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SUMMARY

The human ability to understand speech is under-
pinned by a hierarchical auditory system whose suc-
cessive stages process increasingly complex attri-
butes of the acoustic input. It has been suggested
that to produce categorical speech perception, this
system must elicit consistent neural responses to
speech tokens (e.g., phonemes) despite variations
in their acoustics. Here, using electroencephalog-
raphy (EEG), we provide evidence for this categorical
phoneme-level speech processing by showing that
the relationship between continuous speech and
neural activity is best described when that speech
is represented using both low-level spectrotemporal
information and categorical labeling of phonetic fea-
tures. Furthermore, the mapping between phonemes
and EEG becomes more discriminative for phonetic
features at longer latencies, in line with what one
might expect from a hierarchical system. Impor-
tantly, these effects are not seen for time-reversed
speech. These findings may form the basis for future
research on natural language processing in specific
cohorts of interest and for broader insights into
how brains transform acoustic input into meaning.

INTRODUCTION

Humans effortlessly parse the spectrotemporally complex

acoustic patterns of continuous speech into coherent, categori-

cal, semantic representations. This is true despite enormous var-

iations in the low-level spectrotemporal dynamics of speech

across listening conditions, including different speaker accents,

coarticulation effects, and prosodic fluctuations. Although the

precise neurophysiological mechanisms and neuroanatomic

infrastructure underpinning this ability are not well understood

[1], it has been proposed that robust speech perception is the

product of a hierarchical auditory processing systemwhose suc-

cessive stages process increasingly complex attributes of the

audio input [2–4]. In particular, it has been suggested that, while

earlier areas of the auditory system undoubtedly respond to

acoustic differences in speech tokens, later areas must exhibit

consistent neural responses to those tokens in order to produce

a categorical perception of words and phonemes [2–4].

fMRI [5, 6], nonhuman primate electrophysiology [7], and elec-

trocorticography (ECoG) [4, 8, 9] have all made important contri-
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butions to our understanding of hierarchical speech encoding in

the brain. However, all of these methods have their shortcom-

ings. Electroencephalography (EEG) and magnetoencephalog-

raphy (MEG), as macroscopic non-invasive technologies, may

offer important opportunities for further progress. Although these

approaches have been used for years to study the processing of

discrete syllables [10], recent research has also shown that both

EEG and MEG index cortical entrainment to the low-frequency

amplitude envelope of natural speech [11–13]. This has proved

useful for investigating the mechanisms underlying speech

processing [14], how such processing is affected by attention

[13, 15, 16], and how audio and visual speech interact [17, 18].

However, it remains unclear to what extent these EEG/MEG

indices reflect higher-level speech-specific processing versus

lower-level processing of the spectrotemporal/acoustic stimulus

dynamics [19].

There has been somewhat equivocal evidence that speech

intelligibility affects these envelope entrainment measures, sug-

gesting that they may indeed index speech-specific processing

[20–22]. These findings have led to the suggestion that different

neural populations, having different functional roles in receptive

speech processing, may simultaneously contribute to envelope

entrainment measures [19]. Support for this notion comes

from ECoG research focusing on low-frequency entrainment

to speech that has shown differential effects of ‘‘cocktail

party’’-type attention in low- and higher-level auditory cortical

areas [9]. However, there has been no definitive evidence to

date that low-frequency EEG or MEG entrainment reflects pro-

cessing at the level of categorical speech perception.

Here we investigated the degree to which low-level (envelope,

spectrogram) and higher-level (phonemic, phonetic feature)

characteristics of natural speech are reflected in EEG activity.

In doing so, we provide evidence that EEG not only reflects pas-

sive neural following of the acoustic energy of speech but also

indexes the categorical perception of phonemes in the human

brain. Furthermore, we sought to determine whether processing

of different phonetic features can be discriminated in EEG re-

sponses and found that this discriminative power varies as a

function of response latency, in line with what one might expect

of a hierarchical system.

