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Theoretical Physics Division, Rudjer Bošković Institute, POB 180, HR-10002 Zagreb, Croatia
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Pure states in quantum field theory can be represented by many-fingered block-time wave functions,
which treat time on an equal footing with space and make the notions of “time evolution” and “state
at a given time” fundamentally irrelevant. Instead of information destruction resulting from an attempt
to use a “state at a given time” to describe semi-classical black-hole evaporation, the full many-fingered
block-time wave function of the universe conserves information by describing the correlations of outgoing
Hawking particles in the future with ingoing Hawking particles in the past.
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1. Introduction

The semi-classical description of black-hole evaporation [1] pre-
dicts that the final state after the complete evaporation cannot be
represented by a pure state [2]. A transition from a pure to a non-
pure (i.e., mixed) state contradicts unitarity of quantum mechanics
and leads also to other pathologies [3]. Many approaches to re-
store a pure-state description at late times have been attempted,
but none of them seems to be completely satisfying (for reviews
see, e.g., [4]).

To overcome this problem, we start with the observation that
all these previous approaches (with a notable exception in [5])
share one common assumption: that the quantum state (either
pure or mixed) should be a function of time, or more generally, a
functional of the spacelike hypersurface. Indeed, such an assump-
tion is deeply rooted in our intuitive understanding of the concept
of time, according to which universe evolves with time. Yet, such
a view of time does not seem to be compatible with the classi-
cal theory of relativity (both special and general). The picture of
a “time-evolving” universe seems particularly unappealing when
the universe violates the condition of global hyperbolicity, which,
indeed, is the case with completely evaporating black holes (see
Fig. 1). Instead, one of the main messages of the theory of rel-
ativity is that time should be treated on an equal footing with
space. In particular, it seems natural to adopt the block time (also
known under the name block universe; see, e.g., [6] and references
therein) picture of the universe, according to which the universe
does not evolve with time, but is a “static” 4-dimensional object
in which “past”, “presence”, and “future” equally exist. For exam-
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ple, such a view automatically resolves causal paradoxes associated
with closed causal curves [7].

The basic intuitive idea how the block-time picture of the uni-
verse resolves the black-hole information paradox can be seen
from Fig. 1 (see also [5]). From the standard point of view, only the
outgoing particle exists in the far future, while the ingoing particle
is destroyed. Consequently, information encoded in the correlations
between outgoing and ingoing particles is destroyed. On the other
hand, from the block-time point of view the past also exists, so the
information is not destroyed because the outgoing particle in the
far future is correlated with the ingoing particle in the past. The
aim of this Letter is to put this intuitive idea into a more precise
framework. In the next section we briefly review the main ideas
of the general formalism of treating time in quantum theory on
an equal footing with space, while the implications on Hawking
evaporation are discussed in Section 3.

2. Treating time in QM on an equal footing with space

The first step towards treating time on an equal footing with
space in quantum mechanics (QM) is to extend the probabilistic
interpretation of a 1-particle wave function ψ(x, t) ≡ ψ(x) [8,9].
Instead of the usual infinitesimal probability of finding particle at
the space position x

dP (3) = ∣∣ψ(x, t)
∣∣2

d3x, (1)

one has the infinitesimal probability of finding particle at the
spacetime position x

dP = ∣∣ψ(x)
∣∣2

d4x. (2)

The usual probability (1) is then recovered from (2) as a special
case, corresponding to the conditional probability that the particle
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Fig. 1. Penrose diagram of a completely evaporating black hole. The lines with ar-
rows represent a Hawking pair of particles.

will be found at x if it is already known that it is detected at
time t . More precisely, since ψ in (1) and (2) do not have the same
normalizations, the variant of (1) that emerges from (2) should be
written as

dP (3) = |ψ(x, t)|2 d3x

Nt
, (3)

where

Nt =
∫ ∣∣ψ(x, t)

∣∣2
d3x (4)

is the normalization factor. As discussed in [9], such a generalized
probabilistic interpretation allows to define the time operator in
QM, solves the problem of probabilistic interpretation of solutions
to the Klein–Gordon equation, and provides a better explanation of
the standard rule that transition amplitudes should be interpreted
in terms of transition probabilities per unit time.

