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The maximum likelihood estimation of the unknown parameter of a diffusion 
process based on an approximate likelihood given by the discrete observation is 
treated when the diffusion coefficients are unknown and the condition for “rapidly 
increasing experimental design” is broken. The asymptotic normality of the joint 
distribution of the maximum likelihood estimator of the unknown parameter in the 
drift term and an estimator of the diffusion coefficient matrix is proved. We prove 
the weak convergence of the likelihood ratio random field, which serves to show the 
asymptotic behavior of the likelihood ratio tests with restrictions. 0 1992 Academic 

Press, Inc. 

1. INTRODUC~ON 

In this article we treat the following stochastic differential equation 

dx, = ff(x,, e) dt + b(x,) CT dw, 

x,=x0, 
(1.1) 

where 0c 8, 8 is a bounded convex domain in R”, and IJ E Rk@R’ are 
unknown parameters, a is an Rd-valued function defined on Rd x G, b is an 
Rd@ Rk-valued function defined on Rd and W is an r-dimensional standard 
Wiener process. It is assumed that the observation from realization consists 
of X,;, Ii= ih, h > 0, i=O, 1, . . . . N. We estimate 0 from the discrete data 
when S = cry’ is unknown. If S is known and the continuous observation is 
given, the likelihood function of 8 is 

is 

Nh 
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where B= bo[o’b’bo]-* cfb’ and [a’b’bo]-* denotes the square of the 
Moore-Penrose generalized inverse of db’bc, see Liptser and Shiryayev 
[ 111. Since B is invariant for 0 satisfying S = f~c’, we may write 
B = B(x, S). The maximal likelihood estimator (MLE) is defined based on 
this formula. In our case, the data are discrete and we have to approximate 
the likelihood function to get the MLE. One of the approximations is to 
use the function 

Qw(S, 0) = 

exP 
i 

ii, a:-1(e) Bi- l(s) 63-2 ,f ai- l(d) Bid l(S) ai_ l(O)}, (1.2) 
I=1 

where ai(e) = u(X,~, f3), B,(S) = B(Xtl, S), di = X,, - X,l- I. The approxi- 
mate MLE is given maximizing (1.2) in 8. For this purpose, first we 
estimate S with some statistic $-, and then find the MLE, 4, say, substi- 
tuting 3, for S in Q,,, N(S, 0). It is shown that & is a consistent estimator 
of 8. Next, using &, we construct a better estimator s for S. Finally, we 
show that the MLE 0 for Qh, N with ,$ is an efficient estimator for 8. 

The weak convergence of the likelihood ratio random field is proved as 
in Ibragimov and Has’minskii [4-63, Inagaki and Ogata [7], and 
Kutoyants [S-lo]. This enables us, e.g., to derive the asymptotic properties 
of likelihood ratio tests with restriction. We only assume a usual condition 
for consistency while Kutoyants assumed a condition which involves the 
Laplace transforms of some functionals. 

The estimation for diffusion processes by discrete observation has been 
studied by several authors, see Prakasa Rao [13] and its references. 
Prakasa Rao [ 12, 131 treats this problem and shows that the least square 
estimator is asymptotically normal and efficient under the assumption 
hN”* + 0, the condition for “rapidly increasing experimental design” [ 131. 
Here we show this holds for the MLE even when the condition is broken, 
i.e., in the case h3N = o( 1). Florens-Zmirou [3] discussed the estimation 
problem with discrete observation for a one-dimensional diffusion 

There it is shown that under h3N + 0 an approximate maximum likelihood 
estimator 0 of 8 has an asymptotic normal distribution and, for a quadratic 
variation type estimator c?* of G*, N1’2h’12(62 - a*) converges in distribution 
to a normal distribution. This model is particular as the unknown Q does 
not affect maximizing the likelihood function for 8. Including this model, 
we can prove the convergence of the joint distribution of an approximate 
maximum likelihood estimator and an estimator of S under h3N + 0. 

Another approach for this problem is to use the MLE corresponding to 
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the rigorous transition probability of the diffusion process from t = ti- 1 to 
I = fi. Dacunha-Castelle and Florens-Zmirou [2] mention this approach 
for a one-dimensional diffusion process, whose transition probability func- 
tion is written explicitly with an expectation of a functional of a Brownian 
bridge associated with the process. However, it does not seem easy in 
practice to calculate and maximize the likelihood function derived from this 
transition probability function, while it is theoretically important. 

The plan of this article is as follows. In Section 2 we prepare notations 
and assumptions used later on. Section 3 presents our main results. Proof 
of these results are given in Section 4. 

