DISCRETE
MATHEMATICS

Communication

On trees with a maximum proper partial $0-1$ coloring containing a maximum matching

V.V. Mkrtchyan
Department of Informatics and Applied Mathematics, Yerevan State University, Yerevan 375025, Republic of Armenia

Received 12 June 2005; accepted 7 December 2005
Available online 21 February 2006
Communicated by L. Lovasz
Dedicated to Anush

Abstract

I prove that in a tree in which the distance between any two endpoints is even, there is a maximum proper partial $0-1$ coloring such that the edges colored by 0 form a maximum matching. © 2006 Elsevier B.V. All rights reserved.

Keywords: Partial proper 0-1 coloring; Maximum partial proper 0-1 coloring; Maximum matching

All graphs considered in this paper are finite, undirected and have no loops or multiple edges. $V(G)$ and $E(G)$ denote the sets of vertices and edges of a graph G, respectively. The degree of a vertex x in G is denoted by $d_{G}(x)$. If $X \subseteq E(G)$ then a mapping $f: X \rightarrow\{0,1\}$ is referred as a partial $0-1$ coloring of the graph G. For $i=0,1$ and the partial $0-1$ coloring f of the graph G, denote $f_{i} \equiv\{e \in X / f(e)=i\}$. The partial $0-1$ coloring f is proper if the sets f_{0} and f_{1} are matchings of the graph G. Denote

$$
\lambda(G) \equiv \max \left\{\left|f_{0}\right|+\left|f_{1}\right| / f \text { is a proper partial } 0-1 \text { coloring of the graph } G\right\}
$$

A proper partial $0-1$ coloring f of the graph G is maximum if $\left|f_{0}\right|+\left|f_{1}\right|=\lambda(G)$. Set

$$
\alpha(G) \equiv \max \left\{\left|f_{i}\right| / i=0,1 \text { and } f \text { is a maximum proper partial (shortly, MPP) } 0-1 \text { coloring of the graph } G\right\}
$$

It is clear, that for every graph $G \alpha(G) \leqslant \beta(G)$, where $\beta(G)$ is the cardinality of a maximum matching of the graph G. In this paper I show that if G is a tree in which the distance between any two endpoints is even, the equality $\alpha(G)=\beta(G)$ holds. Nondefined terms and conceptions can be found in [1,2].

Lemma 1. Let G be a graph, $u \in V(G), w \in V(G),(u, w) \in E(G), d_{G}(u)=1$. Then there is a MPP 0-1 coloring f of the graph G, such that $\left|f_{0}\right|=\alpha(G)$ and $(u, w) \in f_{0}$.

[^0]Proof. Let f be a MPP $0-1$ coloring of the graph G with $\left|f_{0}\right|=\alpha(G)$. Suppose $(u, w) \notin f_{0}$.
Case 1: $(u, w) \notin f_{1}$. As f is a MPP $0-1$ coloring of the graph G, there is a $\left(w, w^{\prime}\right) \in E(G)$, such that $\left(w, w^{\prime}\right) \in f_{0}$. Consider the mapping $g: f_{1} \cup\left(f_{0} \backslash\left\{\left(w, w^{\prime}\right)\right\}\right) \cup\{(u, w)\} \rightarrow\{0,1\}$ defined in the following way:

$$
g(e)= \begin{cases}0 & \text { if } e \in\left(f_{0} \backslash\left\{\left(w, w^{\prime}\right)\right\}\right) \cup\{(u, w)\}, \\ 1 & \text { if } e \in f_{1} .\end{cases}
$$

