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Abstract

Discrete and continuous formulations of partial di#erential operators are uni-ed by a time scale formulation of partial
di#erential operators. Results include an Euler–Lagrange equation for double integral variational problems on time scales
and a Picone identity which implies a Sturm–Picone comparison theorem for second-order elliptic PDEs on time scales.
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1. Introduction

In order to unify results from the calculus of real numbers with results from the di#erence calculus,
Hilger and Aulbach [8,13] generalized the de-nition of a derivative and of an integral to time scales
in order to create the time scale calculus. A book on the subject of time scales, i.e., measure chains,
by Kaymak>calan et al. [17] summarizes and organizes much of the time scale calculus. Other papers
on time scales include joint and individual papers of Agarwal, Ahlbrandt, Bohner, Do@slAy, Erbe,
Hilscher, Peterson, and Ridenhour [1–4,10,11,13–16]. A time scale T is de-ned to be any nonempty
closed subset of the real numbers.

The above references provide motivation and formulation of delta derivatives on a time scale, prop-
erties of delta derivatives and integrals, and terminology. A function f on T is called rd-continuous
(“right-dense continuous”) on T if it is continuous at each right-dense point and maximal point of T
and if its left-sided limit exists at left-dense points. Any continuous function is also rd-continuous. By
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Crd we denote the set of all rd-continuous functions, while C1
rd denotes the set of all I di#erentiable

functions with rd-continuous derivatives.

2. Partial derivatives on several time scales

We introduce de-nitions of time scale derivatives and time scale integrals for functions of two
variables as follows. Let X and Y be time scales. The forward jump operators � :X → X and
� :Y→ Y are de-ned by �(x) := inf{s∈X: s¿x} and �(y) := inf{t ∈Y: t ¿y} supplemented by
�(x)= x if x is a maximal point of X and �(y)=y if y is a maximal point of Y. The stepsize
(or “graininess” [8,13,17]) h :X → R is de-ned as h(x)= �(x) − x. The stepsize k :Y → R is
de-ned as k(y)= �(y) − y. We will use the notation f�(x; y)=f(�(x); y), f�(x; y)=f(x; �(y)),
and f��(x; y)=f(�(x); �(y)).
For X and Y bounded time scales, we let R denote the “rectangle” R :=X × Y. Let Ri denote

the set Ri :=Xi ×Yi, where our Xi is the same as Hilger’s X�.
Because we will need notation for partial derivatives with respect to time scale variables x and y

we employ lexigraphic ordering for consistency. (The Greek alphabet has � preceeding I:) As in
[21] let f�(x; y) denote the time scale partial derivative with respect to x and let fI(x; y) denote
the time scale partial derivative with respect to y. De-nitions of these partial derivatives are now
given.

Let f be a real-valued function (or a matrix valued function) on X ×Y. At (x; y)∈X ×Y we
say that f has a “� partial derivative” f�(x; y) (with respect to x) if for each �¿ 0 there exists a
neighborhood Ux; (open in the relative topology of X), of x such that

|f(�(x); y)− f(s; y)− f�(x; y)(�(x)− s)|6 �|�(x)− s| (1)

for all s∈Ux. At (x; y)∈X × Y we say that f has a “� partial derivative” fI(x; y)∈R (with
respect to y) if for each �¿ 0 there exists a neighborhood Uy of y such that

|f(x; �(y))− f(x; t)− fI(x; y)(�(y)− t)|6 �|�(y)− t| (2)

for all t ∈Uy. From single variable time scales, we have the useful formulas f(�(x); y)=f(x; y)+
h(x)f�(x; y) if f�(x; y) exists and f(x; �(y))=f(x; y) + k(y)fI(x; y) if fI(x; y) exists.

