
Discrete Mathematics 306 (2006) 456–459
www.elsevier.com/locate/disc

Communication

On trees with a maximum proper partial 0–1 coloring
containing a maximum matching

V.V. Mkrtchyan
Department of Informatics and Applied Mathematics, Yerevan State University, Yerevan 375025, Republic of Armenia

Received 12 June 2005; accepted 7 December 2005
Available online 21 February 2006

Communicated by L. Lovasz

Dedicated to Anush

Abstract

I prove that in a tree in which the distance between any two endpoints is even, there is a maximum proper partial 0–1 coloring
such that the edges colored by 0 form a maximum matching.
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All graphs considered in this paper are finite, undirected and have no loops or multiple edges. V (G) and E(G)

denote the sets of vertices and edges of a graph G, respectively. The degree of a vertex x in G is denoted by dG(x). If
X ⊆ E(G) then a mapping f : X → {0, 1} is referred as a partial 0–1 coloring of the graph G. For i = 0, 1 and the
partial 0–1 coloring f of the graph G, denote fi ≡ {e ∈ X/f (e) = i}. The partial 0–1 coloring f is proper if the sets f0
and f1 are matchings of the graph G. Denote

�(G) ≡ max{|f0| + |f1|/f is a proper partial 0– 1 coloring of the graph G}.
A proper partial 0–1 coloring f of the graph G is maximum if |f0| + |f1| = �(G). Set

�(G) ≡ max{|fi |/i = 0, 1 andf is a maximum proper partial (shortly, MPP) 0– 1 coloring of the graph G}.
It is clear, that for every graph G �(G)��(G), where �(G) is the cardinality of a maximum matching of the graph G.

In this paper I show that if G is a tree in which the distance between any two endpoints is even, the equality �(G)=�(G)

holds. Nondefined terms and conceptions can be found in [1,2].

Lemma 1. Let G be a graph, u ∈ V (G), w ∈ V (G), (u, w) ∈ E(G), dG(u) = 1. Then there is a MPP 0–1 coloring f
of the graph G, such that |f0| = �(G) and (u, w) ∈ f0.
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Proof. Let f be a MPP 0–1 coloring of the graph G with |f0| = �(G). Suppose (u, w) /∈ f0.
Case 1: (u, w) /∈ f1. As f is a MPP 0–1 coloring of the graph G, there is a (w, w′) ∈ E(G), such that (w, w′) ∈ f0.

Consider the mapping g : f1 ∪ (f0\{(w, w′)}) ∪ {(u, w)} → {0, 1} defined in the following way:

g(e) =
{

0 if e ∈ (f0\{(w, w′)}) ∪ {(u, w)},
1 if e ∈ f1.

It is clear that g is a MPP 0–1 coloring of the graph G, (u, w) ∈ g0 and |g0| = |f0| = �(G).
Case 2: (u, w) ∈ f1. As f is a MPP 0–1 coloring of the graph G, with |f0| = �(G), then there is a (w, w1) ∈

f0. Consider the maximal alternating path u, (u, w), w, (w, w1), w1, . . . , wk−1, (wk−1, wk), wk , where k is odd,
{(u, w), (w1, w2), . . . , (wk−2, wk−1)} ⊆ f1 and {(w, w1), (w2, w3), . . . , (wk−1, wk)} ⊆ f0. Define a mapping g :
f0 ∪ f1 → {0, 1} as follows:

g(e) =
{

f (e) if e /∈ {(u, w), (w, w1), . . . , (wk−1, wk)},
1 − f (e) if e ∈ {(u, w), (w, w1), . . . , (wk−1, wk)}.

Clearly, g is a MPP 0–1 coloring of the graph G with (u, w) ∈ g0 and |g0|= |f0|=�(G). The proof is complete. �

Lemma 2. Let G be a graph, u ∈ V (G), v ∈ V (G), w ∈ V (G), dG(u) = dG(v) = 1, (u, w) ∈ E(G), (v, w) ∈ E(G).
Then

(a) there is a MPP 0–1 coloring f of the graph G, such that |f0| = �(G), (u, w) ∈ f0 and (v, w) ∈ f1;
(b) �(G) = 2 + �(G\{u, v, w}), �(G) = 1 + �(G\{u, v, w}).