2. NOTATIONS AND ASSUMPTIONS 

In this section we state notations and assumptions used later on, Let 
8,,, cro, So denote the true values of 8, 0, S, respectively. Suppose that 
B. E 8. Define as follows: 

l for matrix A, IA(’ is the sum of squares of the elements of A, 
. B(x) = (b’b)-’ b’(x), Bi- 1 = B(X,,+,), 
l C is a generic positive constant independent of h, N and other 

variables in some cases, 
. ai=a/axi, a= (a,,..., a,), si=a/aei, 6= (6,,...,6,), 
' dBi(Sz, S,)=Bi(S,)-B,(S,), 
l dai(e29 el)=ai(e2)-ai(el)~ 

l di(e)=x,,-x,j-*-ha(X,,-,, 0 

l L = f Cfj=, vlJaiaj + Cf= 1 aidi, vii= [bSbflij, for 0 = e. and S= So, 
l the diffusion process X is ergodic with invariant measure v for 

e=eo, 
. Y(S, e) = jBd U~X, e) B(x, s) {a(~, e,) - $ U(X, e)] v(~x). 

The following conditions are assumed in this article. 
(1) There exists a constant L such that 

b(x, e,)l + lb(x)1 i Ul + I4 1. 

(2) There exists a constant L such that 

14x, 0,) - dy, eo)l + lb(x) - b(y)1 <Lb--A. 

(3) inf, det(b’b)(x) > 0. 
(4) For each p > 0, sup, ElX,l” < cc 
(5) The function S + B(x, S) is Holder continuous in a 
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neighborhood U of S, in St: the totality of k x k symmetric nonnegative 
definite matrices endowed with the relative topology, that is, there exist 
a>0 and C>O such that 

for any S, , S2 in U and for all x E Rd. 
(6) a(x, 0) is twice differentiable in 0~ B and l&(x, 0)l + 

lPa(x, @I G C( 1 + Ixl’). 
(7) The function 6 --) Y(S,, 6) has its unique maximum at 8 = &, 

in 6. 
(8) The functions a, aa, b, and 3 are smooth in x and their 

derivatives are of polynomial growth order in x uniformly in 8 or S. 
(9) @ = jRd &z’(x, 0,) B(x, S,) &z(x, 0,) v(dx) is positive definite. 

Remarks. To verify the condition (5), the following is sufficient. Equip 
the space of matrices with the Euclidean metric. Let 71: Rk @ R’ -+ Rk @ Rk 
be a projection X((T) = 06’. Then (5) holds if there exists a Holder 
continuous local section 4 from a neighborhood U of S, to Rk@ R’ : 
n 0 g)(S) = S, SE U, and the mapping CT --t q(x, a) = ba[o’b’ba] -* db’ is 
Holder continuous on 4(U), i.e., there exist u > 0 and C > 0 such that 

I?@, fl2) - ?(X, fJ,)l G C(1 + W)b* - 01Y. 

For example, when k= 2, r= 1, D = (u, u)‘, b = Z, we may take 
4(S) = (S:?, Si:‘)’ for S = (S,). Then, 

q(x,cJ)=(u*+u*)-2 z; ;:: ( > 
and it is smooth when, u* + u* # 0. When k < r, b = Z and S, E Rk @ Rk is 
positive definite, let 4 be the mapping S + e oRk@R’ such that for i<j 
the (i,i)-elements of B are zero. Then 4 is a rational function of the 
elements of S and smooth. Since So is regular, q is also smooth. In the 
sequel, we assume a = 1 in (5) for simplicity as the argument is the same 
for arbitrary a. 

3. MAIN RESULTS 

Let the estimator S, of S be defined by 

&=((hN)-’ 5 Bi-,Bi&B;-,. 
i= 1 
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To start with, we consider the consistency of 3,. The following proposition 
is more or less well known. 

PROPOSITION 1. Zf Conditions (l-4) hold, El& - So] q C(h”’ + N-‘12). 

Next, let 6, be the MLE of 0 with respect to Qh, J&,, 0). Then we have 

PROPOSITION 2. When h + 0, N + co, and hN + 03, & +p 8,. Moreover, 
if h3N + 0, (hN)1’4(& - 0,) dp 0. 