RESULTS

128-channel EEG was recorded from ten subjects as they

listened to segments of an audiobook and ten subjects who

listened to the same audiobook played in reverse (five subjects

undertook both experiments). To identify neural indices of lower-

and higher-level speech processing, we investigated mappings
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Figure 1. Assessing the Encoding of Speech Features in EEG

128-channel EEG data were recordedwhile subjects listened to continuous, natural speech consisting of amale speaker reading from a novel or its time-reversed

complement. Linear regression was used to fit multivariate temporal response functions (mTRFs) between the low-frequency (1–15 Hz) EEG data and five

different representations of the speech stimulus. Each mTRF model was then tested for its ability to predict EEG using leave-one-out cross-validation.
between different representations of the speech and the low-

frequency (1–15 Hz) EEG (Figure 1). Specifically, we did this by

using linear regression to model the relationship between each

speech representation and the data from each EEG channel

(Figure 1). This approach has been used previously to describe

the relationship between the speech envelope and EEG [12],

MEG [23], and ECoG [9] data. The resulting models are

commonly referred to as temporal response functions (TRFs).

Here, as we will be representing speech using multiple variables,

we refer to our models as multivariate temporal response func-

tions (mTRFs).

Neural Evidence for Phonetic Processing
We employed a cross-validation approach to quantify how well

each speech representation related to the neural data. Specif-

ically, we fit our mTRF models using a subset of the speech seg-

ments for each subject and used these models to predict the

data corresponding to the remaining segments. The quality of

the prediction was assessed using correlation (Pearson’s r).

The overarching rationale was to use variations in these EEGpre-

diction scores across speech representations as a dependent

measure for assessing how well the EEG reflects the processing

of lower- and higher-level speech features. We focused our anal-

ysis on the EEG data from six bilateral pairs of frontotemporal

electrodes in order to investigate auditory cortical activity bilater-

ally (see Supplemental Experimental Procedures and Figure S1).
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We tested five speech representations (Figure 1; see Supple-

mental Experimental Procedures): (1) broadband amplitude en-

velope, Env; (2) spectrogram, Sgram; (3) time-aligned sequence

of phonemes, Ph; (4) time-aligned sequence of phonetic

features, Fea; and (5) a combination of time-aligned phonetic

features and spectrogram, FS. Neural entrainment to speech en-

velopes is well established and, as such, performance of the Env

model acted as a baseline with which to compare the perfor-

mance of the other models. Robust mappings between speech

spectrograms and high-gamma-frequency ECoG have been

previously shown [24]. However it is unknown whether this richer

representation can be accurately indexed using low-frequency

EEG, something we address with the Sgram model. Similarly,

the relationship between high-frequency ECoG and a categorical

phoneme representation of speech has been examined before

[8]. However, no such relationship has been investigated for

EEG (or MEG), hence the Ph model. Transforming phonemes

into a lower-dimensional phonetic-feature representation [25]

frames our results in terms of the articulatory and acoustic prop-

erties of each phoneme and has advantages for the efficiency of

this type of modeling. This motivated our Fea model.

An important issue when considering the spectrogram repre-

sentation and the phonemic/phonetic-feature representations

is that they are mutually highly redundant. This is because, on

average, each phoneme will have a particular characteristic

spectrotemporal profile. So if each phoneme were always
r Ltd All rights reserved



Figure 2. EEG Responses to Forward

Speech, but Not Time-Reversed Speech,

Are Best Predicted When Speech Is Repre-

sented as a Combination of Spectrotempo-

ral Features and Phonetic-Feature Labels

(A) Grand-average EEG prediction correlations

(Pearson’s r) for each speech model (mean ±

SEM). While there is no statistical difference in

prediction performance between the spectrogram

(Sgram), phonetic-features (Fea), and phonemic

(Ph) models (p > 0.05), all of these models are

better predictors of the EEG than that based on

the envelope (Env; :p < 0.01). Importantly, the

model based on the combination of phonetic

features and spectrogram (FS) outperforms all

other models (*p < 0.01).

