Provided by Elsevier - Publisher Connector

Metadata, citation and similar papers at core.ac.uk

Genomics Data 9 (2016) 145-147

journal homepage: www.elsevier.com/locate/gdata

Contents lists available at ScienceDirect

Genomics Data

GENOMICS

Data

Data in Brief

Transcriptional profiling of regenerating embryonic mouse hearts @CrossMark

Manuela Magarin ?, Herbert Schulz *°, Ludwig Thierfelder ¢, Jorg-Detlef Drenckhahn *<*

@ Max-Delbriick-Center for Molecular Medicine, Berlin, Germany
b Cologne Center for Genomics, University of Cologne, Cologne, Germany
¢ Department of Pediatric Cardiology, University Hospital Miinster, Miinster, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 5 August 2016
Accepted 11 August 2016
Available online 12 August 2016

Keywords:

Heart development

Cardiac regeneration
Cardiomyocyte proliferation
Mitochondrial dysfunction
Cellular stress response

The postnatal mammalian heart is considered a terminally differentiated organ unable to efficiently regenerate
after injury. In contrast, we have recently shown a remarkable regenerative capacity of the prenatal heart
using myocardial tissue mosaicism for mitochondrial dysfunction in mice. This model is based on inactivation
of the X-linked gene encoding holocytochrome c synthase (Hccs) specifically in the developing heart. Loss of
HCCS activity results in respiratory chain dysfunction, disturbed cardiomyocyte differentiation and reduced
cell cycle activity. The Hccs gene is subjected to X chromosome inactivation, such that in females heterozygous
for the heart conditional Hees knockout approximately 50% of cardiac cells keep the defective X chromosome ac-
tive and develop mitochondrial dysfunction while the other 50% remain healthy. During heart development the
contribution of HCCS deficient cells to the cardiac tissue decreases from 50% at mid-gestation to 10% at birth. This
regeneration of the prenatal heart is mediated by increased proliferation of the healthy cardiac cell population,
which compensates for the defective cells allowing the formation of a fully functional heart by birth. Here we per-
formed microarray RNA expression analyses on 13.5 dpc control and heterozygous Hccs knockout hearts to iden-
tify molecular mechanisms that drive embryonic heart regeneration. Array data have been deposited in the Gene

Expression Omnibus (GEO) database under accession number GSE72054.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

2. Experimental design, materials and methods

Specifications

2.1. Experimental design

Organism/cell Mus musculus (129Sv/C57Bl6 mixed genetic h 1 lian h h Kabl .
line/tissue background)/embryonic hearts (13.5 days post coitum) T e prenatal mammalian heart has a remar. able regenerative C.a_
Sex female pacity and can compensate for the presence of diseased cells or cardio-
Sequencer or Affymetrix GeneChip Mouse Genome 430 2.0 arrays myocyte loss to build fully functional hearts by birth [1,2]. In order to
array type identify molecular mechanisms that drive embryonic heart regenera-
Data format Raw and processed . . . . . .
) . tion, we utilized a genetic mouse model based on inactivation of the
Experimental Heterozygous heart conditional Hees (Holocytochrome ¢ X X .
factors synthase) knockout (cHces /) versus littermate control X-linked gene encoding holocytochrome c synthase (Hccs) in the devel-
female embryos oping heart [1]. Heterozygous heart conditional Hccs knockout female
Experimental Total RNA was isolated from whole 13.5 dpc embryonic hearts embryos (CHCCSH ~) develop a tissue mosaic of mitochondrial dysfunc-
features and processed for hybridization to ’,\ffymemf,i”ays' 3 tion at 10.5 dpc, such that the myocardium is composed of 50% healthy
biological replicates per genotype (i.e. cHccs versus d di d di ielv. During h d 1
controls) each containing 4-5 pooled hearts were analyzed. an lsea‘se .Car lomyocytes, .respectlve y- urmg. eal:t evelopment
Consent Not applicable the contribution of HCCS deficient cells to the cardiac tissue decreases
Sample source Miinster, Germany from 50% at mid-gestation to 10% at birth. This regeneration of the pre-
location

natal heart is mediated by increased proliferation of the healthy cardiac

1. Direct link to deposited data

cell population, allowing the formation of a fully functional heart at
birth. Nevertheless, HCCS deficient cardiomyocytes do not undergo
cell death but survive embryonic and fetal development and are still de-

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72054 tectable in the postnatal heart. Here we performed microarray RNA ex-
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pression analyses on 13.5 dpc control and cHees™/~ hearts. At this
developmental stage the most dramatic changes in tissue composition
T/~ ventricular myocardium, as hyperproliferation of
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healthy cardiomyocytes is readily detectable while at the same time a
substantial contribution of HCCS deficient cells is still present (Fig. 1).
This should allow the identification of genes involved in compensatory
growth of healthy cells as well as survival of defective cells.

2.2. Mice

The generation and characterization of heart conditional Hccs knock-
out (KO) mice has been described previously [1]. Briefly, “floxed” (1)
Hccs mice were bred to mice expressing Cre recombinase under the
control of the Nkx2.5 promoter. All mice were maintained on a mixed
129Sv/C57BI6 genetic background and all embryo experiments were
performed on heterozygous Hccs KO females (Hees™ /Nkx2.5Cre, re-
ferred to as cHcest/~) and their respective Cre positive female litter-
mate controls (Hees ™/ */Nkx2.5Cre, referred to as Hces™ ™).

