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Summary

Coordinated regulation of protection mechanisms against
environmental abiotic stress and pathogen attack is essential

forplantadaptationandsurvival. Initial abioticstresscan inter-
ferewithdisease-resistancesignaling[1–6].Conversely, initial

plant immune signaling may interrupt subsequent abscisic
acid (ABA) signal transduction [7, 8]. However, the processes

involved in this crosstalk between these signaling networks
have not been determined. By screening a 9600-compound

chemical library,we identifiedasmallmolecule [5-(3,4-dichlor-
ophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM)

that rapidly downregulates ABA-dependent gene expression
and also inhibits ABA-induced stomatal closure. Transcrip-

tome analyses show that DFPM also stimulates expression
of plant defense-related genes. Major early regulators of path-

ogen-resistanceresponses, includingEDS1,PAD4,RAR1, and
SGT1b, are required for DFPM—and notably also for Pseudo-

monas—interference with ABA signal transduction, whereas
salicylic acid, EDS16, and NPR1 are not necessary. Although

DFPM does not interfere with early ABA perception by PYR/
RCAR receptors or ABA activation of SnRK2 kinases, it

disrupts cytosolic Ca2+ signaling and downstream anion
channel activation in aPAD4-dependentmanner. Our findings

provide evidence that activation of EDS1/PAD4-dependent
plant immune responses rapidly disrupts ABA signal trans-

duction and that this occurs at the level of Ca2+ signaling, illu-
minating how the initial biotic stress pathway interferes with

ABA signaling.

Results

Novel Compound DFPM Isolated from a Randomly

SynthesizedChemicalLibrary InhibitsAbscisicAcidSignaling
A chemical library of 9600 randomly synthesized compounds
was screened using a WT-RAB18 reporter line grown in 96-
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well tissue culture plates. Candidate chemicals that antago-
nized abscisic acid (ABA)-induced gene expression were
selected (Figure 1A; see also Figure S1 available online;
ID5535396, ID5935873, ID5958440, and ID6015316). Here we
report a detailed characterization of the small molecule
[5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione
(DFPM, ID6015316), which effectively inhibits ABA-induced
RAB18 expression (Figure 1A). In contrast to frequently iso-
lated auxin-related structures in this DIVERSET library, DFPM
treatmentdidnot produceauxin-relatedgrowthdefectsor alter
auxin induction of the DR5 promoter expression [9, 10] (Fig-
ure S1C). The inhibitory effect of DFPM on ABA-induced gene
expression was confirmed using an alternative GUS reporter
line under the control of the RD29B promoter [11] (Figure 1A).
DFPM inhibits ABA induction of gene expression in a dose-
dependent manner (IC50 = 3 mM and 1.5 mM for inhibition of
ABA induction of the endogenous RD29B and RAB18
promoters, respectively) (Figure 1B; Figure S2A). To determine
functional relevant residues of the DFPM structure, we
analyzed derivatives of DFPM (Figure 1C). Modification of any
ringstructure anddeletingorchangingpositionsof thechloride
groups reducedDFPMactivity (Figure 1D). ThusDFPMwas the
most effective among the derivatives analyzed. ATH1 Gene-
Chip microarray analyses showed that DFPM downregulates
ABA induction of more than 40% of ABA-responsive genes,
showing that DFPM affects a subset of the ABA signaling
network (Figure 1E; Figure S3; Table S1).
DFPM also inhibited ABA-mediated physiological re-

sponses, including ABA-induced stomatal closure (Figure 1F)
and ABA inhibition of stomatal opening (Figure S4C). In
contrast, DFPM hardly affected ABA-induced delay in seed
germination (Figure S2C), indicating that DFPM does not
control the entire ABA signaling network but rather acts
preferably on a subset of ABA responses. In addition, ABA
content measurements under nonstress conditions or in re-
sponse to osmotic stress showed that DFPM does not affect
endogenous ABA concentrations (Figure S2D), suggesting
that DFPM disrupts ABA signaling steps rather than ABA
metabolism.
DFPM Inhibition of ABA Responses Requires Plant