Let f be a real-valued (or matrix valued) function on X×Y. The function f is called rd-continuous
in y if for every �∈X, the function f(�; y) is rd-continuous on Y. The function f is rd-continuous
in x if for every �∈Y the function f(x; �) is rd-continuous on X.
Let CCrd denote the set of functions f(x; y) on X×Y with the properties

• f is rd-continuous in x,
• f is rd-continuous in y,
• if (x1; y1)∈X × Y with x1 right-dense or maximal and y1 right-dense or maximal, then f is

continuous at (x1; y1),
• if x1 and y1 are both left-dense, then the limit of f(x; y) exists as (x; y) approaches (x1; y1) along
any path in the region RLL(x1; y1)= {(x; y): x∈ [a; x1] ∩X; y∈ [c; y1] ∩Y}.

Let CC1
rd be the set of all functions in CCrd for which both the � partial derivative and the � partial

derivative exist and are in CCrd :
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3. Double integrals on time scales

Double integrals are de-ned as iterated integrals. If f has a � antiderivative A and A has a �
antiderivative B, then∫ d

c

∫ b

a
f(x; y)�xIy :=

∫ d

c
(A(b; y)− A(a; y))Iy

= B(b; d)− B(b; c)− B(a; d) + B(a; c); (3)

where A�=f; BI =A, and (BI)�=A�=f. If f has a I antiderivative C and C has a � an-
tiderivative D, then∫ b

a

∫ d

c
f(x; y)Iy�x :=

∫ b

a
(C(x; d)− C(x; c))�x

= D(b; d)− D(a; d)− D(b; c) + D(a; c); (4)

where CI =f; D�=C, and (D�)I =CI =f. The integration by parts formulas for double integrals
are ∫ d

c

∫ b

a
f(�(x); y)g�(x; y)�xIy

=−
∫ d

c

∫ b

a
f�(x; y)g(x; y)�xIy +

∫ d

c
f(b; y)g(b; y)Iy −

∫ d

c
f(a; y)g(a; y)Iy

(5)

and ∫ b

a

∫ d

c
f(x; �(y))gI(x; y)Iy�x=−

∫ b

a

∫ d

c
fI(x; y)g(x; y)Iy�x

+
∫ b

a
f(x; d)g(x; d)�x −

∫ b

a
f(x; c)g(x; c)�x: (6)

In the continuous case [12], if f is Riemann integrable as a double integral on {a6 x6 b; c6y6
d}, and if it is Riemann integrable in x for each y and Riemann integrable in y for each x, then∫ b

a
dx

∫ d

c
f(x; y) dy=

∫ d

c
dy

∫ b

a
f(x; y) dx: (7)

Also, if f is continuous in {a¡x¡b; c¡y¡d} and if both of the iterated Riemann integrals∫ b

a
dx

∫ d

c
|f(x; y)| dy (8)

and ∫ d

c
dy

∫ b

a
|f(x; y)| dx (9)
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exist, then [12] both of the following Riemann integrals exist and∫ b

a
dx

∫ d

c
f(x; y) dy=

∫ d

c
dy

∫ b

a
f(x; y) dx: (10)

In the discrete case, if k; l; m; and n are integers with k6 l and m6 n, then
n∑
j=m

l∑
i=k

ai; j =
l∑
i=k

n∑
j=m

ai; j: (11)

Thus the order of integration can be reversed in these important special cases of time scale double
integrals. In some cases our proofs could be shortened if the integrands f in double integrals were
restricted to the class R; the reversible class, of functions f which are double integrable in both
orders and have the property∫ b

a

∫ d

c
f(x; y)�xIy=

∫ d

c

∫ b

a
f(x; y)Iy�x: (12)

Since rd-continuous functions of one variable are integrable and double integrals are de-ned as
iterated integrals, it follows that f∈CCrd is double integrable in either order, although this condition
alone has not been shown to imply that (12) holds. For full generality of our results we have given
proofs which do not require f to be in R until our derivation of the Euler–Lagrange equation.

Proposition 1. (a) The functions � and � are rd-continuous.
(b) The functions h and k are rd-continuous.
(c) If f∈CCrd ; then f�� ∈CCrd ; f� ∈CCrd ; and f� ∈CCrd.