Proof. (a) By Lemma 1, there is a MPP 0–1 coloring f of the graph G, such that |f0|= �(G) and (u, w) ∈ f0. Suppose
(v, w) /∈ f1, then there is a (w, w′) ∈ E(G), such that (w, w′) ∈ f1. Consider a mapping g : f0 ∪ (f1\{(w, w′)}) ∪
{(v, w)} → {0, 1} defined in the following way:

g(e) =
{

1 if e ∈ (f1\{(w, w′)}) ∪ {(v, w)},
0 if e ∈ f0.

Clearly, g is a MPP 0–1 coloring of the graph G with (u, w) ∈ g0, (v, w) ∈ g1 and |g0| = �(G).
(b) Let w1, . . . , wr be vertices of the graph G such that dG(w) = r + 2 (r �0), u /∈ {w1, . . . , wr}, v /∈ {w1, . . . , wr},

(w, wi) ∈ E(G) for i = 1, . . . , r , and f be a MPP 0–1 coloring f of the graph G, such that |f0| = �(G), (u, w) ∈
f0, (v, w) ∈ f1. As (w, wi) /∈ f0 ∪ f1 for i = 1, . . . , r , we have

�(G) = �(G\{(w, w1), . . . , (w, wr)}) = 2 + �(G\{u, v, w}),
�(G) = �(G\{(w, w1), . . . , (w, wr)}) = 1 + �(G\{u, v, w}).

The proof is complete. �

Corollary. Let G be a graph, U = {u0, u1, u2, u3, u4} be a subset of the set of vertices of G satisfying the conditions:
dG(u0) = dG(u4) = 1, dG(u1) = dG(u3) = 2, (ui−1, ui) ∈ E(G) for i = 1, 2, 3, 4. Then the following is true:

�(G) = �(G\U) + 4, �(G)�2 + �(G\U).

Proof. Lemma 2 implies �(G) = 2 + �(G\{u0, u4}) = �(G\U) + 4, therefore �(G)�2 + �(G\U). �

Theorem. Let G be a tree in which the distance between any two endpoints is even. Then the equality �(G) = �(G)

holds.

Proof. Clearly, the statement of the theorem is true for the case |E(G)|�6. Assume that it holds for trees with
|E(G)|� t − 1, and let us prove that it will hold for the case |E(G)| = t , where t �7.
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Case 1: There is U = {u0, u1, u2, u3} ⊆ V (G), such that dG(u0) = 1, dG(u1) = dG(u2) = 2, (ui−1, ui) ∈ E(G)

for i = 1, 2, 3. Set G′ = G\{u0, u1}. Clearly, �(G) = �(G′) + 1. As dG(u0) = 1, dG(u1) = 2 and dG\{u0}(u1) = 1,
dG\{u0}(u2) = 2, we have �(G) = 1 + �(G\{u0}) = �(G′) + 2, thus if g is a MPP 0–1 coloring of tree G′, such that
|g0| = �(G′) and (u2, u3) ∈ g0, then the mapping f : g0 ∪ g1 ∪ {(u0, u1), (u1, u2)} → {0, 1} defined as

f (e) =
{

g(e) if e /∈ {(u0, u1), (u1, u2)},
1 if e = (u1, u2),

0 if e = (u0, u1)

is a MPP 0–1 coloring of the tree G, therefore �(G)� |f0| = 1 + |g0| = 1 + �(G′). As the distance between any two
endpoints of G′ is even and |E(G′)| < t , we have �(G′) = �(G′), therefore

�(G)�1 + �(G′) = 1 + �(G′) = �(G) or �(G) = �(G).

Case 2: There is U = {u0, u1, u2, u3, u4, u5, u6} ⊆ V (G), such that dG(u0) = dG(u4) = dG(u6) = 1, dG(u1) =
dG(u3) = dG(u5) = 2, (ui−1, ui) ∈ E(G) for i = 1, 2, 3, 4, (u2, u5) ∈ E(G), (u5, u6) ∈ E(G). Set G′ = G\{u5, u6}.
Clearly, �(G) = �(G′) + 1. From Corollary follows that �(G) = �(G\{u0, u1, u2, u3, u4}) + 4, therefore �(G) =
�(G\{(u2, u5)}) = �(G′) + 1 and �(G)�1 + �(G′). Note that the distance between any two endpoints of the tree G′
is even and |E(G′)| < t , thus the equality �(G′) = �(G′) holds, and therefore

�(G)�1 + �(G′) = 1 + �(G′) = �(G) or �(G) = �(G).