Immune Signaling
To validate microarray analysis results, expression of several
ABA-induced genes was tested by quantitative PCR (qPCR),
including RAB18, RD29B, Cor15a, and ABI1 (Figure 2D; Fig-
ure S4B). ABA induction of RAB18, RD29B, and Cor15a was
reduced by pretreatment (30 min) with DFPM (Figure 2D).
However, DFPM did not affect the ABA induction of ABI1 in
both microarray and q-PCR experiments (Figure S4B).
In addition to the inhibitory effect of DFPM on ABA-respon-

sive gene induction, transcriptome analyses also revealed that
DFPM alone regulates the transcript levels of 386 genes (Fig-
ure 2A). Signaling pathway impact analysis revealed that
DFPM induces components in the plant pathogen signaling
network (KEGG: ath04626) (Figure 2B; Table S1). Strong
DFPM-induction of typical pathogen-responsive genes PR5
and EDS1 [12, 13] were confirmed using q-PCR (Figure 2C).
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Figure 1. Small Molecule DFPM Inhibits Abscisic Acid-Induced Gene Expression and Stomatal Closing

(A) [5-(3,4-dichlorophenyl)furan-2-yl]-piperidin-1-ylmethanethione (DFPM) treatment reduces ABA-induction of green fluorescent protein (GFP) and

b-glucuronidase (GUS) reporter gene expression in RAB18-GFP and RD29B-GUS promoter reporter lines.

(B) Concentration-dependent effects of DFPM in inhibition of abscisic acid (ABA)-induced RD29B gene expression measured by quantitative PCR (qPCR).

(C and D) Structures and test of DFPM derivatives for inhibition of ABA-induced RD29B gene expression as quantified by q-PCR.

(E) Transcriptomic analysis shows that groups of ABA-induced genes are downregulated by DFPM (30 mM) (n = 3 microarrays per condition). The heat map

contains 470 probe sets regulated by ABA (292 upregulated and 178 downregulated; 45 probe sets are also affected by DFPM, shown in Figure 2A).

(F) DFPM exposure 30 min prior to ABA exposure inhibits ABA-induced stomatal closing. Error bars represent mean 6 standard error of the mean (SEM)

(n = 3 experiments, 30 stomata per experiment and condition).

ABA was applied at 10 mM in (A)–(F).
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To address whether the transcriptional activation of plant
defense genes by DFPM is linked to inhibition of ABA
signaling, we analyzed genetic mutations in components of
plant disease-resistance pathways. Notably, DFPM’s inhibi-
tory activity on ABA induction of RAB18 and RD29B expres-
sion was compromised in the eds1-22 [14], pad4-1 [15],
sgt1b(eta3) [16, 17], and rar1-21 [18] mutants (Figure 2D; Fig-
ure S4A), indicating that EDS1, PAD4, SGT1b, and RAR1 are
required for the inhibitory activity of DFPM on ABA signal
transduction. Because EDS1, PAD4, SGT1b, and RAR1 are
important early components of plant nucleotide-binding
leucine-rich repeat (NB-LRR)-triggered immunity [16, 18–20],
these data suggest that activation of NB-LRR proteins or early
steps of resistance-signaling pathways antagonize ABA signal
transduction. EDS1 and PAD4 control both salicylic acid (SA)-
dependent and SA-independent pathways [21, 22]. A critical
SA response regulator, NPR1 [23], was not required for
DFPM disruption of ABA signaling (Figure 2D), suggesting
that SA signaling is not involved in the DFPM inhibition.
Preincubation with DFPM for 30 min inhibited the rapid

response of ABA-induced stomatal closure (Figure 1F). To
test whether DFPM inhibition of this rapid ABA response
also requires early pathogen signaling components, we exam-
ined ABA-induced stomatal responses of disease-resistance
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Figure 2. DFPM Inhibition of ABA Signaling Requires Early Signaling Components of Effector-Triggered Immune Signal Transduction

(A) Heat map of 386 probe sets regulated by DFPM.