Now we can improve the convergence rate of S,, with a corrected 
residual sum of squares. Put 

$ = (hN)-’ $ B,- , A#&,) A;(&) B:- , , 
i=l 

and 

s,=(hN)-’ g Bi-,di(e,)d:(8,)B:_,, 
i=l 

where 

s=+’ c [U,pl+ Vidl+ cell, 
i=l 

where Ls, B is the generator corresponding to S and 8. Moreover, let 

$=S,-(hN)-’ 5 ;Bi-,F(X,+,)B;-, 
i=l 

where F= F( . , So, t&,), $(u) = Bi- 1&(X,, 0,) b(X,) co for ti- r -C u < ti. 
With the consistent estimators fs, and SO, we can obtain a better estimator 
of S. The following lemma shows that the residual sum of squares generally 
needs to be corrected if h3N = o( 1). 
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PROPOSITION 3. 3 = So + w + w’ + p, where 

w=(hN)-’ ; [‘j 
i=l It-1 

wW(/),dW,]> 

N”*EJp( < C(h* + hl’* + h3’*N1’* + h2N1’*). 

Moreover, if h + 0, hN + 00, and h3N = o(l), then 

N”*(& S,) jd H, 

where H= (HP,) E Rk@ Rk is a multivariate normal random matrix with 
mean zero and covariances cov(H,,, , H,,) = SpsSgr + S,, Sqs, S,, = (S,,). Ij 
h + 0, hN + co, and hN”* = o(l), N”‘(s, - S,) jd H. 

Thus the correction by Vi- 1 and Vi- 1 is not necessary if hN”* = o( 1). 
Due to this proposition we can show the asymptotic properties of the MLE 
in the case h3N = o( 1). Let 

and 

Z/z, N(S, ~1 = Qh, AAS, 4, + W) -I’* u)lQh. AS, &J 

B c,h,N=(~~Rm;lul~c,8,+(hN)-1’2u~8} 

for c>O. We will show the weak convergence of the random field 
Z,, N( 3, . ). For this purpose, we have to prepare three propositions. 

PROPOSITION 4. When h + 0, hN + 00, h3N = o(l), for each u E R”, 

log z,, ,($ u) = ddh, ,,I - 4 d@u + p,,, N(U), 

where 

(‘h, h’, N”*(s- S,)) dd (A, H), 

A - N,tO, @) independent of H, 

and 

Ph. NtU) +’ O* 

F%DPOSITION 5. Define 

*h, Ad69 c, = sup ilog zh, j”($ 4 -log z,,, ~(3, u1)1, 

68314112-5 
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where the supremum is taken over u,, u2 E B, ,,, N and Iu2 - u, ( 6 6. Then for 
c>O andq>O, 

lim lim sup P( Wh, N( 6, c) > q) = 0. 
6-O h,N 

F’RO~OSITION 6. For E > 0, 

lim lim sup P( sup Z,, ,($ u) > E) = 0. 
c-cc h,N IUI > c 

Consider the Banach space Co(Rm) of the totality of real-valued con- 
tinuous functions on R” vanishing at the inlinity with sup-norm. Let 
E = (Rk @ Rk) x Co(Rm) endowed with the product topology and let B be 
the Bore1 a-field of E. Moreover, let u,,, N = {u; I!?~ + (hN)-“’ u E a}. For 1 
UE Uh,N, z,,, N(S, u) have been defined and extend it to an element of 
CO(Rm) whose maximal points are contained in U,, N. Then, from Proposi- 
tions 4, 5, and 6, we have the following result for the sequence of (E, B)- 
valued random variables {N’/2(s- So), zh, ,(& . )}. See, e.g., Ibragimov 
and Has’minskii [6] and Kutoyants [lo]. 

THEOREM. Suppose the conditions stated in Section 2 are satisfied. Then, 
the sequence (N”2($-So), Z,,, ,($ . )} converges to {H, Z(So, . )} in 
distribution, where 

Z(So, . ) = exp (u’d - + u’@u), 

i.e., for any continuous functional f on (E, B), 

ECfW”*(~- so), zh. N@, ’ ))I -‘f%f(ff, z(so, ’ ))I 

when h + 0, hN --t co, h3N = o( 1). In particular, for the maximum likelihood 
estimator 8 corresponding to Q,,, N($ . ), 

(N”‘(%S,), (hN)“*(&8,)} -+d {H, @-‘A}. 

EXAMPLE. Consider the following stochastic differential equation of 
one-dimension, 

where 1c, o, and c are positive constants, o* - u*/4 > 0, and I# is a white 
Guassian noise with unit variance. Let 

x$), K=(i* ;I), b=(Y). 
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Then, it is equivalent to the first-order vector stochastic differential 
equation 

dX,= -KX,dt+badW,. 