(B) Correlation values between recorded EEG and

that predicted by each mTRF model for individual

subjects. The subjects are sorted according to the

prediction correlations of the FS model. Although

the results show variability across subjects, the FS

model outperforms all the other models for every

subject. Themodel based on the speech envelope

(Env) performs worse than every other model for

every subject.

(C) Grand-average EEG prediction correlations for

the time-reversed speech condition (mean ±

SEM). Prediction correlations using the model

based on the envelope (Env) are lower than those

for all other models (:p < 0.05). As with normal speech, there is no statistical difference in prediction performance between the spectrogram (Sgram), phonetic-

features (Fea), and phonemic (Ph) models (p > 0.05). Importantly in this case, there is also no difference between the performance of those models and that

based on the combination of phonetic features and spectrogram (FS; p > 0.05).

(D) Correlation values between recorded EEG and that predicted by each mTRF model for individual subjects for time-reversed speech. The subjects are sorted

according to the prediction correlations of the FSmodel. Themodel based on the speech envelope (Env) performsworse than every othermodel for every subject.
spoken in the same way, then the two representations would be

equivalent. However, in natural speech this is not the case, with

significant variation in the spectrotemporal profile of a given

phoneme across instances. One might thus expect that our Ph

model, which is ignorant of these variations, would underperform

relative to the Sgram model. However, it is also true that human

listeners categorically perceive phonemes despite spectrotem-

poral variations, a fact that is presumably underpinned by

consistent neural responses to those phonemes [2, 3]. Such

consistent responses would be captured by our Ph model,

potentially leading to it outperforming the Sgram model, which

is ignorant of the categorical nature of these utterances. Indeed,

given their mutual redundancy and complementary strengths,

both models may perform similarly. To attempt to reveal their

complementary strengths, we also derived a model based on

combining the time-aligned phonetic features and the corre-

sponding speech spectrogram (the FSmodel). Improved perfor-

mance of this model over the others would suggest that the EEG

is indexing the processing of both low-level acoustic fluctuations

and higher-level phonetic features.

In line with this hypothesis, the average performance of the FS

model across our 12 chosen electrodes was better than all other

models (ANOVA: F(1.5,13.6) = 29.1, p = 2.9 3 10�5; post hoc

paired t test comparisons of FS with all other models: p =

0.001, p = 0.002, p = 8.2 3 10�5, p = 0.001 for Env, Sgram, Ph,

and Fea respectively; Figure 2A). Indeed, FS was best for all

ten subjects (Figure 2B). The fact that the Ph and Fea models

are simple transformations of one another was reflected in the
Current Biology 25, 2457–
lack of any performance difference between them (p > 0.05).

There was also no difference between the Ph or Fea and Sgram

models (p = 0.24 and p = 0.34, respectively), which, as

mentioned previously, was always a possibility. Importantly,

given the reliance on envelope in many studies of speech neuro-

physiology [9, 14, 26], the Envmodel underperformed relative to

all other models (p < 0.01). Furthermore, we found no lateraliza-

tion effects in the performance of any model (p > 0.05, ANOVA).

Indeed, model performances were qualitatively similar at other

scalp locations (Figure S2).

While we contend that the improved performance of the FS

model is evidence for the encoding of both low-level acoustic

variations and higher-level phonetic features, it remained

possible that this result was driven by the FS model having

more free parameters than the other models. We sought to test

whether or not thiswas thecaseby investigating theperformance

of several other high-dimensional models. Combining Ph and

Sgram did not outperform the FS model (p > 0.05), even though

it has 16 additional dimensions. Also, combining the Ph and

Feamodels did not outperform either the Ph or Feamodels alone

(p > 0.05). These results suggest that the greater number of

parameters in the FS model does not explain our finding.

