)),

where

h j (P) := |P(t j )|, j = 0, . . . , n,

t0 := a, tn := b, and t1 ≤ t2 ≤ · · · ≤ tn−1 are the zeros of P ′.
The following result from [3], inspired by a problem of Davis [5], shows that any oscillating

polynomial is completely determined by its local extrema and the values at the end-points.

Theorem A. For any given finite interval [a, b] and a set of non-negative numbers

h := (h0, h1, . . . , hn),

there exists a unique polynomial P(h; x) of degree n and a set of points

a = t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn = b

such that

P(h; t j ) = (−1)n− j h j , j = 0, . . . , n,

P ′(h; t j ) = 0, j = 1, . . . , n − 1.

Note that if

hk−1 > 0, hk = hk+1 = · · · hk+ν−1 = 0, hk+ν > 0,

then tk is considered as a (ν + 1)-tuple zero of P(h; x). This theorem was proved first by
Mycielski and Paszkowski [14] in the case where h j > 0 for all j .

The derivative of any oscillating polynomial is also oscillating. There is a monotone
dependence of the parameters h j (P ′) on the parameters h0, . . . , hn of P . This relation was
discovered in [4] where the following was proved.

Theorem B. For each j ∈ {0, . . . , n − 1}, h j (P ′(h; ·)) is a non-decreasing function of
h0, . . . , hn in the domain h0 ≥ 0, . . . , hn ≥ 0. Moreover, it is strictly increasing, provided
h j (P ′(h; ·)) > 0.

Let us introduce the class

Hn
0 :=


(h0, h1, . . . , hn) ∈ Rn+1

: h0 = 1, hi ∈ [0, 1], i = 1, . . . , n


.

For any given [a, b] and i ∈ {1, 2, . . . , n − 2}, we study the extremal problem

ri (P) :=
hi (P ′)

h0(P ′)
−→ max, (1)

where h(P) ∈ Hn
0 . More precisely, we want to find how large an interior extremum of the first

derivative of an oscillating polynomial P can be with respect to the value |P ′(a)| at the end-point,
under the condition that

|P(a)| = ‖P‖ := max
x∈[a,b]

|P(x)|.
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We would like to characterize those oscillating polynomials P for which ri (P) ≤ 1, i =

1, . . . , n − 2, that is, for which the condition ‖P‖ = |P(a)| implies ‖P ′
‖ = max{|P ′(a)|,

|P ′(b)|}.

3. Main result

Extremal problem (1) is a particular case of the more general problem of maximizing the ratio

ri j (P) :=
hi (P ′)

h j (P ′)
, i, j ∈ {0, 1, . . . , n − 1},

in a set of oscillating polynomials P for which h j (P ′) is bounded from below by a positive
constant.

In what follows we shall reserve the notation

t j = t j (P) = t j (h), j = 0, . . . , n,

for the ordered points at which P(h; x) attains its extremal values (including the values at the
end-points) in [a, b]. The extremal points of P ′(h; x) will be denoted by

a = τ0(h) ≤ τ1(h) ≤ · · · ≤ τn−1(h) = b.

We first recall some simple observations, that will be used in the sequel.
Set

ω(x) := (x − t0) · · · (x − tn), ωk(x) :=
ω(x)

x − tk
.

Lemma A. Assume that t0 < t1 < · · · < tn . Let

ℓnk(x) :=
ωk(x)

ωk(tk)
, k = 0, . . . , n,

be the Lagrange basic polynomials for the nodes t0, . . . , tn . Then, for any fixed x,

∂ P( j)(h; x)

∂hk
= (−1)n−kℓ

( j)
nk (x),

in the domain h0 > 0, . . . , hn > 0.

Lemma B. For any k ∈ {0, 1, . . . , n} and s ∈ {0, 1, . . . , n − 1},

∂hs(P ′)

∂hk
= (−1)k+s+1ℓ′

nk(τs).

These are known relations (see formula (4.1) in [2] or the proof of Lemma 2 in [4]).
Next we give a lemma which is basic for the proof of our results.

Lemma 1. Let i, j ∈ {0, . . . , n − 1}, k ∈ {1, . . . , n − 1}. For every oscillating polynomial P of
degree n on [a, b] with hk(P), hi (P ′), h j (P ′) ≠ 0, holds the relation

sign
∂ri j (P(h; ·))

∂hk
= sign


(i − j)


tk −

τi + τ j

2


.
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Proof. The lemma says that the ratio ri j (h) increases as hk increases if tk is closer to τi than to
τ j , and it decreases if tk is closer to τ j .

Making use of Lemma B we first find a closed form expression for the derivative of ri j . We
have

∂ri j

∂hk
=

1

h2
j (P ′)


∂hi (P ′)

∂hk
h j (P ′) −

∂h j (P ′)

∂hk
hi (P ′)


=

1

h2
j (P ′)


(−1)i+k+1ℓ′

nk(τi )h j (P ′) − (−1) j+k+1ℓ′

nk(τ j )hi (P ′)


.

Let us write the polynomial ω(x) in the form

ω(x) = (x − t0)(x − t1) · · · (x − tn) =: (x − a)(x − b)g(x)

and represent the derivative above in terms of g. Note that if P(x) = K xn
+ · · ·, then

P ′(x) = nK g(x). Taking this observation into account, we modify further the expression for
the derivative and obtain

∂ri j

∂hk
=

1

h2
j (P ′)


(−1)i+k+1 ω′

k(τi )

ωk(tk)
h j (P ′) − (−1) j+k+1 ω′

k(τ j )

ωk(tk)
hi (P ′)



=
(−1)n+1

h2
j (P ′)|ωk(tk)|


(−1)iω′

k(τi )|K ng(τ j )| − (−1) jω′

k(τ j )|K ng(τi )|


.