This two-dimensional diffusion is a degenerate one. The ergodic property 
is satisfied, which is seen more generally by Arnold and Kliemann [ 11. 
Its invariant measure is a normal distribution on R* with mean zero 
and covariance matrix diag(02/2x02, a*/2~). The MLE (R, d2, S2) is 
asymptotically normal with covariance matrix diag(2rc, 2rcc0*, 2a4). 

One of the applications of the weak convergence of the likelihood ratio 
process is to derive the asymptotic properties of likelihood ratio tests 
with restriction on parameter spaces. For this purpose, we may confine 
ourselves to calculating for the limits by means of the weak convergence. 
See Section 4 of Inagaki and Ogata [7]. The results there also hold for our 
Q,,, ,,(s, 0) automatically. In particular we obtain the same results about 
AIC with respect to the approximate likelihood Qh, ,,,($6). In conclusion, 
it should be noted that we may choose other consistent estimators for 3, 
and I!&,. 

4. PROOFS 

We often use the Novikov’s moment inequality or Burkholder- 
Davis-Gundy inequality for martingales without notice. 

Proof of Proposition 1. Put Yi(t)=Bi-,(X,-X,~_,), tip,<ttti. Then 

Yi(t) =J’ h(u, 0,) du + 1’ g,(u) a,dWu, 
It- I t,- L 

where fi(t, 0) = Bi- 14X,, e), g,(t) = Bi- 1 b(X,), tie 1 < t < ti. By It& 
formula, 

L9,=(hN)-’ E Yi(ti) Yj(ti)=Al+A;+A*t 
i=l 

where 

Ai+A,, 

1' ‘2~ (hW* 1 J Yi(t)Cgi(t) COdWtJ 9 
i=l It-1 

A,=(hN)-’ f J” gi(t) S,gi(t) dt. 
i=l Ii-1 
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It is clear that I&4,1 < Ch’/*. Since 

EIA212 = (hN)-2 5 J” E( Yi(t)j2 Jgi(t) cq,12 dt 
i=* (r-1 

and E( Yi(t)14 < Ch’, E(A,( < CN-‘I’. Moreover, the inequality 

E/g,(t)-ZJ’,<Ch 

yields that ,?(A3 - SOI < Chl’*, so that EI$,- &( < C(h’j2 + N-1’2). 1 

Let Y,,,(S, f3) = (hN)-’ log Qh,N(S, 0). To show the consistency of & 
(Proposition 2), we will need the following two lemmas. 

LEMMA 1. For any c>O, ifh +O, N-,co, v-+0, andhN-+oo, then 

SUP I Y,,,(sI + UM 0) - Yh,N@O, WI --f 0, 
BE8,IMICC 

where M is k x k symmetric matrix such that S, + vM E S: . 

Proof. Put S,=S,,+vM and qh&M,8)= Yh,N(S1,C))- Yh,N(SD, 0). 
Then, %,,dM, 0) = A ,(M, 0) + A,W, 0) + MM, 01, where 

A,(M, e)= (hN)-’ ; j-” a:- ,W A% ASI, so) b(X) QW,, 
j=, It-1 

A,(M, 0) = (hN)-’ ‘f 1” a:-,(O) dB,-l(S1, S,) a(X,, 0,) dt, 
i=* 1,-I 

A,(M, 0) = - i(hN)-’ g ha;-,(e) ABi- l(S1, S,) a:- l(fl). 
i=l 

Let p > (m + k(k + 1)/2)/2. By Burkholder-Davis-Gundy inequality, we 
have 

EIA,(M, 8)12p< C(hN)-P~u(2P~M~2P. 

Since E(A,(M, 8)12pG C(V(~~(M(~~ and E(A,(M, 8)j2p G CIIJ(~~IMI*~, we 
obtain 

Elrl ,,,,(M,~)12P~Cmax{(hN)-P, ~~~~~~~~~~~~ 

and similarly 

Elrl h,N,v(~2, e2bkd~1, Wp 

<Cmax((hN)-P, 1) max(lvlzP, l}I(M,, 0,)-(M,, B1)Izp. 
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From these inequalities we have SU~~~~,,~, 9cJqh,N,v(M, 0)l 4 0. See 
Appendix of Ibragimov and Has’minskii [6 J or Lemma 3.1 of Yoshida 
c141. I 

The last argument will be used repeatedly in the sequel. 