However, to further establish the validity of our interpretation,

we performed the same analyses on the data from the subjects

who listened to time-reversed speech. Because the same

speech segments were used, the same Env, Sgram, Ph, Fea,

and FS models could be used in a time-reversed fashion. The

key manipulation here is that time-reversed speech has the
2465, October 5, 2015 ª2015 Elsevier Ltd All rights reserved 2459



Figure 3. EEG Response Prediction for Different EEG Frequency Bands

Grand-average EEG prediction correlations (Pearson’s r) for each speechmodel (mean ± SEM) for delta (A), theta (B), alpha (C), beta (D), and low-gamma (E) EEG

frequencies. * indicates prediction differences at the level of p < 0.05 and ** at the level of p < 0.01, both using planned paired t tests.
same long-term amplitude spectrum as natural speech but is not

perceived as intelligible speech. Overall, the prediction values

were lower than for forward speech, likely as a result of differ-

ences in top-down attention and also consistent with previous

research showing weaker neural entrainment to unintelligible

speech [20]. However, crucially, whereas the Env model again

performed more poorly than the others (p < 0.05), the FS model

in this case showed no improvement over the Sgram, Ph, or Fea

models (p > 0.05; Figures 2C and 2D). This supports our conten-

tion that the FSmodel in the case of forward speech indexes the

neural processing of speech features at the level of phonemes.

Phonetic Processing across Different EEG Frequency
Bands
Given previous research positing different functional roles in

speech processing for different cortical oscillations [27] and in

particular differential encoding of speech features by delta-

and theta-band entrainment [19], we examined the improved

model performances for different frequency bands. Phoneme-

level processing (i.e., FS outperforming all other models) was

evident only in the delta and theta bands (Figure 3). The Ph

and Fea models outperformed the Sgram model for the delta

band while the Sgram model outperformed the Ph and Fea

models for the alpha, beta, and low-gamma bands, possibly

evincing the differential sensitivity of these bands to detailed

acoustic information (Sgram) and categorical phonemic pro-
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cessing (Ph and Fea). Relative model performances in the theta

band are qualitatively similar to the results obtained above with

the broadband (1–15 Hz) signal. EEG prediction scores are

very low for beta and low gamma, in keeping with the generally

low signal-to-noise ratio for EEG at these frequencies. Given

the higher prediction scores for delta, theta, and alpha and

the phonetic processing effects visible using the broadband

(1–15 Hz) EEG signal, we continue to analyze this broader repre-

sentation of the EEG in the following section.

Insights into Hierarchical Speech Encoding Based on
Multivariate Temporal Response Functions
Examination of the various mTRFs gives insight into the factors

driving the performance of each model. Contrasting the Env

model (Figure 4A) with the Sgram model (Figure 4B) explains

why the former leads to poorer prediction, as it discards a wealth

of response variability across frequency by reducing the speech

signal to a scalar value.

ThePhmTRFshowsvariable dynamics acrossphonemes (Fig-

ure4C). To reveal groupsof phonemeswith similar responses,we

performedhierarchical clustering on thePhmTRFsat the 12elec-

trodes of interest (see Supplemental Experimental Procedures).

In doing so, we found that the model could accurately discrimi-

nate consonants and vowels (32 of 35 phonemes classified

correctly). For visualization purposes (Figure 4C), we present

the phonemes grouped as vowels, diphthongs, semi-vowels,
r Ltd All rights reserved



Figure 4. mTRF Models for Natural Speech Reflect Sensitivity to Different Speech Features

mTRFs plotted for envelope (Env, A), spectrogram (Sgram, B), phonemic (Ph, C), and phonetic-features (Fea, D) models at peri-stimulus time lags from �100 to

400ms for natural speech, averaged over 12 frontotemporal electrodes (see Figure S1). The phonemes were sorted based on a hierarchical clustering analysis on

the averagemTRF after grouping them into vowels, diphthongs, semi-vowels, and consonants. Horizontal dashed lines separate distinct categories of phonemes

and phonetic features.
and consonants, and we sort within each group according to the

hierarchical clustering distances. It can be seen that the mTRFs

for consonants show activation by around 50 ms, while those

for vowels do not generally show a significant response before

�100 ms. In contrast to these early differences, all phonemes

show a similar response between �150 and 200 ms. This timing

pattern is consistent with previous research showing that acous-

tic-phonetic features of speech modulate activity in non-primary

auditory cortex from 50–100 ms onward, with language-specific

phonetic-phonological analysis starting by 100–200 ms [10].