The next step is to generalize this to the case of many-particle
wave functions. To treat time on an equal footing with space, one
needs to introduce a many-fingered time wave function [10]. A
state describing n particles is described by the many-fingered time
wave function ψ(x1, t1, . . . ,xn, tn) ≡ ψ(x1, . . . , xn). Consequently,
(2) generalizes to [9]

dP = ∣∣ψ(x1, . . . , xn)
∣∣2

d4x1 · · ·d4xn. (5)

In particular, if the first particle is detected at t1, second particle
at t2, etc., then Eq. (3) generalizes to

dP (3n) = |ψ(x1, t1, . . . ,xn, tn)|2 d3x1 · · ·d3xn

Nt1,...,tn

, (6)

where

Nt1,...,tn =
∫ ∣∣ψ(x1, t1, . . . ,xn, tn)

∣∣2
d3x1 · · ·d3xn. (7)

Indeed, (6) coincides with the usual probabilistic interpretation
of the many-fingered time wave function [10]. The more familiar
single-time wave function is a special case corresponding to the
time-coincidence limit

ψ(x1, . . . ,xn; t) = ψ(x1, t1, . . . ,xn, tn)
∣∣
t1=···=tn≡t . (8)

In this case (6) reduces to the familiar single-time probabilistic in-
terpretation

dP (3n) = |ψ(x1, . . . ,xn; t)|2 d3x1 · · ·d3xn

Nt
, (9)

where Nt is given by (7) at t1 = · · · = tn ≡ t .
A more difficult step is to generalize this to quantum field the-
ory (QFT), where the number of particles may be uncertain and
may change. The appropriate formalism has recently been devel-
oped in [11]. Instead of repeating the whole analysis, let us briefly
review the final results. In general, a QFT state is described by a
wave function Ψ (x1, x2, . . .) that depends on an infinite number of
spacetime positions xA , A = 1,2, . . . ,∞. Introducing the notation

�x = {x1, x2, . . .}, (10)

a QFT state |Ψ 〉 can be represented by the wave function

Ψ (�x) = (�x|Ψ 〉 (11)

satisfying the normalization condition∫
D�x ∣∣Ψ (�x)∣∣2 = 1, (12)

where

D�x =
∞∏

A=1

d4xA . (13)

Each state can be expanded as

Ψ (�x) =
∞∑

n=0

Ψ̃n(�x), (14)

where Ψ̃n(�x) really depends only on n coordinates xA and repre-
sents an n-particle wave function. The tilde on Ψ̃n denotes that
this wave function is not normalized. For free fields, i.e., when the
number of particles does not change, the expansion (14) can be
written in the form

Ψ (�x) =
∞∑

n=0

cnΨn(�x), (15)

where Ψn(�x) are normalized n-particle wave functions∫
D�x ∣∣Ψn(�x)

∣∣2 = 1, (16)

and cn are coefficients satisfying the normalization condition

∞∑
n=0

|cn|2 = 1. (17)

In particular, the vacuum (i.e., the state without particles) is repre-
sented by a constant wave function

Ψ0(�x) = 1√
V

, (18)

where V is the volume of the configuration space

V =
∫

D�x. (19)

The probabilistic interpretation of (14) is given by a natural gener-
alization of (5)

D P = ∣∣Ψ (�x)∣∣2 D�x. (20)

By using the techniques developed in [11], the wave functions
Ψ̃n(�x) can in principle be calculated for any interacting QFT. These
wave functions contain a complete information about probabilities
of particle creation and destruction. Let us briefly discuss how this
probabilistic interpretation works. Let xn,1, . . . , xn,n denote n co-
ordinates xA on which Ψ̃n(�x) ≡ Ψ̃n(xn,1, . . . , xn,n) really depends.
(With respect to other coordinates xA , Ψ̃n(�x) is a constant.) If
Ψ̃n(xn,1, . . . , xn,n) vanishes for x0

n,a = t , then the probability that

n
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the system will be found in the n-particle state at time t van-
ishes. If Ψ̃n(xn,1, . . . , xn,n) does not vanish for x0

n,an
= t′ �= t , then

there is a finite probability that the system will be found in the
n-particle state at time t′ . This corresponds to a probabilistic de-
scription of particle creation or destruction when t′ > t or t > t′ ,
respectively. As shown in [11], for coincidence times the proba-
bilities obtained this way coincide with those obtained by more
conventional single-time methods in QFT. Thus, the many-fingered
time formalism is not really a modification, but only an extension
of the conventional QFT formalism.

3. Implications on unitarity of Hawking evaporation

Now let us discuss how such a general formulation of QFT en-
riches our understanding of Hawking evaporation. Unfortunately,
the explicit calculation of Ψ (�x) describing the Hawking evapora-
tion is prohibitively difficult. Nevertheless, some qualitative fea-
tures of Ψ (�x) can easily be inferred from the standard results
[1]. It turns out that these qualitative features are sufficient to
understand how the description of Hawking evaporation by Ψ (�x)
resolves the information paradox.