LEMMAS. When h-+0, N-too, andhN+oO, 

SUP I Yh,,(S,, Q - Y(f&, 61 -bp 0. 
BE@ 

Proof Let p > m/2. As in the proof of Lemma 1, one has 

4 Yh,N(&, e)12p G c 

for 8, 19,) 8, E S. Therefore, the family of distributions of Y,,,( So, . ) on the 
Banach space C(G) with sup-norm is tight. Since Y(S,, . ) is a point of 
C(B), it s&ices to show that for each 0E 8, Yh,N(SO, 0) converges to 
Y(S,, 0) in probability. Ergodic property ensures that Y,,(S,, 0) +p 
Y(s,, 0 I 

Proof of Proposition 2. From Lemmas 1 and 2, for any c > 0, 

SUP 1 y,,,(s, + hl44, e) - Y(s,, e)l +p 0. 
BEQ 

IMIGC 

Therefore, for any c > 0 and E > 0, 

lim SUP P{SUP ( Yh,N(& e) - qs,, e)l> E} 
h, A’ ese 

Glim sup P(\$,- S,l > h112c) 
h,N 

+ lim sup P{ sup ) Y,,,(S, + h”*M, e) - Y(S,, e)l > E} 
h,N ese 

IMl<c 

< lim sup P( Is,, - S,,J > hli2c}. 
h,N 

Since c is arbitrary, the left-hand side equals zero, from Proposition 1. It is 
easy to show the consistency of &,, using Condition (7). 

Next, we shall show the second assertion. There exists a sequence E,,~ 
such that E,,, N + 0 and P[ I& - &,I > &h,N] + 0 by consistency of 6,. By 
Proposition 1, it suffices to show that for any 6 > 0, P[FI,,~] + 1, where 

A 1 h,N= sup [yh,~(~~+M~e)-yh,N(~~+~~e~)i<o}. 
(hN)-‘“6 C IO- &I < E/,,,v 

1MI C (hA’-‘14 
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We have that 

(hAy2[ Y/JAY, + (hN)-“4M, e) - Y/+&S, + (hN)-“4M, e,)] 

= B,(M, e) + B,(M, e) + ~~04, e) + B,(M, eh 

where 

B,(M, e)= (my2 f \” h_,(e, e,) 
i=l It-1 

x Bi- l(SO + (hN)-“4M) b(X,) GO dWj> 

B,(M, e) = (m-l/2 5 j” da:- ,(e, e,) 
i=l C-1 

~,(kf, e)= (m-l/2 fj j” h-,(8, e,) 
j=, It-1 

xBi&So+(hN)-‘/‘M)j- F(X,)dsdt, 
I,- 1 

x Bi- I(so + (m-1%4) da,- ,(e, e,) 

for some function F. Using Burkholder’s inequalities for continuous and 
discrete martingales, we have moment inequalities for B, and B,, and 

for c> 0. We will not go into detail here. We see that 
sup,,~,,,,,,lB,(M e)l 4’ 0 for c > 0 from h3N -+ 0. Finally, using positive 
definiteness of Fisher information, for B,(M, 0) we have P[A,,N] + 1 and 
this completes the proof. 1 
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Proof of Proposition 3. Let 

@l,i=/’ Bi-Ib(Xj) ‘0 dWjY 
I,- 1 

c&i= j” 
1,-l 

[I’ 
2,-l 

d(u) dWu] dt, 

p1,i= f,‘l,[ fife, Bj-, La(X,, &,, 0,) du dt, 
8 , 1 

where La is the vector of the elements of a operated by L. Then, 

N 

3l = lhN)-’ 1  (@l,i+ @*,i+Pl,iM@l,i+ ‘Z,i+Pl,i)’ 

i= 1 

= (AN)-' 2 @l,i@;,i+ (hN)-' g @pl,j@;,j 

i=l i=l 

+ (hN)-’ f @2,i@i,i+ P2, 
i=l 

where 

P*=thW-’ f (Pl,i(Qb,,i+~~,i+Pl,i)’ 

i=l 

+ (@l,i+ @2,i) Pi,,} + (hN)-’ 5  ‘*,i@;.iP 

i=l 

and E(p,l < Ch312 + Ch2. We have 

where 

cD3=@;=(hN)-’ 5 I’ Vi,fdW,(j’ Y$udW,)j’, 
i-1 Is-1 Ii-1 

cDs=(hN)-’ 5 j” Yi,,Y;,,dt, 
i=l fa-1 

(1) 

and 
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It is easy to show that El@, - WI’,< C/S-’ and El@, - w’12 < Ch~-l. On 
the other hand, 

where F1 is a d x dr blocked matrix whose (p, q)-block is ~[bS,b’],,baO, 
. denotes the inner product of dW and each block; and F is an Rd@ Rd- 
valued function. We see that 

and 

Therefore, 

El(hN)-’ ~ Qil,i~;,i-So-W-W’ 
i=l 

Next, let 

< C(h1/2N- U2 + h312). (2) 