It is clear that g is a MPP $0-1$ coloring of the graph $G,(u, w) \in g_{0}$ and $\left|g_{0}\right|=\left|f_{0}\right|=\alpha(G)$.
Case 2: $(u, w) \in f_{1}$. As f is a MPP $0-1$ coloring of the graph G, with $\left|f_{0}\right|=\alpha(G)$, then there is a $\left(w, w_{1}\right) \in$ f_{0}. Consider the maximal alternating path $u,(u, w), w,\left(w, w_{1}\right), w_{1}, \ldots, w_{k-1},\left(w_{k-1}, w_{k}\right), w_{k}$, where k is odd, $\left\{(u, w),\left(w_{1}, w_{2}\right), \ldots,\left(w_{k-2}, w_{k-1}\right)\right\} \subseteq f_{1}$ and $\left\{\left(w, w_{1}\right),\left(w_{2}, w_{3}\right), \ldots,\left(w_{k-1}, w_{k}\right)\right\} \subseteq f_{0}$. Define a mapping $g:$ $f_{0} \cup f_{1} \rightarrow\{0,1\}$ as follows:

$$
g(e)= \begin{cases}f(e) & \text { if } e \notin\left\{(u, w),\left(w, w_{1}\right), \ldots,\left(w_{k-1}, w_{k}\right)\right\}, \\ 1-f(e) & \text { if } e \in\left\{(u, w),\left(w, w_{1}\right), \ldots,\left(w_{k-1}, w_{k}\right)\right\} .\end{cases}
$$

Clearly, g is a MPP $0-1$ coloring of the graph G with $(u, w) \in g_{0}$ and $\left|g_{0}\right|=\left|f_{0}\right|=\alpha(G)$. The proof is complete.
Lemma 2. Let G be a graph, $u \in V(G), v \in V(G), w \in V(G), d_{G}(u)=d_{G}(v)=1,(u, w) \in E(G),(v, w) \in E(G)$. Then
(a) there is a MPP 0-1 coloring f of the graph G, such that $\left|f_{0}\right|=\alpha(G),(u, w) \in f_{0}$ and $(v, w) \in f_{1}$;
(b) $\lambda(G)=2+\lambda(G \backslash\{u, v, w\}), \alpha(G)=1+\alpha(G \backslash\{u, v, w\})$.

Proof. (a) By Lemma 1, there is a MPP $0-1$ coloring f of the graph G, such that $\left|f_{0}\right|=\alpha(G)$ and $(u, w) \in f_{0}$. Suppose $(v, w) \notin f_{1}$, then there is a $\left(w, w^{\prime}\right) \in E(G)$, such that $\left(w, w^{\prime}\right) \in f_{1}$. Consider a mapping $g: f_{0} \cup\left(f_{1} \backslash\left\{\left(w, w^{\prime}\right)\right\}\right) \cup$ $\{(v, w)\} \rightarrow\{0,1\}$ defined in the following way:

$$
g(e)= \begin{cases}1 & \text { if } e \in\left(f_{1} \backslash\left\{\left(w, w^{\prime}\right)\right\}\right) \cup\{(v, w)\}, \\ 0 & \text { if } e \in f_{0}\end{cases}
$$

Clearly, g is a MPP 0-1 coloring of the graph G with $(u, w) \in g_{0},(v, w) \in g_{1}$ and $\left|g_{0}\right|=\alpha(G)$.
(b) Let w_{1}, \ldots, w_{r} be vertices of the graph G such that $d_{G}(w)=r+2(r \geqslant 0), u \notin\left\{w_{1}, \ldots, w_{r}\right\}, v \notin\left\{w_{1}, \ldots, w_{r}\right\}$, $\left(w, w_{i}\right) \in E(G)$ for $i=1, \ldots, r$, and f be a MPP $0-1$ coloring f of the graph G, such that $\left|f_{0}\right|=\alpha(G),(u, w) \in$ $f_{0},(v, w) \in f_{1}$. As $\left(w, w_{i}\right) \notin f_{0} \cup f_{1}$ for $i=1, \ldots, r$, we have

$$
\begin{aligned}
& \lambda(G)=\lambda\left(G \backslash\left\{\left(w, w_{1}\right), \ldots,\left(w, w_{r}\right)\right\}\right)=2+\lambda(G \backslash\{u, v, w\}), \\
& \alpha(G)=\alpha\left(G \backslash\left\{\left(w, w_{1}\right), \ldots,\left(w, w_{r}\right)\right\}\right)=1+\alpha(G \backslash\{u, v, w\}) .
\end{aligned}
$$