Interestingly, in the case of time-reversed speech, the Ph mTRF

amplitude is noticeably lower than for forward speech, particu-

larly during the 150–200 ms interval (Figure S3).

When considering the mTRF for the Fea model, it should be

remembered that each phoneme is simply a combination of

phonetic features. Indeed, a linear mapping from the Fea

mTRF to the phonemic space produced a model that is highly

correlated with the Ph model (r = 0.93, p = 1.6 3 10�5; two-

tailed t test). We therefore consider these two models to be

essentially equivalent. However, while the mTRF for the Ph

model highlights differences between vowels and consonants,

the mTRF for the Fea model allows us to visualize sensitivity

to different articulatory speech features (Figure 4D). Again,

the vowels stand out strongly from the features associated

with consonants. But within each of the consonant-related fea-
Current Biology 25, 2457–
tures, a considerable degree of variability is evident across the

specific distinctions.

Sensitivity of EEG to Phonetic Features as a Function of
Latency
Wewished to test the hypothesis that the sensitivity of our neural

responses to different acoustic and phonetic features would in-

crease as a function of response latency in line with what one

might expect of a hierarchical system. To do this, we applied

unsupervised multi-dimensional scaling (see Experimental Pro-

cedures) to the mTRFs in the time intervals 50–100 ms, 100–

150 ms, and 150–200 ms, which correspond approximately to

the three main peaks in the PhmTRF (Figure 4C). This approach

allowed us to build a geometric space in which the Euclidean dis-

tance between phonemes (or phonetic features) corresponds to

the similarity of their neural responses. Furthermore, this allowed

us to examine how sensitive the neural responses were to

different phonetic features by quantifying how well the re-

sponses clustered according to the different groups of phonetic

features that produced them.We did this by performing k-means

clustering, where k is the number of groups under consideration,

and then calculating the corresponding F-scores (the harmonic

mean of precision and recall) between the actual grouping and

the result of the clustering (see Supplemental Experimental Pro-

cedures). All statistical tests were performed using a jackknifed
2465, October 5, 2015 ª2015 Elsevier Ltd All rights reserved 2461



Figure 5. Sensitivity of EEG to Speech Features Increases with Response Latency

Multidimensional scaling (MDS) on the phonetic-features and phonemic mTRFs as a function of peri-stimulus time lag. By carrying out repeated k-means

classification, we derive F-score measures that represent the discriminability of our mTRFs in each of the three time intervals 50–100 ms, 100–150 ms, and 150–

200 ms, which correspond approximately to the three main peaks and troughs of the phonemic mTRF (Figure 3C).

(A) MDS on the phonetic-features mTRF. The F-scores indicate the differential sensitivity of responses tomanner of articulation, voicing, backness of a vowel, and

place of articulation features. These F-scores show significant increase with response latency.

(B) MDS on the phoneme mTRF. The F-scores are a measure of the binary classification of responses to consonants and non-consonants (vowels, diphthongs,

and semi-vowels), which, again, significantly increase with latency. Although the classification performed was binary, the distinction between the four main

classes of phonemes is evident.

(C) MDS on the phoneme mTRF. Here the F-scores are computed for the four classes: plosive, liquid & glide, nasal, and fricative & affricate. The four categories

are progressively more separable across the three time intervals (jackknife method, p < 0.0005).
one-way repeated-measures ANOVA with a Greenhouse-

Geisser correction if the assumption of sphericity was not met.