Case 3: There is U = {u0, u1, u2} ⊆ V (G), such that dG(u0) = dG(u2) = 1, (ui−1, ui) ∈ E(G) for i = 1, 2. Let
D1, . . . , Dr be the connected components of G\U . Clearly, �(G) = 1 + ∑r

i=1�(Di). Note that for i = 1, . . . , r Di is
a tree for which |E(Di)| < t and the distance between any two endpoints is even, thus �(Di) = �(Di), therefore, by
Lemma 2, we have

�(G) = 1 + �(G\U) = 1 +
r∑

i=1

�(Di) = 1 +
r∑

i=1

�(Di) = �(G).

Case 4: There is U = {u0, u1, u2, u3, u4, u5, u6} ⊆ V (G), such that dG(u0) = dG(u6) = 1, dG(u1) = dG(u3) =
dG(u5) = 2, dG(u2) = 3, (ui−1, ui) ∈ E(G) for i = 1, 2, 3, 4, 6, (u2, u5) ∈ E(G). Set G′ = G\{u0, u1}. Clearly,
�(G) = �(G′) + 1. As |E(G′)| < t and the distance between any two endpoints of the tree G′ is even, the equality
�(G′) = �(G′) holds.

Lemma 1 implies that there is a MPP 0–1 coloring g of the tree G\{u0, u1, u2, u5, u6} such that (u3, u4) ∈ g0.
Consider the mapping f : g0 ∪ g1 ∪ {(u0, u1), (u2, u3), (u2, u5), (u5, u6)} → {0, 1} defined as follows:

f (e) =
{

g(e) if e /∈ {(u0, u1), (u2, u3), (u2, u5), (u5, u6)},
0 if e ∈ {(u0, u1), (u2, u5)},
1 if e ∈ {(u2, u3), (u5, u6)}.

Corollary implies that f is a MPP 0–1 coloring of the tree G, therefore �(G) = �(G\{(u1, u2)}) = �(G′) + 1 and
�(G)�1 + �(G′) = �(G′) + 1 = �(G) or �(G) = �(G).

Case 5: There is U = {u0, u1, u2, u3, u4, u5, u6, u7} ⊆ V (G), such that dG(u0) = dG(u4) = dG(u6) = 1, dG(u1) =
dG(u3) = 2, dG(u2) = dG(u5) = 3, (ui−1, ui) ∈ E(G) for i = 1, 2, 3, 4, 6, (u2, u5) ∈ E(G), (u5, u7) ∈ E(G). Set
G′ = G\{u0, u1, u2, u3, u4}. Note that �(G) = �(G′) + 2. As |E(G′)| < t and the distance between any two endpoints
of the tree G′ is even, the equality �(G′) = �(G′) holds. From Corollary we have

�(G)�2 + �(G′) = 2 + �(G′) = �(G) or �(G) = �(G).

Case 6: There is U = {u0, u1, u2, u3, u4, u5, u6, u7, u8, u9, u10} ⊆ V (G), such that dG(u0) = dG(u4) = dG(u5) =
dG(u9)=1, dG(u1)=dG(u3)=dG(u6)=dG(u8)=2, dG(u2)=dG(u7)=3, (ui−1, ui) ∈ E(G) for i=1, 2, 3, 4, 6, 7, 8, 9,
(u2, u10) ∈ E(G), (u7, u10) ∈ E(G). Set G′ = G\{u0, u1, u2, u3, u4}. Clearly �(G) = �(G′) + 2. As |E(G′)| < t

and the distance between any two endpoints of the tree G′ is even, the equality �(G′) = �(G′) holds, therefore from
Corollary we have

�(G)�2 + �(G′) = 2 + �(G′) = �(G) or �(G) = �(G).
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As every tree G, in which the distance between any two endpoints is even, and |E(G)|�7, satisfies at least one of
the conditions of the six cases considered above, the proof of the theorem is complete. �
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he has done for me.
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