Since k ≠ 0, n,

ω′

k(τs) =


(x − a)(x − b)g(x)

x − tk

′

x=τs

=


(x − a)(x − b)

x − tk

′

x=τs

· g(τs)

=
τ 2

s − 2τs tk + (a + b)tk − ab

(τs − tk)2 g(τs)

=

[
1 −

(tk − a)(tk − b)

(τs − tk)2

]
g(τs),

for all s = 0, 1, . . . , n − 1, where for s ≠ 0, n − 1 we have used the equality g′(τs) = 0, while
for s = 0 and s = n − 1 we used that (x − a)(x − b)|x=τs = 0. Substituting this expression for
the values of ω′

k and taking into account that

sign g(τs) = (−1)n−s−1

we obtain

∂ri j

∂hk
=

|K |n(−1)n+1

h2
j (P ′)|ωk(tk)|


(−1)i

[
1 −

(tk − a)(tk − b)

(τi − tk)2

]
g(τi )|g(τ j )|

− (−1) j
[

1 −
(tk − a)(tk − b)

(τ j − tk)2

]
g(τ j )|g(τi )|


=

|K ng(τi )g(τ j )|

h2
j (P ′)|ωk(tk)|

[
1 −

(tk − a)(tk − b)

(τi − tk)2

]
−

[
1 −

(tk − a)(tk − b)

(τ j − tk)2

]
=

|g(τi )|

h j (P ′)|ω(tk)|
(tk − a)(b − tk)


1

(τi − tk)2 −
1

(τ j − tk)2
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=
2|g(τi )|(tk − a)(b − tk)

h j (P ′)|ω(tk)|(τi − tk)2(τ j − tk)2 (τ j − τi )


τi + τ j

2
− tk


= C (τi − τ j )


tk −

τi + τ j

2


, C = C(h, i, j, k) > 0.

The last equality proves the lemma. �

Remark 1. The increase of hn is equivalent to a compression of the polynomial P(h; x), that is,

P(h; x) → P(h; a + λ(x − a)), λ > 1.

But it is easily seen that the ratio ri (P) remains the same after such a change of the variable
for i = 1, . . . , n − 2, and thus, ri (P) does not depend on hn . Moreover, the quantity ri (P) is
invariant with respect to any linear change x = λt + µ, λ > 0, of the variable, provided a is
chosen as the smallest solution of the equation |P(x)| = h0.

We next prove a lemma which will be used in our study. In order to formulate it we need a
notation. With any pair of natural numbers n > m, a given interval [a, b], and a set of parameters

h := (h0, . . . , hm, . . . , hn)

we associate the oscillating polynomial Pn,m(h; x) of degree n defined uniquely (as described
in Theorem A) on [a, d], by the parameters h where d > b is chosen so that the mth zero xm
coincides with b.

Lemma 2. Given a finite interval [a, b] and natural numbers n > m, let Pm(h0, . . . , hm−1, 0; x)

be the oscillating polynomial of degree m defined on [a, b] by the parameters (h0, . . . , hm−1, 0)

with h0 > 0 and normalized by the condition Pm(h0, . . . , hm−1, 0; a) = (−1)nh0. Then, the
polynomial Pn,m(h; x) associated with

h := (h0, . . . , hm−1, h, hm+1, . . . , hn)

tends uniformly to Pm(h0, . . . , hm−1, 0; x) on [a, b] as h → ∞.

Proof. For the sake of simplicity, we may suppose without loss of generality that [a, b] is [0, 1].
For every h > 0 we have

Pn,m(h; x) = C(h)

n∏
j=1

(x − x j (h))

= C(h)x1(h) · · · xn(h)(x − 1)

n∏
j=1, j≠m


x

x j (h)
− 1


,

remembering that xm(h) = 1. Since Pn,m(h; 0) = (−1)nh0 by construction, we observe that

C(h)x1(h) · · · xn(h) = h0,

and passing to limit as h tends to ∞, we obtain

lim
h→∞

Pn,m(h; x) = (−1)nh0(1 − x)

m−1∏
j=1

(1 − α j x)

n∏
j=m+1

(1 − α j x)

where

α j = lim
h→∞

1
x j (h)

, j ≠ m.
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We have to show that these limits exist. Indeed, if we assume that x1(h) → 0, then P ′
n,m(h; x)

would become very large for some x ∈ (0, x1(h)). But this contradicts the Markov inequality
since ‖Pn,m(h; ·)‖ remains bounded on [0, 1] for every h. Thus, every of the sequences 1/x j (h),
for 1 ≤ j ≤ m − 1, is bounded and hence it contains a convergent subsequence. As we shall see
at the end of this proof, there is only one accumulation point of the sequence 1/x j (h) and thus,
it converges to a certain number α j . Further, for m < j ≤ n, clearly x j (h) → ∞ as h → ∞.
This follows from the Tchebycheff inequality, i.e., from a known property of the Tchebycheff
polynomials T̃n (associated with the interval [0, 1]), namely,

|Pn,m(h; x)| ≤ M T̃n(x)

for every x > 1, where M is the uniform norm of Pn,m(h; ·) on [0, 1]. Now taking x to be
the point tm(h) of the mth extremum of Pn,m(h; x), we conclude that tm(h) should satisfy
M T̃n(tm(h)) ≥ h which implies that tm(h) → ∞. Because of the obvious inequalities
tm(h) < xm+1(h) ≤ · · · ≤ xn(h) we conclude that x j (h) → ∞ for j > m. Therefore, α j → 0
for j > m and hence Pn,m(h; x) tends uniformly on [0, 1] to the polynomial

P(x) = (−1)nh0(1 − x)

m−1∏
j=1

(1 − α j x)

of degree m. Since for every h the polynomials Pn,m(h; x) have on [0, 1] local extrema
h0, . . . , hm−1 and 0, the limit polynomial P will have the same property. Moreover, P(0) =

(−1)nh0. Then, by the uniqueness of the oscillating polynomial of degree m defined on [0, 1] by
(h0, . . . , hm−1, 0), it follows that

P ≡ Pm(h0, . . . , hm−1, 0; ·).

The proof is complete. �

Lemma 2 allows us to consider any oscillating polynomial P(h; x) on [a, b] of degree m as an
oscillating polynomial on [a, ∞) of degree n > m with parameters (h0, . . . , hm−1, ∞, . . . ,∞)

where h0, . . . , hm−1 are the first m components of h. Making use of such an interpretation, we
derive from Lemma 2 the following consequence.

Lemma 3. Let P = P(h; x) be an oscillating polynomial of degree n on the finite interval [a, b]

with h0(P) = 1. Let Q be the oscillating polynomial on [a, b] of degree n − 1, defined by the
parameters

hk(Q) = hk(P), k = 0, . . . , n − 2, hn−1(Q) = 0.

Then

r j (P) < r j (Q), for j = 1, . . . , n − 3.

Proof. By Lemma 2, for sufficiently large h, the corresponding polynomial Pn,n−1(h; x) with
h = (h0, . . . , hn−2, h, hn) will be uniformly close to Q on [a, b] (up to multiplication by −1).
Then, by Lemma 1 and Remark 1, for every h > hn−1(P),

r j (P) < r j (Pn,n−1),

and, increasing, r j (Pn,n−1) tends to r j (Q) as h → ∞. Thus r j (P) < r j (Q). �

Now we are prepared to prove our central result.
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Theorem 1. Let P be an oscillating polynomial on [a, b] of degree n ≥ 3. Assume that

‖P‖ = |P(a)| = 1.