The increasing F-scores as a function of latency for the Ph

mTRF show that the responses become more discriminative be-

tween consonants and non-consonants at longer latencies

(F(2.0, 18.0) = 3 3 109, p < 0.0005; Figure 5A). Similarly, the

F-scores for the Fea mTRF show that the responses become

more sensitive to different groups of phonetic features as a func-

tion of latency (F(1.3, 11.4) = 105, p < 0.0005; Figure 5B). Again, it
2462 Current Biology 25, 2457–2465, October 5, 2015 ª2015 Elsevie
can be seen that responses to vowels are clearly separable from

those to consonant-related features at longer latencies. Analysis

within each phonetic-feature group revealed no sensitivity in our

mTRFs for place of articulation, for voicing, or for different vowels

(data not shown). However, the mTRFs did discriminate manner

of articulation (Figure 5C), especially at longer latencies (F(2.0,

18.0) = 215.0, p < 0.0005). These results show that noninvasive

neural responses to speechare sensitive to specificphonetic fea-

tures and that this sensitivity increases as a function of latency.
r Ltd All rights reserved



The lack of response sensitivity to different specific vowels

above, combined with the high degree of discriminability be-

tween vowels and consonants, caused us to wonder whether

our model performance (Figure 2A) wasmostly driven by this be-

tween-class response sensitivity. We tested this by randomly re-

labeling the consonants in our time-aligned phonememodel (Ph)

with other consonants and by relabeling the vowels with

randomly chosen vowels. This led to a marked drop in EEG pre-

diction performance (mean ± SD, r = 0.0247 ± 0.0009, shuffled

over 50 randomly relabeled versions of the stimulus, compared

with 0.0635 for the correct Ph labeling). This suggests that while

the neural responses strongly discriminate between vowels and

consonants, the data are also sensitive to differences within

these two classes.

Finally, we repeated the above analyses for the time-reversed

speech (Figure S4). In this case, consonants and non-conso-

nants could still be discriminated in the Ph mTRF (F(1.1,

20.3) = 42.9, p < 0.0005). In addition, phonetic features (F(1.3,

23.1) = 148.0, p < 0.0005) and manner of articulation (F(2.0,

36.0) = 147.7, p < 0.0005) could also be discriminated. However,

importantly, unlike for forward speech, there was no significant

relationship between discriminability and latency for either

phonetic features (F(1.3, 11.6) = 0.1, p = 0.79) or manner of artic-

ulation (F(2.0, 18.0) = 0.46, p = 0.64), and discriminability for con-

sonants and non-consonants did not monotonically increase

with latency.

DISCUSSION

For humans to successfully process natural speech, they must

parse complex and variable acoustic inputs into categorical units

and correctly encode those units as particular phonemes [4].

Here, in the context of natural speech, we have shown that

low-frequency, noninvasively recorded EEG indexes this cate-

gorical phoneme-level processing. Furthermore, we have shown

that the articulatory features of speech can best be discriminated

by responses at longer latencies, in line with what one might

expect of a hierarchical system.

Our findings have important implications for current theories

on cortical entrainment to the envelope of speech [11, 14,

19, 27]. In particular, we have shown that the processing of

different speech features that covary with the envelope can be

dissociated according to the neural responses they elicit. There-

fore, neural measures based on the envelope alone are likely to

include contributions from neural populations at different levels

of the speech processing hierarchy. Given the relatively modest

difference in modeling performance between our FS and Sgram

models, it is entirely possible that the speech-specific contribu-

tion to measures of cortical entrainment is relatively small in

comparison to the more general response to the stimulus acous-

tics. One brain region that could be responsible for such a

contribution is the superior temporal sulcus (STS). It has been

suggested that STS is involved in phonological-level processing

bilaterally [28], a finding that fits with the lack of any lateralization

effects in our prediction performances (Figures S1 andS2).While

this region has been implicated in many other cognitive domains

[29], recent neuroimaging work has suggested that it may repre-

sent a special locus of speech analysis that is distinct from

lexical, semantic, or syntactic processes [30]. The notion that
Current Biology 25, 2457–
speech-specific effects in EEGmay derive from a relatively small

contribution from a specific brain region such as STS would

partly explain why it has been so difficult to definitively say

whether envelope entrainment measures reflect anything more

than low-level processing of the acoustics of speech [19].