2.3. Preparation of embryonic hearts

For embryo generation females were mated to the respective males
and checked for vaginal plug the next morning. The day of an observed
plug was defined as 0.5 dpc and embryos were prepared at 13.5 dpc.
Dams were sacrificed by cervical dislocation and embryos were quickly
dissected from the uterus into cold PBS. Whole hearts (including ventri-
cles, atria and parts of the outflow tract) were removed from the thorac-
ic cavity, rinsed in cold PBS to wash out blood and snap frozen in liquid
nitrogen. Tail tissue was used for DNA preparation and PCR genotyping

[1].
2.4. RNA isolation

Given the small size of 13.5 dpc mouse hearts, to purify sufficient
RNA amounts suitable for microarray analyses an average of 4 to 5
hearts of the same genotype were pooled. This procedure furthermore
accounts for interindividual as well as environmental or maternal differ-
ences during pregnancy. RNA was purified using the RNeasy Mini Kit
(Qiagen). The tissue was homogenized in RLT buffer supplemented
with B-mercaptoethanol using a micropestle. Total RNA was isolated
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Fig. 1. Regeneration of the embryonic heart in cHccs ™~ female mice. The prenatal
cHeest/~ heart is composed of healthy (depicted in red) and diseased (i.e. HCCS
deficient) cardiomyocytes harboring a defect in the mitochondrial respiratory chain
(depicted in green). At mid-gestation (i.e. 10.5 dpc) a 50:50 ratio of healthy versus
diseased cells is observed in the myocardium, whereas the contribution of diseased
tissue progressively declines to just 10% prior to birth. This embryonic heart
regeneration is mediated by increased proliferation of healthy cardiomyocytes, which
compensate for the defective cells to build a fully functional heart by birth. Nevertheless,
HCCS deficient cells survive fetal development and are still detectable in the postnatal
heart. Transcriptional profiling of regenerating cHccs ™~ hearts has been performed at
13.5 dpc.

via spin columns according to the manufacturer's instructions, including
digestion of genomic DNA on the column using the RNase-Free DNase
Set (Qiagen). RNA purity and quality was tested using spectrophoto-
metric parameters and a Bioanalyzer (Agilent), respectively. All samples
used for subsequent microarray analyses had RNA integrity numbers
(RIN) of >8.8.

2.5. Microarray RNA expression analyses

For microarray expression analyses a total of 10 Affymetrix
GeneChip Mouse Genome 430 2.0 arrays were used. Five pooled sam-
ples per genotype (i.e. cHces™~ and control female embryos) were an-
alyzed. cDNA synthesis was performed using Live Technologies
SuperScript® One-Cycle cDNA Kit followed by in vitro transcription
using the MEGAScript T7 Kit. After fragmenting of the cRNA for target
preparation using the standard Affymetrix protocol, 15 pg fragmented
cRNA was hybridized for 16 h at 45 °C to the Mouse Genome 430
array. Arrays were washed and stained with streptavidin-phycoerythrin
in the Affymetrix Fluidics Station 450 following standard procedures
and further scanned using the Affymetrix GeneChip Scanner 3000 7G.

2.6. Data processing and analysis

Arrays have been quantile-normalize using the RMA algorithm. RMA
normalization was performed using Partek Genomic Suite version 6.3,
RMA background correction, quantile normalization and median polish
probeset summarization. Not or low expressed transcripts were re-
moved by a (log,) maximum expression cutoff < 6. The data filtering re-
sulted in 18,571 of 45,101 probe sets. After normalization the arrays
were checked for outlier using the principal component analysis
(PCA), a correlation dispersion matrix and normalized Eigenvector scal-
ing. No outlier has been detected. Differential expression was
ascertained using t-statistic followed by a FDR multiple testing correc-
tion [3]. Probes which undergo 5% FDR were further investigated by
functional enrichment using g:Profiler [4], with a simulation based ana-
lytical threshold for significance estimation.

3. Discussion

The microarray RNA expression analyses described above revealed
437 genes differentially expressed in 13.5 dpc cHces™/~ compared to
control hearts, the majority of which are involved in protein and
amino acid metabolism, unfolded protein response (UPR), translational
control, cellular stress response and cell death regulation (for details see
(5)). Most of the genes and pathways regulating cell stress, UPR and ap-
optosis could be assigned to HCCS deficient cardiomyocytes, which like-
ly contributes to their survival within the myocardium [5]. In contrast,
the transcriptional signature of the healthy cardiomyocyte population
is less clear. In this regard it is important to note that we used whole
13.5 dpc cHeest/~ hearts containing a tissue mosaic of healthy and
HCCS deficient cardiomyocytes for microarray analyses. Subtle changes
in one of the two cell populations are easily missed if not sufficient to
alter expression levels in RNA samples isolated from whole hearts. Al-
though the cellular response to mitochondrial dysfunction in the dis-
eased cardiomyocyte population is the dominating outcome of our
analyses, the microarray data is likely to also contain genes specifically
regulated in the healthy cardiomyocyte population. Identification of
the latter would be most relevant for cardiomyocyte cell cycle regula-
tion and cardiac regeneration. Consequently, we do not claim to provide
a full list of differentially expressed genes in the regenerating cHces ™/~
heart [5], but future studies using laser microdissection or fluorescence
activated cell sorting (FACS) will be required to separate the two cell
populations. This would allow to more thoroughly define gene expres-
sion changes specific for healthy and HCCS deficient cardiomyocytes,
respectively.
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