We have 

El(hN)-’ -f @l,i@;,i- !P,( < Ch3” 
i= 1 
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with !PI = Q8 + Qig, where 

Then, E(Q8j2 < Ch2N-‘. On the other hand, o9 = @,,+ @I1 + Q12, where 

Q12= (hN)-’ 5 j” j-’ oo&, du dt. 
i=l 4-I fi-1 

Then, EI@10J2 < Ch2N-‘, E1@,,)2 < Ch’N-‘, and hence 

El(hN)-’ F Qi,,iO;,i-(hN)-’ 5 If’ 1’ aod:dudtI 
i=l i=l It-1 It-1 

< C(hN- u2 + /z~‘~). (3) 

From (l-3), 

E&-So-w-w’ 

- (hN)-’ 5 T Bi- ,f’(X,-,) B:- 1 
i=l 

< C(hN- U2 + h’/ZN- l/2 + /,3/z + h2) (4) 

This proves the first assertion of the proposition. Next, we shall show that 
s, can be replaced by 3,. For E > 0 and u E R”, put 

T(u)=N”‘(hN)-’ 5 hBi-I(a(X,i-,, ~O+EU)-U(X,-,, eo)} d’(e,)B:-,, 
i=l 
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where 8, denotes 0,, + EU or t$,. Let p > m/2. Then 

E15(u)12” < c&2pIu12p{ (hN”2)2p+ hP} 

Similarly, 

Therefore, when h3N= u(l), h + 0 and E = (IzN)-‘/~ + 0, SUP,~, G 1 It(u)1 
dp 0. Moreover, if hN -+ co, from the consistency of &,, by Proposition 2, 
we see that P{ I& - 8) > E} -+ 0. This implies that N”2(~I - 3,) _tp 0. Using 
Propositions 1 and 2, it is easy to show that the last three terms in the 
left-hand side of (4) can be replaced by Ui- r, V:._ I and so on. The 
asymptotic distribution of w + w’ is trivial by the fact about the Wishart 
distribution. 1 

The following two lemmas serve to show Proposition 4, i.e., an analog of 
local asymptotic normality of experiments. 

LEMMA 3. Let W be a bounded set of Rk @I Rk. For c > 0, when h + 0, 
N-co, ~-0, andE=o((hN)-“2), 

sup Ilog z/t,,(& + FM, u) -1% Z,,,(&i, u)l --tp 0. 
ue&hN 
MEW 

In particular, if E = N- 1/2, this is satisfied. 

ProoJ: Put S = So + EM, 8 = B0 + (hN)-‘12 u and 

aw u)= 1% -G,,(S, u) -1% Zh,,(&, u). 

Then, 

t(M, 24) = 5 da:- ,(e, e,) dBj-,(s, s,) bi 
i=l 

-i ,2 h&-AR 0,) ABi- l(S, S,) aip1(8) 
r=l 

-i ,: ha:-&,) ADi- ,(Sy S,) dai- l(e, 0,). 
r=l 

The second and the third terms in the right-hand side converges to zero in 
probability uniformly in u, and M for boundedness. Similarly, the bounded 
variational part of the first term of the right-hand side converges to zero in 
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probability uniformly in u and M. Its martingale part is m(M, u) = 
CY=, j::_, F2(t, M u) dw,, where 

F,(t, M, u) = Au:- ,(0, 0,) A& I(S, S,) b(X,) (r. 

for t~[t~-~,t~). Forpsuch that 2p>max{m+k2,2}, 

Elm(M, up< c&** + 0, 

Elm(M,, u,)-m(M,, u,)12P~c&2P~JM*-M112~+ Iz4*-u1(*p}. 

Therefore, m(M, U) converges to zero in probability uniformly in u E Bc,h+N 
andMEW, 1 

Define as follows: 

8 = 8, + (hN) - %, 

Ah.,,(S) = (hN)-“2 ; 6a:- ,(0,) &,(S) 1” b(X,) co dW,, 
i=l ft- 1 

r,,,(S, u) = 4 {u’@u - @(S, 24,) + r,(S, u), 

@(S, u)= i h Au:-,(~, 00) Bi- l(S) Aui- I(07 do), 
i=l 

r3(S u) = r&T u) + r5(X u) + r,(S, u), 

r,(S, u) = 5 [Au:-~(~, 0,) - (hN)-1/2 u’ib- ,(0,)] 
i=l 

X Bi- l(S) 5” b(X,) Co dW,y 
I,- I 

r5(S, u) = (hN)-‘I2 g u’buj- l(t3o) ITi- l(S) 
i=l 

” X 
s 

b(&, eo) - w&_,, eo)] dt, 
1. I 

r&S, U) = fj [Au:- #, e,) - (hhy/* u’~u:- ,(e,)] Bi- l(s) 
i=l 

LEMMA 4. When h-0, hN-, 00, h3N=o(l),for each u6Rm, 

log Z,,,(~o, u) = u’Ah,N - 4 u’@u + ph.&), 
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where 