The proof is complete.
Corollary. Let G be a graph, $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a subset of the set of vertices of G satisfying the conditions: $d_{G}\left(u_{0}\right)=d_{G}\left(u_{4}\right)=1, d_{G}\left(u_{1}\right)=d_{G}\left(u_{3}\right)=2,\left(u_{i-1}, u_{i}\right) \in E(G)$ for $i=1,2,3,4$. Then the following is true:

$$
\lambda(G)=\lambda(G \backslash U)+4, \quad \alpha(G) \geqslant 2+\alpha(G \backslash U) .
$$

Proof. Lemma 2 implies $\lambda(G)=2+\lambda\left(G \backslash\left\{u_{0}, u_{4}\right\}\right)=\lambda(G \backslash U)+4$, therefore $\alpha(G) \geqslant 2+\alpha(G \backslash U)$.
Theorem. Let G be a tree in which the distance between any two endpoints is even. Then the equality $\alpha(G)=\beta(G)$ holds.

Proof. Clearly, the statement of the theorem is true for the case $|E(G)| \leqslant 6$. Assume that it holds for trees with $|E(G)| \leqslant t-1$, and let us prove that it will hold for the case $|E(G)|=t$, where $t \geqslant 7$.

Case 1: There is $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\} \subseteq V(G)$, such that $d_{G}\left(u_{0}\right)=1, d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=2,\left(u_{i-1}, u_{i}\right) \in E(G)$ for $i=1,2,3$. Set $G^{\prime}=G \backslash\left\{u_{0}, u_{1}\right\}$. Clearly, $\beta(G)=\beta\left(G^{\prime}\right)+1$. As $d_{G}\left(u_{0}\right)=1, d_{G}\left(u_{1}\right)=2$ and $d_{G \backslash\left\{u_{0}\right\}}\left(u_{1}\right)=1$, $d_{G \backslash\left\{u_{0}\right\}}\left(u_{2}\right)=2$, we have $\lambda(G)=1+\lambda\left(G \backslash\left\{u_{0}\right\}\right)=\lambda\left(G^{\prime}\right)+2$, thus if g is a MPP $0-1$ coloring of tree G^{\prime}, such that $\left|g_{0}\right|=\alpha\left(G^{\prime}\right)$ and $\left(u_{2}, u_{3}\right) \in g_{0}$, then the mapping $f: g_{0} \cup g_{1} \cup\left\{\left(u_{0}, u_{1}\right),\left(u_{1}, u_{2}\right)\right\} \rightarrow\{0,1\}$ defined as

$$
f(e)= \begin{cases}g(e) & \text { if } e \notin\left\{\left(u_{0}, u_{1}\right),\left(u_{1}, u_{2}\right)\right\}, \\ 1 & \text { if } e=\left(u_{1}, u_{2}\right), \\ 0 & \text { if } e=\left(u_{0}, u_{1}\right)\end{cases}
$$

is a MPP $0-1$ coloring of the tree G, therefore $\alpha(G) \geqslant\left|f_{0}\right|=1+\left|g_{0}\right|=1+\alpha\left(G^{\prime}\right)$. As the distance between any two endpoints of G^{\prime} is even and $\left|E\left(G^{\prime}\right)\right|<t$, we have $\alpha\left(G^{\prime}\right)=\beta\left(G^{\prime}\right)$, therefore

$$
\alpha(G) \geqslant 1+\alpha\left(G^{\prime}\right)=1+\beta\left(G^{\prime}\right)=\beta(G) \quad \text { or } \quad \alpha(G)=\beta(G)
$$