For simplicity, we assume that the set of all particles can be
divided into ingoing particles that never escape from the horizon
and outgoing particles that go to the future infinity (Fig. 1 shows a
pair of such particles). Therefore, all these particles are described
by a wave function of the form

Ψ (�x) = Ψ (�xin, �xout). (21)

Since the Hawking particles are created in pairs, this wave function
can be expanded as

Ψ (�xin, �xout) =
∞∑

n=0

Ψ̃2n(�xin, �xout), (22)

where Ψ̃2n(�xin, �xout) really depends on n “ingoing coordinates” xin A
and n “outgoing coordinates” xout A . (In fact, the wave functions
Ψ̃2n depend also on �xback describing the background particles of
initial black-hole matter, but for the sake of notational simplicity
the dependence on �xback is suppressed.) The fact that the state is
initially in the vacuum means that all Ψ̃2n(�xin, �xout) with n � 1 van-
ish for small values of x0

in A and x0
out A .

The wave function (22) is a pure state. It describes the whole
system of ingoing and outgoing particles for all possible values of
times of each particle. The correlations between all these particles
can also be described by the density matrix

ρ
(�xin, �xout

∣∣�x′
in, �x′

out

) = Ψ (�xin, �xout)Ψ
∗(�x′

in, �x′
out

)
, (23)

which is nothing but a density-matrix representation of the pure
state (22). However, an outside observer cannot detect the inside
particles. Consequently, his knowledge is described by a mixed
state obtained by tracing out over unobservable ingoing particles

ρout
(�xout

∣∣�x′
out

) =
∫

D�xin ρ
(�xin, �xout

∣∣�xin, �x′
out

)
. (24)

(Of course, since now we work in a curved background, the
measure (13) is now modified by the replacement d4xA →√|g(xA)|d4xA .) Nevertheless, the whole system is still described
by the pure state (23).

Now we are ready to discuss how our approach resolves the
information paradox. For convenience, we choose the global time
coordinate such that equal-time hypersurfaces correspond to (un-
drawn) horizontal lines in Fig. 1. Let us assume that the complete
evaporation ends at time T , after which neither a black hole nor
a remnant is present. From the standard semi-classical analysis
[1], we know that ingoing particles have zero probability of being
found at times larger than T . They are destroyed at the singular-
ity that does not exist for times after the complete evaporation,
as illustrated by Fig. 1. Nevertheless, the pure state (22) is well
defined for all values of x0

out A > T . But what happens if we put
x0

in A > T ? For such values of x0
in A the wave function (22) is still

well defined, but the value of Ψ turns out to be equal to zero, be-
cause the probability of finding the ingoing particles at x0

in A > T is
zero. A wave function with the value zero does not encode much
information, which corresponds to an apparent loss of information
at times larger than T . Still, a wave function with zero value is
still a wave function, so the state is still pure. In fact, since only
outgoing particles are present for times larger than T , there is no
much point in considering the case x0

in A > T . To obtain a nontriv-
ial information from (22) at times larger than T , one should only
put x0

out A > T , while times of ingoing particles should be restricted
to x0

in A < T . In that case, the pure state (22) describes how the
outgoing particles at times after the complete evaporation are cor-
related with the ingoing particles before the complete evaporation.
Such nonlocal correlations cannot be measured by local observers
that cannot travel faster than light, so information seems lost from
the point of view of local observers. Nevertheless, these correla-
tions are still encoded in the total wave function of the universe,
so the principles of QM are not violated – the wave function of the
universe is still pure.

Thus, we see how treating time on an equal footing with space
provides a new, purely kinematic solution to the black-hole infor-
mation paradox, without need to understand the details of dynam-
ics. Essentially, the block-time picture of the universe makes any
time-dependent problem in 3 spacial dimensions analogous to a
time-independent problem in 4 spacial dimensions. Consequently,
there can be no fundamental problem with non-unitary evolution
of the quantum state simply because the concept of evolution itself
does not have any fundamental meaning. Instead, all we have are
correlations among particles at different spacetime positions. Thus,
even if the original Hawking calculation [1] is essentially correct
(in the sense that the black hole eventually evaporates completely
and that the outgoing radiation cannot be described by a pure
state), the information is still there, encoded in the correlations
between outgoing particles in the future and ingoing particles in
the past. From this point of view, the original Hawking calcula-
tion may be essentially correct, but it is not complete because it
only describes correlations among particles at the same spacelike
hypersurface.1

To conclude, we believe that our results represent a new step
towards reconciliation of quantum mechanics (QM) with general
relativity (GR). GR suggests that time should be treated on an equal
footing with space, while QM demands unitarity. We have shown
that the former (i.e., treating time on an equal footing with space)
automatically restores the latter (the unitarity).

Acknowledgement

This work was supported by the Ministry of Science of the Re-
public of Croatia under Contract No. 098-0982930-2864.

References

[1] S. Hawking, Commun. Math. Phys. 43 (1975) 199.
[2] S. Hawking, Phys. Rev. D 14 (1976) 2460.

1 The fact that the outgoing and the ingoing particle in Fig. 1 can be connected
by a spacelike hypersurface does not help. The outgoing particle can interact with
other outside particles, which may transfer information to outside particles that
cannot be connected with the ingoing particle by a spacelike hypersurface.
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