(B) DFPM-regulated genes overlap with benzothiadiazole (BTH)-regulated and Pseudomonas syringae pv. tomato (Pst) DC3000-regulated gene expression.

(C) DFPM induction of PR5 and EDS1 gene expression was quantified by q-PCR.

(D) DFPM inhibition of ABA-inducible RAB18, RD29B, and COR15a expression requires functional EDS1 and SGT1b but not NPR1. Error bars show6 SEM

(n = 3).

(E) DFPM inhibition of ABA-induced stomatal closing requires EDS1, PAD4, SGT1b, and RAR1 but not NPR1 or EDS16. Error bars represent mean 6 SEM

(n = 3 blind experiments, 30 stomata per experiment and condition).

DFPM was applied at 30 mM and ABA was applied at 10 mM in (A)–(E).
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mutants (Figure 2E). DFPM inhibition of ABA-induced stomatal
closure required functional EDS1, PAD4, SGT1b, and RAR1
but not NPR1 or the SA biosynthetic gene EDS16/SID2 [24]
(Figure 2E). DFPM also disrupted ABA inhibition of stomatal
opening, and the inhibition was impaired in eds1, pad4, rar1,
and sgt1b mutants but not in npr1 (Figure S4C). These data
suggest that the rapid action of DFPM in disrupting stomatal
responses to ABA requires EDS1/PAD4-dependent signaling
but is independent of salicylic acid.
Constitutively Activated NB-LRR Receptor SNC1-1 Inhibits

ABA Signaling
The requirement for EDS1, PAD4, SGT1b, and RAR1 during
DFPM inhibition of ABA signaling (Figures 2D and 2E; Fig-
ure S4) and the transcriptional activation of defense-related
gene expression by DFPM (Figures 2A and 2B) led us to
hypothesize that DFPM stimulates immune pathways acti-
vated by NB-LRR receptors. We therefore tested whether
activation of an NB-LRR protein can also inhibit ABA
responses. ABA induction of gene expression and ABA-
induced stomatal closure were examined in the snc1-1
(suppressor of npr1-1, constitutive1) mutant [25]. In snc1-1,
a point mutation in a Toll/interleukin-1 receptor domain (TIR)-
NB-LRR protein creates an autoactivated receptor, which trig-
gers constitutive pathogen resistance through EDS1 and
PAD4 [25]. ABA induction of RAB18, RD29B, and Cor15a
was reduced in snc1-1 (Figure S5A). SNC1 is expressed in
guard cells [26, 27], and stomata of snc1-1 were less respon-
sive to ABA during ABA-induced stomatal closing (Figure S5B;
two-tailed t test, p = 0.0059 for wild-type [WT]+ABA versus
snc1-1+ABA). These data demonstrate that constitutive acti-
vation of an NB-LRR protein antagonizes ABA induction of
gene expression and stomatal closure.
Pseudomonas syringae Infection Mimics DFPM Inhibitory
Effects on ABA Responses

DFPM-induced EDS1/PAD4-dependent signaling has a nega-
tive impact on ABA-induced gene expression and physiolog-
ical ABA responses. We therefore tested whether EDS1/
PAD4 signaling in response to authentic pathogen infection
can inhibit ABA signal transduction. ABA induction of RD29B
gene expression was examined after exposure of Arabidopsis
seedlings to the virulent Pseudomonas syringae pv. tomato
(Pst) strain DC3000, which induces EDS1/PAD4-dependent
basal (low-level) immunity, or the avirulent PstDC3000/
avrRps4 strain, which induces EDS1/PAD4-dependent
effector-triggered immunity after TIR-NB-LRR receptor activa-
tion [19, 21]. Infection by either strain led to a strong reduction
of ABA-induced RD29B gene expression (Figure 3A).