Then

|P ′(τ j )| < |P ′(a)|, for j = 1, . . . ,


n − 1

2


where τ1 ≤ · · · ≤ τn−2 are the zeros of P ′′(x) and ⌊t⌋ denotes the integer part of t .

Proof. The theorem says that any local maximum of |P ′(x)| from the first half of the set of
ordered maxima (including the central one) is less than the value of |P ′(x)| at the first end-point
a. The assertion is easily verified for n = 3. Indeed, if n = 3, then we consider P(x) over the
interval [a1, b1] of those x for which

−h1(P) ≤ P(x) ≤ h2(P) (provided P(a) > 0).

Since P(a) = 1 ≥ max{h1(P), h2(P)}, we have a ≤ a1. Besides, P(x), considered on [a1, b1],
coincides with the corresponding Tchebycheff polynomial of degree 3 for [a1, b1], up to addition
of a constant. Then by a well-known property of the Tchebycheff polynomials, the maximal value
of the first derivative of P is attained only at the end-points a1 and b1. Thus,

|P ′(a)| ≥ |P ′(a1)| > |P ′(x)|, for every x ∈ (a1, b1),

and in particular for x = τ , the zero of P ′′.
Now the proof goes by induction on n. For the sake of convenience, let us assume that [a, b]

is [−1, 1] and hn(P) = 1 (see Remark 1). Assume that the theorem is true for all oscillating
polynomials on [−1, 1] of degree n − 1. Let P be any oscillating polynomial on [−1, 1] of
degree n. Then we consider the oscillating polynomial Q of degree n − 1 defined on [−1, 1] by
the parameters

h0(Q) = 1, hk(Q) = hk(P), k = 1, . . . , n − 2, hn−1(Q) = 0.

According to Lemma 3,

r j (P) =
h j (P ′)

h0(P ′)
<

h j (Q′)

h0(Q′)
= r j (Q). (2)

Assume first that j <


n−1
2


. Then, for any integer n we have

j ≤


(n − 1) − 1

2


. (3)

Therefore, Q is an oscillating polynomial on [−1, 1] of degree n −1, satisfying the conditions in
the theorem and j is from the range stated there. Then, by the induction hypothesis, we conclude
that r j (Q) < 1. This, combined with (2), implies r j (P) < 1, which was to be shown.

Let now j =


n−1

2


. In the case of even n, (3) still holds and we can apply the induction

hypothesis. If n is odd, then the j th local maximum of |P ′(x)| is its central maximum. Recall
that, for odd n, the central maximum of |T ′

n| is attained at 0, i.e., h j (T ′
n) = |T ′

n(0)|. Then, by the
monotonicity theorem (Theorem B),

h j (P ′) ≤ h j (T ′
n) = |T ′

n(0)| = n.

Notice that the equality sign holds here only if P ≡ Tn .
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In order to find a lower bound for h0(P ′), we consider the polynomial ϕ(x) := xn on [−1, 1].
Again by the monotonicity theorem,

h0(P ′) ≥ h0(ϕ
′) = n,

where the equality occurs only if P ≡ ϕ. Since P cannot coincide simultaneously with Tn and

ϕ, at least one of the above inequalities is strict. Therefore, in case j =


n−1

2


we have

r j (P) <
h j (T ′

n)

h0(ϕ′)
= 1,

which finishes the proof of the theorem. �

Next immediate consequence from the theorem verifies Conjecture 1.

Corollary 1. Let P be a symmetric oscillating polynomial on [−1, 1] of degree n. Assume that

‖P‖ = |P(1)| = 1.

Then, for k = 1, . . . , n, we have

‖P(k)
‖ = |P(k)(1)|.

Proof. Clearly, P ′(x) is symmetric too. Then, in view of the theorem,

‖P ′
‖ = max

x∈[−1,0]

|P ′(x)| = max
0≤ j≤⌊

n−1
2 ⌋

|P ′(τ j )| = |P ′(−1)|.

Since P ′(x) is symmetric oscillating polynomial, we derive the same conclusion for the second
derivative and so on. �

4. Applications

4.1. Orthogonal polynomials

As an immediate consequence of Theorem 1 we obtain the following property of a wide
class of orthogonal polynomials. Assume that w(x) is an even weight function on [−1, 1] and
let {Pn(x)}∞0 be the sequence of the corresponding orthogonal polynomials. It follows from the
uniqueness of Pn(x) (normalized by Pn(1) = 1) that Pn(x) is symmetric (i.e., it is an even or
odd function). The verified conjecture then implies that if |Pn(x)| attains its maximal value in
[−1, 1] at the end-points, then all derivatives of Pn attain maximal absolute value at the end-
points too. This property was known for some classical orthogonal polynomials. For example,
the ultraspherical polynomials P(λ)

n (x) (that are orthogonal on [−1, 1] with respect to the weight
(1−x2)λ−1/2) possess this property for λ > −

1
2 . Recall that the famous Tchebycheff polynomials

Tn(x) correspond to λ = 0 while the case λ = 1/2 gives the Legendre polynomials. The property
follows from the representation (see [22, p. 93])

P(λ)
n (x) =

n−
k=0

α
(λ)
k,nTk(x) with α

(λ)
k,n ≥ 0, ∀k

and the fact that max−1≤x≤1 |T ′

k(x)| = T ′

k(1) for all k.

4.2. Zolotarev polynomials

In his fundamental paper V.A. Markov [13] proved the inequality
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‖ f (k)
‖ ≤ T (k)

n (1)‖ f ‖, k = 1, . . . , n,

for every algebraic polynomial f of degree n on [−1, 1]. To show this, he considered first the
problem: Given a fixed point x in [−1, 1], characterize the polynomial P∗ in πn , with ‖P∗‖ = 1,
for which

|P(k)
∗ (x)| = max


| f (k)(x)| : f ∈ πn, ‖ f ‖ ≤ 1


=: Mk(x).

A standard now variational argument yields that the extremal polynomial P∗ should alternate n
times in [−1, 1], i.e., it should possess the property: There exist n points s1 < · · · < sn in [−1, 1]

such that

P∗(s j ) = (−1)n− j
‖P∗‖, j = 1, . . . , n.