Recently it has been suggested that there may be different

functional roles for entrainment at different frequencies, with

theta-band entrainment (4–8 Hz) encoding speech features crit-

ical for intelligibility and delta-band entrainment (1–4 Hz) being

related to the perceived, non-speech-specific acoustic rhythm

[19]. Our finding that FS outperforms all other models for delta

and theta bands (Figure 3) suggests that both of these bands

may reflect speech-specific processing. One attempt to recon-

cile these views is to suggest that relying on envelope tracking

as a dependent measure, particularly for delta band where it per-

forms poorly, results in a lower sensitivity to subtle speech-spe-

cific effects. While we have argued that these speech-specific

effects can be seen by comparing FS and Sgram performances,

it is also worth noting how the Sgram and Ph model perfor-

mances differentially vary across frequency bands (e.g.,

compare the relative model performances for delta and alpha).

This variation potentially provides another way to disambiguate

lower- and higher-level speech processing effects, something

we will investigate in future work.

Our findings align well with recent invasive ECoG research

investigating the encoding of natural speech in the human brain

[4, 8]. Specifically, based on recordings from the superior tempo-

ral gyrus (STG) in epilepsy patients, high gamma frequency (75–

150 Hz) activity was shown to encode an acoustic-phonetic

representation of speech. Based on this, it has been suggested

that the STGmay be a transitional stage in the auditory process-

ing hierarchy, early enough to still encode the acoustic features

of speech but high enough to exhibit response selectivity to

complex spectrotemporal patterns [31]. The fact that the ECoG

recordings were shown to be optimally sensitive to intermediate

acoustic-phonetic speech features at an intermediate response

time lag of around 150 ms [8] agrees reasonably well with the

increased discriminative power of our EEG responses at this

latency. While we have speculated that our findings may have

specific contributions from STS, the concordance with ECoG

fromSTG suggests that the analysis frameworkwe have outlined

may represent an important mechanism for applying findings

from the ECoG community into research with a wider variety of

subjects including infants [32], children with developmental diffi-

culties [33], the elderly [34], and patients with psychiatric disor-

ders [35]. This is particularly important because much of the

EEG/MEG research in these cohorts relies on stimuli composed

of discrete syllables, leading to a literature that is limited in what it

can say about the parsing and processing of continuous speech

(e.g., [32]).

Developing further insights using our approach would benefit

from an ability to disentangle the activity from the many neural

sources that are concurrently active during speech processing.

Although this issue is often seen as a shortcoming of EEG and

MEG, it can also be seen as a strength in terms of the global

view of hierarchical processing that these methods provide.

But it will still be necessary to further characterize how different

speech representationsmap to different neural responses and to

determine which specific neural populations are responsible for
2465, October 5, 2015 ª2015 Elsevier Ltd All rights reserved 2463



those responses. Furthermore, it will be necessary to disen-

tangle how much the cortical entrainment of speech is driven

by additive evoked activity and how much by the entrainment

of ongoing oscillations [9, 27, 36]. One potentially fruitful

approach to address these questions is to manipulate the rela-

tive amount of low- and high-level information that is available

in the speech stimuli, with a view toward disambiguating the in-

formation contained within our Sgram and Phmodels (e.g., [37]).