As reported previously, P. syringae infection causes a tran-
sient stomatal closing and reopening [28, 29]. ABA-induced
stomatal closing was slightly reduced by infection with
PstDC3000 or PstDC3000/avrRps4 (Figure 3B), indicating that
immune signaling triggered by these pathogens may also
downregulate ABA signaling in guard cells. As with the DFPM
treatment, Pst infection inhibited guard cell ABA responses in
npr1 and eds16 mutants but failed to do so in eds1, pad4, and
sgt1b (Figure 3B). ABA induction of RD29B gene expression
(Figure 3A) and ABA activation of stomatal closing responses
(Figure 3B) were partially inhibited by infection with
a PstDC3000(COR-) strain lacking the virulence factor corona-
tine [30], which mediates stomatal reopening after pathogen-
mediated stomatal closing [28, 31]. This result suggests that
the inhibitionofABAsignalingbyP. syringae infectionobserved
here occurs in part independently of coronatine production.

Analyses of DFPM Inhibition of Early ABA Signaling

Mechanisms
We examined which step in the ABA signal transduction
pathway is targeted by DFPM. ABA signal transduction begins
with ABA binding to PYR/RCAR receptors and interactions
with PP2C protein phosphatases [32, 33]. Coimmunoprecipita-
tion analyses showed that DFPM did not affect ABA-depen-
dent PYR1 interaction with the PP2C ABI1 (Figure 4A),
indicating that ABA perception by PYR/RCAR receptors and
PYR1-PP2C complex formation are not directly interrupted
by DFPM. ABA perception causes activation of three SnRK2
protein kinases [34–36] by deactivation of the negatively regu-
lating PP2Cs [32, 33, 37–40]. DFPM did not interfere with ABA
activation of these SnRK2 protein kinases (Figure 4B; Fig-
ure S6), indicating that DFPM interferes with downstream
processes of SnRK2 kinase activation.
Guard cells enable dissection of further steps in early ABA

signal transduction [41]. To further investigate which step of
ABA signaling can be impaired by DFPM, we exposed guard
cells to four repetitive 5 min Ca2+ pulses known to cause Ca2+

-induced stomatal closing [42–44]. DFPM partially inhibited
imposed repetitive Ca2+ pulse-mediated stomatal closing (Fig-
ure 4C), indicating that DFPM-triggered signaling disrupts
stomatal closing at the level of or downstreamofCa2+ signaling.
Elevated ABA enhances the cytosolic [Ca2+] sensitivity of

S-type anion-channel activation in Arabidopsis guard cells
[45]. To test whether DFPM impairs ABA regulation of S-type
anion-channel activities, we analyzed ABA activation of
S-type anion channels at 2 mM free cytosolic [Ca2+] [43, 45].
DFPM pretreatment significantly reduced ABA-induced Ca2+-
activated S-type anion-channel currents (Figure 4D). DFPM
inhibition of ABA-induced Ca2+-activated S-type anion-
channel activity was significantly impaired in pad4-1 mutant
guard cells (Figure 4E).

Discussion

With the aim of dissecting new mechanisms in the ABA
signaling network, a small-molecule antagonist of ABA
signaling, DFPM, was identified by screening a 9600-
compound-containing chemical library (Figure 1; Figure S1).
DFPM effectively inhibits ABA-induced gene expression
without producing any noticeable growth and developmental
defects (Figure 1; Figure 2). In addition to the long-term inhib-
itory effect of DFPM on ABA-dependent gene expression,
30 min pretreatment with DFPM interferes with rapid guard
cell ABA responses such as ABA-induced and repetitive
Ca2+ pulse-induced stomatal closing (Figure 1; Figure 4;
Figure S4C).
Identification of DFPM as an activator of plant immunity-

related gene expression (Figures 2A and 2B) provided
evidence that DFPM negatively affects ABA signal transduc-
tion through activation of plant immune signaling. Many
studies have shown that the converse crosstalk occurs from
initial ABA/abiotic stimulation, which subsequently antago-
nizes plant pathogen/biotic stress signaling [1–6]. Here we
show that initial plant disease-resistance signaling by applica-
tion of the small molecule DFPM or P. syringae infection inter-
feres with subsequent ABA signal transduction, indicating that
biotic stress responses restrict plant abiotic stress signal
transduction.
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Figure 3. P. syringae Infection Inhibits ABA Signaling through the EDS1/PAD4 Pathway