Polynomials of this kind have been studied first by Zolotarev [23]. The class of all such
polynomials can be described by a single parameter A that traverses the whole real line outside
the interval (η1, ηn−1), where

−1 = η0 < η1 < · · · < ηn = 1

are the extremal points of the Tchebycheff polynomial Tn(x) in [−1, 1]. The most difficult part
in Markov’s proof was to show that max Mk(x) = Mk(1). Then, by Lagrange interpolation at the
nodes {η j } (and with basic polynomials denoted {ℓnj (x)}) one easily see that for every f ∈ πn
with ‖ f ‖ ≤ 1, we have

| f (k)(1)| =

 n−
j=0

f (η j )ℓ
(k)
nj (1)

 ≤

 n−
j=0

(−1) jℓ
(k)
nj (1)

 = T (k)(1)

which implies Markov’s inequality. Having in mind that the original proof of V.A. Markov [13]
goes on for 110 pages, it was always of a great interest to show directly that the Zolotarev
polynomials Zn have the property that for every 1 ≤ k ≤ n, the maximal value
maxx∈[−1,1] |Z

(k)
n (x)| is attained at one of the end-points (1 or −1). This would imply

immediately Markov’s inequality. The question is still open. We shall show here, based on
Theorem 1, that this is true for k = 1.

Theorem 2. For every natural n, every Zolotarev polynomial of degree n attains the maximal
absolute value in [−1, 1] of its first derivative at one of the end-points.

Proof. An interesting analysis of the Zolotarev polynomials have been done by Erdős and
Szegő [9]. Following the presentation there, with every point A ≥ ηn−1 we associate the
Zolotarev polynomial Zn(A; x) of degree n defined as follows.

If ηn−1 ≤ A ≤ 1, then Zn(A; x) is simply a stretch of Tn ,

Zn(A; x) := −Tn


(1 + ηn−1)x + ηn−1 − A

1 + A


.

The point A is the point of the last local extremum of Zn(A; x). In case A = ηn−1 the Zolotarev
polynomial coincides with the Tchebycheff polynomial −Tn . Therefore, for ηn−1 ≤ A ≤ 1
the theorem is evidently true for every k, since it is a well-known fact that |T (k)

n (x)| attains its
maximal value at the end-points.
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Fig. 1.

We concentrate next on the case 1 < A. Then Zn(A; x) is defined as the unique polynomial
of degree n such that

Zn(−1) = (−1)n−1, Zn(1) = 1, Z ′
n(A) = 0,

and having n − 2 local extrema in (−1, 1), all of them equal to 1 in absolute value. The fact that
these conditions define Zn(A; x) uniquely is proved in [9]. The uniqueness can be derived also
from Theorem A here. Besides, given A > 1, there exist unique constants B and C , such that
A < B < C ,

Zn(A; B) = 1, Zn(A; C) = −1,

and the polynomial y = Zn(A; x) satisfies the differential equation

n2(1 − y2) = (1 − x2)y′2 (B − x)(C − x)

(A − x)2 .

Another result from [9] (see Lemma 1 there) is that −|Z ′
n(A; −1)| and |Z ′

n(A; 1)| are increasing
functions of A in [1, ∞). Adding the fact that Zn(A; ·) tends uniformly on [−1, 1] to Tn−1 when
A → ∞, we arrive at the inequality

|Z ′
n(A; −1)| > |T ′

n−1(−1)| > |Z ′
n(A; 1)| (4)

for every A > 1.
Note that (4) follows directly by zero counting argument with respect to Zn(A; x) − Tn−1(x).

Indeed (see Fig. 1), for x < −1 the graph of Tn−1 should lie below the graph of Zn(A; x) since,
otherwise, the graph of Zn(A; x) (being a polynomial of degree n, and hence, increasing faster
than Tn−1(x) as x → −∞) will cross that of Tn−1 at some point x0 < −1. But Zn(A; ·) − Tn−1
must have another n zeros in [−1, 1], thus, to be identically zero, a contradiction. Similar
argument is applied for x > 1.

Let σ1 < · · · < σn−2 be the zeros of Z ′′
n (A; x) and σ0 := −1, σn−1 := 1. Clearly, the extremal

points of Z ′
n(A; x) in [−1, 1] are {σi }

n−1
i=0 if σn−2 < 1 and without σn−2, otherwise. By Lemma 3,

r j (Zn) < r j (Tn−1) < 1, j = 1, . . . , n − 3.

In the case σn−2 < 1, increasing A, and consequently hn−1(Zn(A; .)), we arrive at a situation
when σn−2(A) = 1 for a certain A = A1. The monotone dependence of hn−1(Zn(A; .)) on A is
implied by the uniqueness part of Theorem A; The existence of A1 follows by the continuity and
the property σn−2(A) → ∞ as A → ∞. Then, according to Lemma 1 and (4),

rn−2(Zn(A; .)) < rn−2(Zn(A1; .)) =
|Z ′

n(A1; 1)|

|Z ′
n(A1; −1)|

< 1.
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Therefore, for all local extrema σ of Z ′
n(A; x) in (−1, 1), as well as for σ = 1, we have

|Z ′
n(A; σ)| < |Z ′

n(A; −1)| and consequently, the maximum of |Z ′
n(A; x)| is attained at −1.

The case A ≤ η1 follows by symmetry. The proof is complete. �

Note that Markov’s inequality was proved first by A.A. Markov [12] for k = 1. Then his
younger brother Vladimir Markov extended it in [13] for any k. Thus, the property of Zolotarev
polynomials, proved here, supplies another proof of A.A. Markov’s result.

4.3. Polynomials with real critical points

We showed in Theorem 1 that each of the local extrema, from the first half, of the derivative
P ′ is majorized by the value of |P ′(x)| at a, provided P(x) is oscillating on [a, b] and attains
its maximum on [a, b] at a. Can we relax these conditions if we consider only the first local
extremum of P ′? We answer here this question in affirmative combining our main result with
an interesting old theorem about oscillating polynomials. It is due to Grünwald [10] (extended
later by Kuhn [11] to polynomials with real critical points) and gives an important property of
the oscillating polynomials. Historical notes and the proof can be found in [19].

Theorem C (Grünwald–Kuhn Theorem). Let f be a polynomial of degree n ≥ 2 with real
coefficients and only real critical points, the smallest, denoted by ξ , being simple. Suppose that
µ < ξ < λ, f (µ) = f (λ) = 0, and f ′(x) > 0 for x ∈ (ξ, λ). Then∫ λ

µ−(ξ−µ)

f (x)dx ≥ 0.

Equality holds if and only if f ′ is a positive constant multiple of (x − ξ)(x − λ)n−2.

Theorem 3. Let P be a real polynomial of degree n ≥ 3 and t1 < t2 ≤ · · · ≤ tn−1 be the zeros
of P ′(x), all of them lying in (a, b). Assume that

|P(t1) − P(a)| ≥ |P(t1) − P(t2)|.

Then

|P ′(τ )| < |P ′(a)|,

where τ is the point of the first local extremum of P ′(x) in (a, b).