Proof. Parts (a) and (b) follow from single time scale facts. (c) Let f∈CCrd and let (x1; y1)∈R.
Then f, f�, f�, and f�� are all rd-continuous in both x and y. If x1 and y1 are both right-dense
or maximal, then f is continuous at (x1; y1), � is continuous at x1, and � is continuous at y1.
Thus f, f�, f�, and f�� are all continuous at (x1; y1). If x1 and y1 are both left-dense, then the
left-sided limit of � at x1 exists, the left-sided limit of � at y1 exists, and the limit of f(x; y) as
(x; y) approaches (x1; y1) along any path in RLL exists. Thus the limit of f; f�, f�; and f�� all
exist as (x; y) approaches (x1; y1) along any path in RLL.

Proposition 2. Let f and g be real-valued functions on X × Y or matrix valued functions such
that the product fg is de8ned.

(a) If f is continuous; then f∈CCrd.
(b) If f is continuous and g∈CCrd ; then fg∈CCrd.

Proof. (a) This follows from the de-nition of continuous.
(b) Let (x1; y1)∈R. If x1 is right-dense, then f and g are continuous in x at any point (x1; y)∈R,

so fg is continuous in x at any point (x1; y)∈R. If y1 is right-dense, then f and g are continuous
in y at any point (x; y1)∈R and fg is continuous in y at any point (x; y1)∈R. If both x1 and y1
are right-dense, then f and g are continuous at (x1; y1) and fg is continuous at (x1; y1). If x1 and
y1 are both maximal, then f and g are continuous at (x1; y1) and fg is continuous at (x1; y1): If
x1 is left-dense, then the left-sided limits in x of f and g exist for any point (x1; y)∈R, so the
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left-sided limit in x of fg exists for any point (x1; y)∈R. If y1 is left-dense, then the left-sided
limits in y of f and g exist for any point (x; y1)∈R, so the left-sided limit in y of fg exists for
any point (x; y1)∈R. If both x1 and y1 are left-dense, then the limits of both f and g exist as (x; y)
approaches (x1; y1) along any path in RLL. Thus the limit of fg exists as (x; y) approaches (x1; y1)
along any path in RLL.

Proposition 3. Suppose each of the time scales X and Y contain at least two points. Let f∈CCrd.
Let x0 ∈Xi and y0 ∈Yi. Then

(i)
∫ �(x0)
x0

f(x; y)�x= h(x0)f(x0; y);

(ii)
∫ �(y0)
y0

f(x; y)Iy= k(y0)f(x; y0);

(iii)
∫ �(y0)
y0

∫ �(x0)
x0

f(x; y)�xIy=
∫ �(x0)
x0

∫ �(y0)
y0

f(x; y)Iy= h(x0)k(y0)f(x0; y0).

Proof. Since the integral in the left side of (i) exists, there exists a function A such that A�=f.
Then

A(�(x0); y)− A(x0; y)= h(x0)A�(x0; y)= h(x0)f(x0; y)
and ∫ �(x0)

x0

f(x; y)�x=A(�(x0); y)− A(x0; y)= h(x0)f(x0; y):

The proof of (ii) is similar. Item (iii) follows from (i) and (ii).

Recall that Hilger [13] used #(x) for the left jump function on X. We will use the notation $(y)
for the left jump function on the time scale Y.

Proposition 4. Suppose f∈CCrd.

(i) If f(x; y0)= 0 for all time scale points x in [x1; x2]i ; then∫ �(y0)

y0

∫ x2

x1

f(x; y)�xIy=0:

(ii) If f(x; $(y0))= 0 for all time scale points x in [x1; x2]i; then∫ y0

$(y0)

∫ x2

x1

f(x; y)�xIy=0:

Proof. For (i), let F(y) :=
∫ x2
x1
f(x; y)�x. Then F(y0)=

∫ x2
x1
f(x; y0)�x=0 and∫ �(y0)

y0

∫ x2

x1

f(x; y)�xIy=
∫ �(y0)

y0

F(y)Iy= k(y0)F(y0)= 0:

Part (ii) follows from (i) by relabeling �(y0) as y1 and y0 as $(y0).