(A) Infections by Pseudomonas syringae pv. tomato (Pst) DC3000, Pst(avrRps4), and Pst(COR-) inhibit ABA-induced RD29B reporter gene expression.

(B) ABA-induced stomatal closing is inhibited by PstDC3000 and Pst(avrRps4) infection in an EDS1/PAD4/SGT1b-dependent manner but independently of

NPR1 and EDS16. Infections by Pst(COR-) also inhibit ABA-induced stomatal closing. *p < 0.025; ,p > 0.2, respectively (n = 3 experiments, 30 stomata per

experiment and condition, two-tailed t test). Error bars represent mean 6 SEM (n = 3).

ABA was applied at 10 mM in (A) and (B).
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Our analyses of defense-signaling mutants reveal that
impairment of ABA signal transduction by DFPM pretreatment
requires EDS1 and PAD4, major regulators of effector-trig-
gered and basal immunity in plants (Figures 2C and 2D) [19,
21]. Overlap between genes induced by DFPM and the SA
analog benzothiadiazole (BTH) (Figures 2A and 2B) suggests
that DFPM activates both SA-dependent and SA-independent
defenses. However, the dispensability of SA biosynthesis
(eds16/sid2) and downstream signaling (npr1) components
for DFPM interference with ABA responses (Figures 2D and
2E; Figure S4C) delineates the DFPM effect to an SA-indepen-
dent branch of the EDS1/PAD4 pathway that is important for
both basal and TIR-NB-LRR receptor-triggered resistance
responses [21, 22].

Notably, SA is necessary for the ‘‘reverse crosstalk,’’ in
which initial ABA signal transduction interferes with biotic
stress signaling [5, 46], suggesting differences in the under-
lying mechanisms mediating abiotic-to-biotic signaling
interference [1–6, 46]. The EDS1/PAD4-dependent and SA-
independent disruption of ABA responses identified here inter-
feres with early ABA signaling mechanisms because DFPM
inhibition of both ABA-triggered stomatal closing and ABA
inhibition of stomatal opening are strongly reduced in the
eds1 or pad4 mutants (Figure 2E) and DFPM inhibition of
ABA activation of the anion channel is compromised in pad4
mutant guard cells (Figure 4E).
A requirement forRAR1andSGT1b inDFPM-mediatednega-

tive regulation of ABA-induced responses (Figures 2D and 2E;
Figures S4A and S4C) suggests that the antagonism occurs
via NB-LRR immune receptors because a major function of
RAR1 and SGT1b is to assist the accumulation of plant NB-
LRRcomplexes [47]. Thiswouldnot, however, explain theeffec-
tiveness of virulent PstDC3000 in inhibiting ABA-induced
RD29B gene expression (Figure 3A), which induces ‘‘basal’’
resistance in the absence of obvious NB-LRR recognition.
One possibility is that the EDS1/PAD4 basal immunity barrier
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Figure 4. DFPM Inhibits Guard Cell ABA Signal Transduction at the Level of Ca2+ Signaling

(A) ABA-dependent protein-protein interaction between the PYR1 ABA receptor and the ABI1 PP2C-type phosphatase is not disrupted by DFPM pretreat-

ment. HA-PYR1 and YFP-ABI1 were coimmunoprecipitated in the presence of ABA (100 mM) and DFPM (50 mM).