Proof. Assume that P satisfies the conditions in the theorem. For the sake of definiteness, we
may suppose further that P ′(a) > 0.

Consider now the polynomial f (x) := P ′(x) on the interval [a, t2] (see Fig. 2). The condition
|P(t1) − P(a)| ≥ |P(t1) − P(t2)| implies∫ t1

a
f (x)dx

 ≥

∫ t2

t1
f (x)dx

 .
Then there is point t , a ≤ t < t1, such that∫ t1

t
f (x)dx

 =

∫ t2

t1
f (x)dx

 . (5)

On the other hand, by Grünwald–Kuhn theorem,∫ t1

t
f (x)dx

 >

∫ t2

t1
f (x)dx
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Fig. 2.

provided τ − t1 < t1 − t . Therefore

τ − t1 ≥ t1 − t.

Assuming, in addition, that | f (τ )| ≥ | f (t)| we will conclude that the area A1 of the right triangle
∆1 with base on [t1, τ ] and height | f (τ )| is greater than or equal to the area A2 of the right
triangle ∆2 with base on [t, t1] and height | f (t)| (see Fig. 2). But the function f (x) is convex on
[t, τ ] and thus∫ τ

t1
f (x)dx

 > A1, A2 >

∫ t1

t
f (x)dx

 .
Therefore∫ τ

t1
f (x)dx

 >

∫ t1

t
f (x)dx

 ,
a contradiction with (5). Therefore | f (τ )| < | f (t)| and consequently | f (τ )| < | f (a)| since
evidently | f (t)| ≤ | f (a)|. The proof is complete. �

As an immediate consequence we obtain a corollary for oscillating polynomials, which also
can be derived by Lemma 1.

Corollary 2. Let P be an oscillating polynomial on [a, b] of degree n ≥ 2. Assume that

h0(P) ≥ hi (P), i = 1, 2.

Then, h0(P ′) > h1(P ′), unless h0(P) = 0.

5. Characterization of the extremal polynomial

In this section we return to the original extremal problem

r (n)
i := max


ri (P) : P = P(h; x), h ∈ Hn

0


(6)

for a fixed i ∈ {1, . . . , n − 2}, where

ri (P) :=
hi (P ′)

h0(P ′)
.

More precisely, we shall study the question of characterizing the corresponding oscillating poly-
nomial P of degree n which, for a given i , supplies the maximum of the ratio ri . We first derive
from Lemma 1 the following partial characterization.
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Theorem 4. For any fixed i ∈ {1, . . . , n − 2}, each solution of the extremal problem (6) is a
polynomial P(h; x) defined by parameters h such that

h0 = 1, h1 = · · · = hk−1 = 0, hk ∈ [0, 1], hk+1 = · · · = hn−1 = 1,

with some k ∈ {1, . . . , i}.

Proof. Assume that P is an extremal polynomial in the set of oscillating polynomials of degree
n on a certain interval [a, b]. If

t j <
a + τi

2
and h j > 0,

then, according to Lemma 1, the ratio ri (P(h; ·)) is a decreasing function of h j and thus, if
we decrease slightly h j the quantity ri (P(h; ·)) will become bigger, a contradiction with the
extremality of P . Therefore, for t j < (a + τi )/2, j ≥ 1, it is necessary that h j = 0. If

t j >
a + τi

2
, j < n,

then again by Lemma 1, ri (P(h; ·)) is an increasing function of h j for h j > 0 but, because of
the continuity of ri , this holds also for h j = 0. Therefore, if h j < 1, then the ratio ri (P(h; ·))

can be increased by a small perturbation of the parameter h j , a contradiction. In particular,
since ti < τi < ti+1, the above inequality holds for i < j < n and hence h j (P(h; ·)) = 1,
j = i + 1, . . . , n − 1.

In conclusion, it is necessary that those hk for which tk < (a +τi )/2 be zero, while those with
tk > (a + τi )/2 should be equal to 1. The only exceptions are: h0 = 1, which follows from the
assumption that h ∈ Hn

0 ; hn can be arbitrary (because in this case ri does not depend on hn , as it
was noticed already in Remark 1); that special hk for which tk = (a + τi )/2, if such an hk exists
at all. �

Proposition 1 (Refinement of Theorem 4). For n ≥ 4 and i = 1, . . . , n − 2, each solution P of
the extremal problem (6) satisfies the condition h1(P) = 0.

Proof. Assume that h1(P) > 0. Multiplying if necessary by −1, we get an extremal polynomial
P such that

P(a) = 1, P(t1) = −h1, P(t2) = 1.

Then, with f = P ′, we have

−

∫ t1

a
f (x)dx =

∫ t2

t1
f (x)dx .

But by Grünwald–Kuhn theorem this is impossible unless τ1 − t1 > t1 − a. This means that t1
is closer to the end-point a than to τ1 (and consequently to any other τi ). Thus, by Lemma 1, the
ratio ri can be increased by a small decrease of h1, a contradiction. �

Remark 2. In the case n = 3, for all oscillating polynomials P with h0 = h2 = 1, we have
r1(P) = r (3)

1 = 1/3 independently of the values of h1 and h3 in [0, 1].

The parameter hk of the extremal polynomial remains still unspecified in [0, 1]. Notice that if
there exists at all such a special hk for which tk = (a + τi )/2, then (see the proof of Lemma 1)
∂ri/∂hk = 0 and in order to describe the behavior of ri in a neighborhood of hk one has to
perform some additional technical considerations what we do in the sequel. In order to investigate
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∂2ri/∂h2
k we arrive at the following quantity, which plays also an important role in other related

studies (see e.g. [8, Lemma 2]).
For every oscillating polynomial P ∈ πn with hk(P) > 0, 1 ≤ k ≤ n − 1, consider the ratio

Rk(P) :=
P ′′′(tk)

2P ′′(tk)
,

where tk is the kth zero of P ′.

Lemma 4. For every integer n ≥ 3 and k ∈ {1, . . . , n − 1}, the quantity Rk(P) has the
properties:
1) With [a, b] = [−1, 1] and P = P(h; x), we have

∂tk
∂hk

=
1

|P ′′(tk)|


Rk(P) +

1
tk + 1

+
1

tk − 1


,

provided hk > 0;
2) the functional Rk possess the following affine invariance properties:

Rk(L .P(x) + M) = Rk(P), L ≠ 0, and

sign(Rk(P(λx + µ))) = sign(Rk(P)), λ > 0;

3) let P and Q be oscillating polynomials of degree n such that

hi (Q) ≤ hi (P) for i = 1, . . . , k − 1,

hk(Q) = hk(P) > 0,

hi (Q) ≥ hi (P) for i = k + 1, . . . , n − 1.