(A h.N, N”‘@- &I)) -+d (A, ff), 

independent of H 

and 

ProoJ Setting 19 = t?,, + (hN) ~ ‘I2 u, we have 

1% Zh.N(‘%, u) = u’Ah,N- ; Qi,, + p39 

where A h,N= A/d&), @13 = @(sco U), and pi = ri(So, u), i= 3, 4, 5, 6. By 
the property of the Moore-Penrose generalized inverse matrix, 

B(x, S,) b(x) a&)b’(x) B(x, S,) = B(x, S,). 

Hence, Ah, N +d A. From the representations of w in Proposition 3 and 
A h,N, (N112(S- S,), A,,,) proves to be asymptotically equivalent to a dis- 
crete-time martingale array, converging in distribution to a multivariate 
normal random vector (H, A). The independence of H and A is shown as 
follows: Consider a probability space with filtration (Sz, H, P; H,, t > 0). 
Suppose that F, and F, are (H,)-adaptive processes, that Ft is H,I_,- 
measurable for t E [tie , , ti), and that EJF, - FJ’< Ch. Then, for a 
d-dimensional Wiener process W, 

= O(h”*), 

d W: [F, - F,] dt 

l<p,q,s<d. 

We note that for p > 0, supr E[@X,, S,Jp < co, since we can choose some 
S1 near SO such that [o;b’bo,]- =o;S;l(b’b)-LS;‘o, (S, =~,a;) is 
bounded in X. Therefore, the asymptotic covariance of N1j2(S - S,) and 
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A is zero. 
Wecan write 

Moreover, it is obvious that E(p,j2 < C(hN)-’ and p6 4’0. 

p* = (hN)-“2 5 u’ sa:-l(OO) Bi- l(S()) 
i=l 

rc l 
X 

5 I 
[da. b(X,) o. dW, + F,(X,) du] dt. 

I,-1 11-I 

The L2-norm of the term involving a stochastic integral with respect to the 
Wiener process is O(h). The term of F, is O,J/Z~‘~N~‘*) and tends to zero. 
Therefore, p 5, hence, p3 tends to zero. From the ergodic property, 
Q13 +’ U’@U. Put ph,N(u) = i(u’@u- @,,) + p3, then ph.N(u) +’ 0. 1 

Proof of Proposition 4. From Proposition 3, for positive number q, 
there exists A > 0 such that 

P(N1’21s- SoI > A) < q/2 

for small h and large N. Let S = S, + N- ‘/*M. Then by Lemma 3, for E > 0, 

p(llog zh,N(s~ u) - log zh,NtsO, u)l > &) 

< P(N”*$- SoI > A) 

when h * 0, hN + co, h3N = o( 1). Then we can use Lemma 4. 1 

LEMMA 5. Let w h,N(6 c)=sup~lo~zh,N(s, u2)-10g&V(& %)I for 

6 > 0 and c > 0, where the supremum is taken over ul , u2, and S such as 
UI 3 ‘42 E Bc,h,m Ju2-uu,l 66, N”*)S-SD/ <A. Then,for any v>O, 

lim lim sup P(w,, N(B, c) > v) = 0. 
6+o h,N 

Proof”. Let 

where the supremum is taken over u, , u2 E B,,, N, ) u2 - u, I< 6. Moreover, 
let 

gh,Ntk c) = sup llog zh,N(s, u) - log zhJ,(&,, u)l, 
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where S= So + N-‘l’M and the supremum is taken over u E B,,hsNr 
(Ml <A. From Lemma 3, g,,,(6, c) jp 0. For E > 0, 

lim sup P(w,,,(~, c) > E) 
h,N 

= lim sup P 
h, N 

. 