Indeed, this is already possible to an extent by considering the

difference between the FS and Sgram model performances,

which we contend is likely to reflect phoneme-level processing

in relative isolation. Importantly, this difference was positive for

each and every subject. As such, it has the potential to act as

a dependent measure in research aimed at understanding

speech processing in particular populations. The sensitivity of

response functions to different phonetic features and how that

sensitivity varies with latency also represent potentially useful

dependent measures of speech-specific processing.

EXPERIMENTAL PROCEDURES

All experimental procedures were approved by the Ethics Committee of the

School of Psychology at Trinity College Dublin. In the first experiment, ten sub-

jects undertook 28 trials, each of �155 s in length, in which they were pre-

sented with an audiobook version of a classic work of fiction read by a male

American English speaker. The second experiment involved the presentation

of the same trials in the same order, but with each of the 28 speech stimuli

played in reverse. All stimuli were presented monophonically using head-

phones in a dark room while subjects fixated on a crosshair centered on a

screen. High-density EEG was recorded and digitally filtered between 1 and

15 Hz and referenced to the average of the two mastoid channels. Linear

regression was used to determine multivariate temporal response functions

(mTRFs) describing a mapping between the EEG and five speech representa-

tions. The broadband amplitude envelope representation (Env) was calculated

using the Hilbert transform. The spectrogram representation (Sgram) was ob-

tained by first filtering the speech stimulus into 16 frequency bands between

250 Hz and 8 kHz and then using the Hilbert transform to compute the ampli-

tude envelope for each band. The phoneme representation (Ph) was computed

using the forced-alignment software Prosodylab-Aligner [38], which returns

the starting and ending time points for each phoneme. This representation

was a multivariate time series composed of mutually exclusive binary arrays

(one for each phoneme). The average acoustic envelope produced by this

alignment can be seen in Figure S5. The phonetic-features representation

was obtained through a linear mapping of the phonemic representation into

a space of 19 features [8], which are a distinctive subset of those defined by

Chomsky and Halle [25] to describe the articulatory and acoustic properties

of the phonetic content of speech. Finally, we propose a model that combines

Fea andSgram (FS), which was obtained by concatenating Fea andSgram into

a single matrix.

The sensitivity of EEG to different speech features was assessed by using

leave-one-out cross-validation to see how well each model could predict

EEG data, as indexed by Pearson’s correlation. This was done using mTRFs

computed over a range of time lags from 0 to 250 ms, as no visible response

was present outside this range. While this was done for all electrodes, we

focused our analysis on a set of 12 electrodes from the two areas of the scalp

with the highest prediction correlations (six symmetric pairs on the left and

right scalp; see Supplemental Experimental Procedures for more details),

without biasing any of the mTRF models. This subset of electrodes was

used to obtain the prediction correlations presented in Figures 2 and 3. The

average of the mTRFs across these 12 electrodes is presented in Figures 4

and S3. To examine the dissimilarity of neural responses to different speech

tokens, a multi-dimensional scaling (MDS) analysis was applied to the

phonemic and phonetic-features mTRF models on all 12 of these channels

collectively (i.e., without averaging; Figures 5 and S4). Similar to previous

research [4], we employed a non-metric MDS that minimizes the reconstruc-
2464 Current Biology 25, 2457–2465, October 5, 2015 ª2015 Elsevie
tion error measured by Kruskal stress [39]. The MDS was calculated in five

dimensions (eigenvariates), which was enough to allow the reconstruction of

the original dissimilarities with an accuracy in excess of 90% in all cases

(stress % 0.1) [39]. 100 repetitions of k-means unsupervised classification

with prior knowledge of the number of classes k [40] was performed to

classify phonemes and phonetic features. For each repetition, this was

performed based on the phonemic or phonetic-features mTRF model at all

electrodes of interest for every subject. Sensitivity to different phonemes

and features was quantified by calculating F-scores on the output of the

k-means clustering [41]. The values reported in Figures 5 and S4 are the aver-

ages of these repetitions.

A more detailed description of the subjects, data collection, and analysis

can be found in the Supplemental Information.
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