(B) ABA activation (10 mM) of SnRK2 kinases OST1, SnRK2.2, and SnRK2.3 [32] was not disrupted by DFPM treatment (50 mM).

(C) DFPM (30 mM) inhibits stomatal closing mediated by repetitive imposed Ca2+ transients. Black bars represent periods in which stomata were exposed to

buffer containing 1 mM CaCl2+1 mM KCl, and white bars indicate periods with application of 0 mM CaCl2+50 mM KCl [43]. Each black bar corresponds to

5min timescale. Stomatal apertures at time = 0 (100%) correspond to average stomatal apertures of 4.026 0.25 mm in control treatments and 3.536 0.26 mm

in DFPM pretreatments (30 min prior to first Ca2+ pulse). Error bars show 6 SEM (n = 4 experiments).

(D) ABA activation of S-type anion-channel currents is significantly inhibited by DFPM in Columbia wild-type guard cells (Control: n = 6; 10 mM ABA: n = 10;

30 mM DFPM: n = 4; 30 mM DFPM+10 mM ABA: n = 10; p = 0.032; two-tailed t test).

(E) DFPM inhibition of ABA activation of S-type anion channels is not visible in pad4-1 guard cells (control: n = 6; 10 mMABA: n = 10; 30 mMDFPM: n = 6; 30 mM

DFPM+10 mMABA: n = 10; p = 0.314; two-tailed t test). Guard cell protoplasts were pretreated with 0.06% dimethyl sulfoxide (DMSO) (control) or DFPM for

30 min before ABA+DMSO or ABA+DFPM treatment. Error bars show 6 SEM.
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is triggered by low-activity NB-LRR receptors. Alternatively,
SGT1 and RAR1 function at an early intersection between NB-
LRR activation and EDS1/PAD4 basal resistance signaling.
Either scenario is supported by sgt1b and rar1defects reported
for basal resistance to virulent pathogen infection [48–50].
Together, the data favor inhibition of a sector of ABA signaling
proceeding through the plant EDS1/PAD4 basal resistance
pathway that can be effectively activated by NB-LRR receptors
such as RPS4 and SNC1 (Figure 3; Figure S5).

Investigation of the mechanism mediating DFPM disruption
of ABA signal transduction showed that DFPM interferes with
events at the level of or downstream of intracellular Ca2+

signaling, whereas upstream ABA perception by PYR/RCAR
receptors [32, 33] and subsequent activation of the major
ABA signaling kinases, OST1, SnRK2.2, and SnRK2.3, were
not affected by DFPM treatment (Figure 4; Figure S6). It is
notable that intracellular Ca2+ has been characterized as an
important transducer of plant immunity [51–55]. One hypoth-
esis is that distinct Ca2+ signals generated during biotic stress
signaling interfere with those produced during ABA signal
transduction. Alternatively, depletion of Ca2+ binding proteins
that are shared by pathogen-induced and ABA responses may
limit ABA signal transduction. For example, the Ca2+-depen-
dent protein kinases CPK6, -4, and -11 have been shown to
be required for ABA signal transduction [43, 56], and recent
research shows that CPK4, -5, -6, and -11 function in flg22-
induced resistance to the bacterial pathogen PstDC3000
[54]. However, other associated proteins or mechanisms may
also trigger the identified biotic-to-ABA signaling interference
identified here (see also Supplemental Discussion).
In summary, our findings define negative regulation of ABA

signal transduction by rapid activation of plant innate immune
responses by the small molecule DFPM and by P. syringae
infection in part independently of SA signaling. Combined
genetic and guard cell signaling analyses show that activation
of resistance signaling antagonistically regulates ABA
responses downstream of ABA-activated SnRK2 kinase acti-
vation, at the level of or downstream of Ca2+ signaling. Further
investigation of how the small molecule DFPMmodulates Ca2+

signaling during ABA signaling will shed light on regulatory
mechanisms that adjust plant adaptive responses against
combined biotic and abiotic stress exposures.
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