Therefore, it suffices to show that 

lim lim sup P(wA,,(& c) > E) = 0. 
6-O h,N 

This can be proved as in Lemma 4.1 in Yoshida [ 141 and the proof is 
completed. 1 

Proof of Proposition 5. For E > 0 and v > 0, from Proposition 3, there 
exists A > 0 such that 

lim sup P(wh,N(b, c) > q) 
h.N 

<limsupP(w~,,(6,c)>~)+limsup P(N’/21$-SoI>A) 
h,N h. N 

< lim sup P(Wh,N(8, c) > q) + &. 
h. N 

By Lemma 5, 

lim lim sup P(@h,N(8, c) > q) < &. 
s-o h,N 

E is arbitrary and this completes the proof. 1 

Proposition 3 and the following lemma suffice to show Proposition 6. 

LEMMA 6. If @ is positive definite, for E > 0 and A > 0, 

lim lim sup, N P( sup Z,J(S,u)>&)=o. 
E-7’x I4 2 E 

fvqs-Sol CA 

Proof. Since CD is positive definite, there exists a positive number q such 
that, 
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As in Lemma 4, we have that when 8, and S,, are true values, 

log Z,,(S, U) = L4’ AL,+(S) - $4’@u + Y&S, U)~ 

Let p > (m + k(k + 1)/2)/2 and let 

Fi(S, 24) = 
1 

7 r,(& u), 
1+ bl 

i=3,4,5,6. 

Then we have 

ElF&3, u)12P< C(hhy, 

~l~,(~2,~,)-~,(S~,u,)1*P~C(hN)-P{~S*-S1~+)u2-u,)}*~. 

Therefore, for any 6 > 0, 

sup F4(& u)l -+p 0, 
UI. v 

where U,= (u; Iu] <~5(hN)“~} and V= {S;N’/*lS-,!$,I <A}. See the proof 
of Lemma 3.2 of Yoshida [14]. It is obvious that supU,, y)F6(S, u)l APO. 
Next, we write 

r,(S, 24) = (hAy’2 5 24’ 6f.l- 1(&J Bi- l(S) 
i=l 

fi f 
X 

s i 
[da .b(X,) o. dW,, + F3(Xu) du] dt, 

(i-1 ft-I 

and call the terms involving dW and F3, r,,(S, U) and r,*(S, u), respectively. 
- Moreover, define rsl and Ts2 such as FA. It is easy to show 

sup (FJS, U)l *PO. 
CJl. v 

As in the estimation for F,, we obtain 

EIJ51(S2, u)l*” 6 Ch*P, 

and hence, 

and 

sup F,,(S, u)l -bp 0 
Ul, v 

sup (F&s, uy -+p 0. 
(il. v 
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On the other hand, for any E > 0, if 6 > 0 is small enough, 

lu’@u-@(S,U)l<& 

So, for any E > 0, 

for small 6 > 0, where 

‘,‘$ P(Ah,N} = 1 

A 

Let E -=c q. On the event Ah,N, if JuJ < 6(hN)1/2, N1/2)S - S,/ <A, 

log zh, NtSv u, G bt /dhJ’(s)~ - d”t2 + &* 

Defining Uz = {u; r < (~1 < 6(&V)“*), where r is a positive number, we have 

sup zh,N(s, u) > exp 
cJ2. v 

-{A;,N) +P sup(bl 
(12 

sup I~~,,v(s)l -rjlul*)+~> -$ 
V 

V 

+P rsup/dh,N(s)j-qr2+&)/ -$ 
V 

sup/d,,J(s)I>;-f +0(l). 
V 

Let ts > 0 and y > 0. For large r, exp (- t,v2/2) < y and 

sup IALN(S)j >y--: 
V 

Then, 

lim sup P { sup z&S, u) 2 y 1 d 5. 
h.N u2, v 
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If we define U 3= {u; (uJ >6(hN)‘/2) and H,= {y; lyl >a}, for g>O, 

limsupP{sup Zh,,(S,u)>y} 
h,N u3. v 

=limsupP{supCY,,,(~,~,+y)-Y,,,(S,~,)l 
h,N HI, V 

2(m)-‘logy} 

<limsupP s”p~yh,N(~~~o+~)~Yh,N(~~80) 
h,N i HI> V 

- Yh,N(SO> eO+Y)+ Yh,N(&, &)I 2; 
i 

s”p[yh,N(sO~ eo+y)- Yh,N&7 6,) 
HI 

- w,, e,+Y)+ Y(s,, edi 2f 

+limsup P{sup Y(S,,e,+y)- Y&,8,) 
h,N HI 

3 (hN)-’ logy-g}. 

If g is small, the third term in the right-hand side is zero, the first term 
tends to zero from Lemma 1 and the second term tends to zero from 
Lemma 2. Therefore, for y > 0 and 5 > 0, if r is large, 
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