Then Rk(P) > 0 implies the inequality Rk(Q) > 0;
4)

Rk(P) =

n−1−
i=1,i≠k

1
tk − ti

.

Proof. 1) Differentiating the equality P ′(h; ti ) = 0, i ∈ {1, . . . , n − 1}, with respect to h j and
making use of Lemma A, we obtain

(−1)n− j l ′nj (ti ) +
∂ti
∂h j

.P ′′(ti ) = 0,

and consequently, for P ′′(ti ) ≠ 0,

∂ti
∂h j

= (−1)n− j+1
l ′nj (ti )

P ′′(ti )
. (7)

For j ≠ 0, n we have

lnj (x) =
q(x)P ′(x)

(1 − t2
j )P ′′(t j )

=
(−1)n− j+1

C j
(q P ′)(x), (8)

where

q(x) =
1 − x2

x − t j
=

1 − t2
j

x − t j
− (x + t j )

and C j := (1 − t2
j )|P

′′(t j )| > 0. In particular, for i = j = k,
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∂tk
∂hk

=
(q P ′)′(tk)

Ck P ′′(tk)
=

1
Ck P ′′(tk)

lim
t→tk


q ′(t)P ′(t) + q(t)P ′′(t)


.

In order to compute the limit of the last expression we use Taylor’s expansion around the point
tk and obtain

q ′(t)P ′(t) + q(t)P ′′(t)

=


−

1 − t2
k

(t − tk)2 − 1


n−1−
m=0

P(m+1)(tk)

m!
(t − tk)

m
+

1 − t2

t − tk

n−1−
m=1

P(m+1)(tk)

(m − 1)!
(t − tk)

m−1

= −
(1 − t2

k )P ′′(tk)

t − tk
−

(1 − t2
k )P ′′′(tk)

2
+

1 − t2

t − tk
P ′′(tk)

+ (1 − t2)P ′′′(tk) + O(|t − tk |).

Thus

lim
t→tk


q ′(t)P ′(t) + q(t)P ′′(t)


=

1 − t2
k

2
P ′′′(tk) − 2tk P ′′(tk).

Now using this expression, we find

∂tk
∂hk

=
1

|P ′′(tk)|


Rk(P) −

2tk
1 − t2

k


.

2) is easily verified.
3) In view of 2) we can consider P and Q as oscillating on [−1, 1] polynomials with positive

h0, hn . Then, for j ≠ k, applying Lemma A, (7), (8) and P ′(tk) = 0 we calculate

∂ Rk

∂h j
=

1

2P ′′2(tk)


(−1)n− j l ′′′nj (tk) +

∂tk
∂h j

P(4)(tk)


P ′′(tk)

−
1

2P ′′2(tk)
P ′′′(tk)


(−1)n− j l ′′nj (tk) +

∂tk
∂h j

P ′′′(tk)


=

(−1)n− j

2P ′′2


l ′′′nj −

l ′nj

P ′′
.P(4)


P ′′

− P ′′′


l ′′nj −

l ′nj

P ′′
.P ′′′


x=tk

=
(−1)

2C j P ′′2


(q P ′)′′′ P ′′

− (q P ′)′ P(4)
− P ′′′(q P ′)′′ +

P ′′′2

P ′′
(q P ′)′


x=tk

=
(−1)

2C j P ′′2


q ′′′ P ′

+ 3q ′′ P ′′
+ 3q ′ P ′′′

+ q P(4)


P ′′

+ (q ′ P ′
+ q P ′′)


P ′′′2

P ′′
− P(4)


− P ′′′


q ′′ P ′

+ 2q ′ P ′′
+ q P ′′′


x=tk

=
(−1)

2C j P ′′2


3q ′′ P ′′2

+ q ′ P ′′′ P ′′


x=tk

= −
1

C j


3
2

q ′′(tk) + q ′(tk)Rk(P)



= −
1

C j


3

1 − t2
j

(tk − t j )3 −


1 − t2

j

(tk − t j )2 + 1


Rk(P)



=
1

|P ′′(t j )|


3

(t j − tk)3 +


1

(tk − t j )2 +
1

1 − t2
j


Rk(P)


.
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Assume now that Rk(P) > 0. Then, for k < j < n, the expression in the brackets is positive.
Thus ∂ Rk/∂h j > 0, and hence, if we increase h j , the quantity Rk remains positive. Next, let us
decrease an h j > 0 with j : 0 < j < k. Assume that Rk changes its sign, and let h∗

j be “the
first” value of the parameter for which Rk vanishes. In other words,

h∗

j := max{h j ∈ [0, h j (P)) : Rk(h j ) = 0}.

Then, ∂ Rk/∂h j ≥ 0 at h∗

j since Rk decreases from a positive value to 0 when h j decreases. On
the other hand, by the above formula for the derivative and the condition Rk(h∗

j ) = 0, we obtain
∂ Rk/∂h j < 0 for h j = h∗

j , a contradiction.
We have to consider also the exceptional case when P ′′(t j ) = 0, for h j = h∗

j = 0. This is
the only possibility for non-existence of ∂ Rk/∂h j , since the other denominators in the formula
for ∂ Rk/∂h j do not vanish because of the assumption hi (P) > 0, i = 0, k, n. In this case
a contradiction is obtained when Rk attains “firstly” a sufficiently small δ. This contradiction
shows that Rk remains positive with decreasing of h j , j = 1, . . . , k − 1. In the end, by 2), a
change of h0 or hn preserves the positivity of Rk . The property 3) is proved.

4) follows from the equality

n−1−
i=1,i≠k

1
x − ti

=
P ′′(x)

P ′(x)
−

1
x − tk

. �

Proposition 2 (Further refinement of Theorem 4). Let n ≥ 4 and i ∈ {1, . . . , n − 2}. Assume
that P∗ is a solution of the extremal problem (6). If there is a local extremum hk(P∗) ∈ (0, 1) for
some k < n, then k = 2.

Proof. Without loss of generality we may suppose that [a, b] = [−1, 1]. Let P∗ be an extremal
polynomial in (6) with some intermediate hk , that is, with hk ∈ (0, 1). In view of Proposition 1,

we have k ≠ 1. Assume that k ≥ 3. Then, ∂ri
∂hk

(P∗) = 0 and consequently t∗k =
τ∗

i +a
2 for this

polynomial. We are going to prove next that under these conditions

∂2ri

∂h2
k

(P∗) > 0

which implies that ri (P), as a function of hk , has a local minimum at the specified point, and this
would be a contradiction with the extremality of P∗.