Case 2: There is $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\} \subseteq V(G)$, such that $d_{G}\left(u_{0}\right)=d_{G}\left(u_{4}\right)=d_{G}\left(u_{6}\right)=1, d_{G}\left(u_{1}\right)=$ $d_{G}\left(u_{3}\right)=d_{G}\left(u_{5}\right)=2,\left(u_{i-1}, u_{i}\right) \in E(G)$ for $i=1,2,3,4,\left(u_{2}, u_{5}\right) \in E(G),\left(u_{5}, u_{6}\right) \in E(G)$. Set $G^{\prime}=G \backslash\left\{u_{5}, u_{6}\right\}$. Clearly, $\beta(G)=\beta\left(G^{\prime}\right)+1$. From Corollary follows that $\lambda(G)=\lambda\left(G \backslash\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right\}\right)+4$, therefore $\lambda(G)=$ $\lambda\left(G \backslash\left\{\left(u_{2}, u_{5}\right)\right\}\right)=\lambda\left(G^{\prime}\right)+1$ and $\alpha(G) \geqslant 1+\alpha\left(G^{\prime}\right)$. Note that the distance between any two endpoints of the tree G^{\prime} is even and $\left|E\left(G^{\prime}\right)\right|<t$, thus the equality $\alpha\left(G^{\prime}\right)=\beta\left(G^{\prime}\right)$ holds, and therefore

$$
\alpha(G) \geqslant 1+\alpha\left(G^{\prime}\right)=1+\beta\left(G^{\prime}\right)=\beta(G) \quad \text { or } \quad \alpha(G)=\beta(G) .
$$

Case 3: There is $U=\left\{u_{0}, u_{1}, u_{2}\right\} \subseteq V(G)$, such that $d_{G}\left(u_{0}\right)=d_{G}\left(u_{2}\right)=1,\left(u_{i-1}, u_{i}\right) \in E(G)$ for $i=1$, 2. Let D_{1}, \ldots, D_{r} be the connected components of $G \backslash U$. Clearly, $\beta(G)=1+\sum_{i=1}^{r} \beta\left(D_{i}\right)$. Note that for $i=1, \ldots, r D_{i}$ is a tree for which $\left|E\left(D_{i}\right)\right|<t$ and the distance between any two endpoints is even, thus $\alpha\left(D_{i}\right)=\beta\left(D_{i}\right)$, therefore, by Lemma 2, we have

$$
\alpha(G)=1+\alpha(G \backslash U)=1+\sum_{i=1}^{r} \alpha\left(D_{i}\right)=1+\sum_{i=1}^{r} \beta\left(D_{i}\right)=\beta(G) .
$$

Case 4: There is $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right\} \subseteq V(G)$, such that $d_{G}\left(u_{0}\right)=d_{G}\left(u_{6}\right)=1, d_{G}\left(u_{1}\right)=d_{G}\left(u_{3}\right)=$ $d_{G}\left(u_{5}\right)=2, d_{G}\left(u_{2}\right)=3,\left(u_{i-1}, u_{i}\right) \in E(G)$ for $i=1,2,3,4,6,\left(u_{2}, u_{5}\right) \in E(G)$. Set $G^{\prime}=G \backslash\left\{u_{0}, u_{1}\right\}$. Clearly, $\beta(G)=\beta\left(G^{\prime}\right)+1$. As $\left|E\left(G^{\prime}\right)\right|<t$ and the distance between any two endpoints of the tree G^{\prime} is even, the equality $\alpha\left(G^{\prime}\right)=\beta\left(G^{\prime}\right)$ holds.

Lemma 1 implies that there is a MPP $0-1$ coloring g of the tree $G \backslash\left\{u_{0}, u_{1}, u_{2}, u_{5}, u_{6}\right\}$ such that $\left(u_{3}, u_{4}\right) \in g_{0}$. Consider the mapping $f: g_{0} \cup g_{1} \cup\left\{\left(u_{0}, u_{1}\right),\left(u_{2}, u_{3}\right),\left(u_{2}, u_{5}\right),\left(u_{5}, u_{6}\right)\right\} \rightarrow\{0,1\}$ defined as follows:

$$
f(e)= \begin{cases}g(e) & \text { if } e \notin\left\{\left(u_{0}, u_{1}\right),\left(u_{2}, u_{3}\right),\left(u_{2}, u_{5}\right),\left(u_{5}, u_{6}\right)\right\}, \\ 0 & \text { if } e \in\left\{\left(u_{0}, u_{1}\right),\left(u_{2}, u_{5}\right)\right\}, \\ 1 & \text { if } e \in\left\{\left(u_{2}, u_{3}\right),\left(u_{5}, u_{6}\right)\right\} .\end{cases}
$$