In the proof of Lemma 1 (the last equality) we obtained the closed form expression

∂ri

∂hk
= C(τi − a)


tk −

τi + a

2


= C1


tk −

τi + a

2


,

where C1 = C1(h, i, k) > 0. Let us differentiate it and put h = h(P∗). We obtain

∂2ri

∂h2
k

(P∗) =
∂C1

∂hk
· 0 + C1


∂tk
∂hk

−
1
2

∂τi

∂hk


(P∗) .

The first summand in the brackets was calculated in Lemma 4 and the second one can be found
by differentiation of the identity P ′′(τi ) = 0. Namely, with q(x) and Ck as in (8), we obtain

∂τi

∂hk
= (−1)n−k+1 ℓ′′

nk

P ′′′
(τi ) =

(q P ′)′′

Ck P ′′′
(τi )
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=
1

Ck


2

1 − t2
k

(τi − tk)3 ·
P ′

P ′′′
(τi ) + 0 +

1 − τ 2
i

τi − tk



=
1

|P ′′

k (tk)|


2

(τi − tk)3 ·
P ′

P ′′′
(τi ) +

1 − τ 2
i

(1 − t2
k )(τi − tk)


.

We substitute these expressions in the above formula and taking into account that t∗k =
−1+τ∗

i
2 ,

we obtain

∂2ri

∂h2
k

(P∗) =
C1

|P ′′(tk)|


Rk(P) −

2tk
1 − t2

k

−
1

(τi − tk)3 ·
P ′

P ′′′
(τi ) −

1
2

1 − τ 2
i

(1 − t2
k )(τi − tk)


P=P∗

=
C1

|P ′′(tk)|


Rk(P) −

1

(τi − tk)3 ·
P ′

P ′′′
(τi )


P=P∗

.

Since P ′
∗ is an oscillating polynomial with local extrema at τ1, . . . , τn−2 it is easily seen that

P ′′′
∗ (x) also alternates in sign at these points and thus P ′

∗(τi )/P ′′′
∗ (τi ) < 0. Noticing that τ ∗

i > t∗k
we conclude that the desired inequality ∂2ri

∂h2
k

> 0 would follow from Rk(P∗) ≥ 0. In order to

prove the later it suffices to find an oscillating polynomial PN (x) of degree N ≥ n for which
Rk(PN ) > 0 and

hk(PN ) = hk(P∗); hi (PN ) ≤ hi (P∗) for i = k + 1, . . . , n − 1. (9)

Indeed, if N = n and we add to (9) the conditions

hi (PN ) ≥ 0 = hi (P∗) for i = 1, . . . , k − 1,

then the conditions in Lemma 4 would be fulfilled and we could conclude that Rk(P∗) > 0.
If N > n, then, starting from PN we decrease {hi }

k−1
i=1 to hi (P∗) = 0 and increase {hi }

n−1
i=k

to hi (P∗) = 1 in order to obtain P̃N so that the inequality Rk(P̃N ) > 0 remains valid. Next, set
hn = h to be a parameter that tends to ∞ and with appropriate linear change of the argument,
let Ph

N be the polynomials with parameters h(P̃N ), but with h in place of hn(P̃N ), such that
x1(Ph

N ) = x1(P∗) and xn(Ph
N ) = xn(P∗). Using Lemma 2, we conclude that Ph

N tends uniformly
to P∗ as h → ∞ on [x1(P∗), xn(P∗)] and, therefore on every finite interval. In view of Lemma 4
and the construction of Ph

N from P̃N we have Rk(Ph
N ) > 0, for sufficiently large h. Then, after

the limit pass h → ∞ we get Rk(P∗) ≥ 0, provided we have found a polynomial PN with the
required properties.

Assume further that k ≥ 4. In order to construct such a polynomial we consider the function

fα(x) = x4(x2
− αx + 3α − 8)e−x

where the numerical parameter α is varying in a neighborhood of 10 so that the polynomial in
the brackets has always 2 real zeros. Then fα(x) is a uniform limit on every finite interval of the
oscillating polynomials

QN (x) := x4(x2
− αx + 3α − 8)


1 −

x

N

N−6
, N ≥ 7.

We claim that for sufficiently large N , R4(QN ) > 0 and h4(QN ) > hi (QN ), i = 5, . . . , N − 1.
Actually the last inequality for i ≥ 7 is clear from hi (QN ) = 0. The derivative

f ′
α(x) = −x3(x − 2)(x2

− (α + 4)x + 6α − 16)e−x
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has 6 real zeros and we denote them in increasing order by

t1( fα) = t2( fα) = t3( fα) = 0, t4( fα) = 2, t5,6( fα).

In particular, for α = 10, we have

t4 = 2, t5 = 7 −
√

5, t6 = 7 +
√

5,

and direct computations show that

h4( fα) = 12.99 . . . , h5( fα) = 12.93 . . . , h6( fα) = 10.59 . . . .

Then, from the uniform convergence of QN (x) to fα(x) and by Lemma 4, statement 4), we
obtain

lim
N→∞

R4(QN )

= lim
N→∞


3

t4(QN ) − 0
+

1
t4(QN ) − t5(QN )

+
1

t4(QN ) − t6(QN )
+

N − 7
t4(QN ) − N


=

3
2

+
1

2 − t5( fα)
+

1
2 − t6( fα)

− 1 =
1
2

+
4 − (α + 4)

4 − 2(α + 4) + 6α − 16
=

α − 10
4(α − 5)

.

Now we choose α sufficiently close to 10 but greater than 10 in order to preserve the relations
h4( fα) > h5,6( fα) (like it is in the case α = 10). Next we choose a sufficiently large N so that
(by virtue of the above limit and the uniform convergence)

R4(QN+4−k) > 0 and h4(QN+4−k) > hi (QN+4−k) for i = 5, 6.

Then we construct, on the basis of Lemma 2, a polynomial Q̃N of degree N which is
sufficiently close to QN+4−k on [0, N ] adding k−4 sufficiently large local extrema in (−∞, −1)

(i.e., situated before the point corresponding to h0(QN+4−k)). We make the approximation good
enough to preserve the property

Rk(Q̃N ) > 0 and hk(Q̃N ) > hi (Q̃N ), i = k + 1, . . . N − 1.

Notice here that adding local extrema before h0 changes the numbering of the extremum points.
For example tk(Q̃N ) corresponds to t4(QN+4−k). Finally the wanted polynomial PN is defined
by

PN (x) :=
hk(P∗)

hk(Q̃N )
Q̃N (x).