Corollary implies that f is a MPP $0-1$ coloring of the tree G, therefore $\lambda(G)=\lambda\left(G \backslash\left\{\left(u_{1}, u_{2}\right)\right\}\right)=\lambda\left(G^{\prime}\right)+1$ and $\alpha(G) \geqslant 1+\alpha\left(G^{\prime}\right)=\beta\left(G^{\prime}\right)+1=\beta(G)$ or $\alpha(G)=\beta(G)$.

Case 5: There is $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\} \subseteq V(G)$, such that $d_{G}\left(u_{0}\right)=d_{G}\left(u_{4}\right)=d_{G}\left(u_{6}\right)=1, d_{G}\left(u_{1}\right)=$ $d_{G}\left(u_{3}\right)=2, d_{G}\left(u_{2}\right)=d_{G}\left(u_{5}\right)=3,\left(u_{i-1}, u_{i}\right) \in E(G)$ for $i=1,2,3,4,6,\left(u_{2}, u_{5}\right) \in E(G),\left(u_{5}, u_{7}\right) \in E(G)$. Set $G^{\prime}=G \backslash\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Note that $\beta(G)=\beta\left(G^{\prime}\right)+2$. As $\left|E\left(G^{\prime}\right)\right|<t$ and the distance between any two endpoints of the tree G^{\prime} is even, the equality $\alpha\left(G^{\prime}\right)=\beta\left(G^{\prime}\right)$ holds. From Corollary we have

$$
\alpha(G) \geqslant 2+\alpha\left(G^{\prime}\right)=2+\beta\left(G^{\prime}\right)=\beta(G) \quad \text { or } \quad \alpha(G)=\beta(G) .
$$

Case 6: There is $U=\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}, u_{8}, u_{9}, u_{10}\right\} \subseteq V(G)$, such that $d_{G}\left(u_{0}\right)=d_{G}\left(u_{4}\right)=d_{G}\left(u_{5}\right)=$ $d_{G}\left(u_{9}\right)=1, d_{G}\left(u_{1}\right)=d_{G}\left(u_{3}\right)=d_{G}\left(u_{6}\right)=d_{G}\left(u_{8}\right)=2, d_{G}\left(u_{2}\right)=d_{G}\left(u_{7}\right)=3,\left(u_{i-1}, u_{i}\right) \in E(G)$ for $i=1,2,3,4,6,7,8,9$, $\left(u_{2}, u_{10}\right) \in E(G),\left(u_{7}, u_{10}\right) \in E(G)$. Set $G^{\prime}=G \backslash\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Clearly $\beta(G)=\beta\left(G^{\prime}\right)+2$. As $\left|E\left(G^{\prime}\right)\right|<t$ and the distance between any two endpoints of the tree G^{\prime} is even, the equality $\alpha\left(G^{\prime}\right)=\beta\left(G^{\prime}\right)$ holds, therefore from Corollary we have

$$
\alpha(G) \geqslant 2+\alpha\left(G^{\prime}\right)=2+\beta\left(G^{\prime}\right)=\beta(G) \quad \text { or } \quad \alpha(G)=\beta(G) .
$$

As every tree G, in which the distance between any two endpoints is even, and $|E(G)| \geqslant 7$, satisfies at least one of the conditions of the six cases considered above, the proof of the theorem is complete.

I would like to thank my Supervisor Rafayel R. Kamalian for his constant attention to this work and for everything he has done for me.

References

[1] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[2] L. Lovasz, M.D. Plummer, Matching Theory, Annals of Discrete Mathematics, vol. 29, North-Holland, Amsterdam, 1986.

[^0]: E-mail address: vahanmkrtchyan2002@yahoo.com.