Clearly, it satisfies the (9) since for k < i < n we have

hi (PN ) = hk(P∗)
hi (Q̃N )

hk(Q̃N )
< hk(P∗) < 1 = hi (P∗).

This finishes the proof of the proposition for k ≥ 4.
The remaining case k = 3 can be verified by similar reasoning using the exponential

polynomial

f (x) = x3 Pm(x)e−x ,

defined by

h3( f ) = · · · = hm+3( f ) = 1
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with some m ≥ 23. Constructing numerically f (x) we computed that R3( f ) > 0. This, as in the
case k = 4, leads to the conclusion that the extremal problem (6) has not a solution P∗ for which
h3(P∗) ∈ (0, 1). We omit the details. �

Remark 3. Considering the polynomial f (x) = x2 Pl(x)e−x with l ≥ 7 such that

h2( f ) =
1
3
, h3( f ) = · · · = hl+2( f ) = 1,

we compute that R2( f ) > 0. This shows in the same fashion as in the proof of the previous
proposition that h2(P∗) cannot lie in (0, 1

3 ]. Further computer experiments show that h2(P∗)

does not lie also in ( 1
3 , 1). Moreover, we think that in the last case the equality t∗2 =

τ∗
i +a

2
cannot take place at all. These experiments make us suggest that all extremal polynomials P∗

of problem (6) for n ≥ 4 are of the form P∗ = ±Tn,k(λx + µ). Let us recall that Tn,k are the
oscillating polynomials defined by the parameters h(Tn,k) = (1, 0, . . . , 0, 1, . . . , 1) where the
zero sequence has a length k.

Remark 4. We should note however that there are oscillating polynomials for which ∂ri
∂hk

= 0

and ∂2ri
∂h2

k
< 0, but they are not in the class described in Theorem 4.

As we mentioned in the introduction, Conjecture 1 is not true for every n without the
assumption of symmetry. But elementary considerations show that it is true for some small n.
What is the highest degree D so that it holds for all polynomials of degree less than or equal to
D? This is the question we are going to clarify below.

We have to check the inequalities

r (n)
i ≤ 1, i = 1, . . . , n − 2,

for small consecutive n. For n = 3 the inequality follows from Theorem 1. For n ≥ 4 the
next proposition, which is of independent interest, shows that it suffices to check only the case
i = n − 2.

Proposition 3. For n ≥ 4 we have

r (n)
n−2 > r (n)

i , i = 1, . . . , n − 3.

Proof. Let P∗ be an extremal polynomial in (6) for i ∈ {1, . . . , n − 3}. By Theorem 4,
hi+1(P∗) = · · · = hn−1(P∗) = 1. Without loss of generality we may assume also that
hn(P∗) = 1. We shall show that hn−2(P ′

∗) > hi (P ′
∗). Indeed, comparing P∗ with the Tchebycheff

polynomial Tn we observe that h j (P∗) = h j (Tn) for j = i + 1, . . . , n, whereas

h j (P∗) ≤ h j (Tn) for j = 0, . . . , i,

with strict inequality for j = 1, according to Proposition 1. Moreover, t1 ≤ · · · ≤ ti ≤ τi ≤ τn−2
for every oscillating polynomial. Then, by Lemma 1,

ri,n−2(P∗) < ri,n−2(Tn) ≤ 1,

and consequently

ri,n−2(P∗) =
hi (P ′

∗)

hn−2(P ′
∗)

< 1.
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Therefore

r (n)
i = ri (P∗) =

hi (P ′
∗)

h0(P ′
∗)

<
hn−2(P ′

∗)

h0(P ′
∗)

= rn−2(P∗) ≤ r (n)
n−2

and the proof is complete. �

For a fixed n, the verification of the inequality r (n)
n−2 < 1 is reduced to numerical construction

of the special polynomials Tn,k for k = 1, . . . , n − 2, and comparing the extremal values of
their derivatives. More precisely, according to the characterization of the extremal polynomial
P∗ (with [a, b] = [−1, 1], hn = 1) given above, we distinguish the following three cases:

(i) P∗ = Tn,k , 3 ≤ k ≤ n − 2, n ≥ 5. We verify numerically the inequality

h0(T ′

n,k) ≥ hn−2(T ′

n,k)

for these k;
(ii) P∗ is defined by h1 = 0, h2 ∈ [0, 1], h3 = · · · = hn = 1. Then, from Theorem B we have

rn−2(P∗) =
hn−2(P ′

∗)

h0(P ′
∗)

<
hn−2(T ′

n,1)

h0(T ′

n,2)

and it suffices to verify that hn−2(T ′

n,1) < h0(T ′

n,2);
(iii) P∗ is defined by h1 = h2 = 0, h3 ∈ [0, 1], h4 = · · · = hn = 1, n ≥ 5. Like in (ii),

rn−2(P∗) <
hn−2(T ′

n,2)

h0(T ′

n,3)
,

and it suffices to verify that hn−2(T ′

n,2) < h0(T ′

n,3).

After we did all these verifications by computer modifying slightly the algorithm used in [16],
we came to the conclusion that Conjecture 1, without the requirement for symmetry, is true for
all n ≤ 11, while for n = 12 it is no more true since r10(T12,k) > 1 for k = 6, 7, 8.
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[1] S.N. Bernstein, Sur la limitation des dérivées des polynomes, C. R. Acad. Sci. Paris 190 (1930) 338–341.
[2] B. Bojanov, Markov-type inequalities for polynomials and splines, in: Charles Chui, L.L. Schumaker, J. Stöckler

(Eds.), Approximation Theory X: Abstract and Classical Analysis, Vanderbilt University Press, Nashville, TN,
2002, pp. 31–90.

[3] B. Bojanov, A generalization of Chebyshev polynomials, J. Approx. Theory 26 (1979) 293–300.
[4] B. Bojanov, Q.I. Rahman, On certain extremal problems for polynomials, J. Math. Anal. Appl. 189 (1995) 781–800.
[5] C. Davis, Problem 4714, Amer. Math. Monthly 63 (1956) 729; Solution. Amer. Math. Monthly 64.
[6] N.G. de Bruijn, Inequalities concerning polynomials in the complex domain, Nedere. Akad. Wetensch. Indag. Math.

9 (1947) 591–598; (1957) 679–680.
[7] R.J. Duffin, A.S. Schaeffer, A refinement of an inequality of brothers Markoff, Trans. Amer. Math. Soc. 50 (1941)

517–528.
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P. Erdős, G. Szegő, On a problem of I. Schur, Ann. Math. 74 (1961) 628 (Correction).



B. Bojanov, N. Naidenov / Journal of Approximation Theory 162 (2010) 1766–1787 1787
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