40 C.D. Ahlbrandt, C. Morian / Journal of Computational and Applied Mathematics 141 (2002) 35–55

Proposition 5. (i) If a¡c¡b and f∈Crd ; then∫ b

a
f(x)�x=

∫ c

a
f(x)�x +

∫ b

c
f(x)�x:

(ii) If P is any rectangular partition of [a; b] × [c; d] into a 8nite number of subrectangles Rij
and f∈Crd ; then∫ d

c

∫ b

a
f(x; y)�xIy=

∑
Ri; j∈P

∫ ∫
Rij

f(x; y)�xIy:

Proposition 6. Assume that X is a bounded time scale which contains at least two points. Let
a :=minX; b=maxX; and denote X by [a; b]. Suppose that f and g are in Crd on X. Then

(i) If |f(x)|6 g(x) on[a; b]i ; then | ∫ ba f(x)�x|6 ∫ b
a g(x)�x:

(ii) | ∫ ba f(x)�x|6 ∫ b
a |f(x)|�x:

(iii) If f(x)¿ 0 on [a; b]i ; then
∫ b
a f(x)�x¿ 0.

(iv) If x0 ∈ [a; b]i is such thatf(x0)¿ 0; then there exist time scale points x1; x2 in [a; b] with
x1¡x2 and x16 x06 x2 such that

∫ x2
x1
f(x)�x¿ 0:

(v) If f(x)¿ 0 on [a; b]i and there exists a time scale point x0 ∈ [a; b]i such that f(x0)¿ 0;
then

∫ b
a f(x)�x¿ 0.

Proof. Result (i) is given by Hilger [13]. Part (iv) corrects Agarwal and Bohner’s Lemma 2;
part (4) [2, p. 679], where they assert that

(4) If t1 ∈T� and f(t1)¿ 0; then there exists t2 ∈T with
∫ t2
t1
f(t)It ¿ 0;

Note that there is no such t2 in the continuous example of f(t) := 1 on the real interval T= [0; 1]
if t1 is chosen as 1.

Proposition 7. Consider bounded time scales X= [a; b] and Y= [c; d]; each of which contain at
least two points; and f; g in CCrd on R :=X×Y.

(i) If |f(x; y)|6 g(x; y) on Ri; then| ∫ dc ∫ b
a f(x; y)�xIy|6

∫ d
c

∫ b
a g(x; y)�xIy:

(ii) | ∫ dc ∫ b
a f(x; y)�xIy|6

∫ d
c

∫ b
a |f(x; y)|�xIy:

(iii) If f(x; y)¿ 0 on Ri; then
∫ d
c

∫ b
a f(x; y)�xIy¿ 0:

(iv) If (x0; y0)∈Ri is such that f(x0; y0)¿ 0; then there exist time scale points u1; u2
in [a; b]; v1; v2 in [c; d] with u1¡u2; v1¡v2; u16 x06 u2; and v16y06 v2 such that∫ v2
v1

∫ u2
u1
f(x; y)�xIy¿ 0:

(v) If f(x; y)¿ 0 on Ri and f(x0; y0)¿ 0 for some (x0; y0)∈Ri; then
∫ d
c

∫ b
a f(x; y)�xIy¿ 0:

Proof of (iv). Suppose each of the time scales X and Y contain at least two points. Let f∈CCrd.
Assume (x0; y0)∈Xi ×Yi is such that f(x0; y0)¿ 0. In each of the following four cases we show
existence of a point (xi; yi) such that the integral over the region with corners at (x0; y0) and (xi; yi)
is positive. Each of the points (xi; yi) is in the ith quadrant relative to (x0; y0).



C.D. Ahlbrandt, C. Morian / Journal of Computational and Applied Mathematics 141 (2002) 35–55 41

1. We establish the -rst quadrant result. If x0 is not a maximal point of X and y0 is not a
maximal point of Y, then there exists a point (x1; y1) in X×Y with x0¡x1 and y0¡y1 such that∫ y1
y0

∫ x1
x0
f(x; y)�xIy¿ 0:

Assume that x0 and y0 are not maximal.
Case (i): x0 is right-scattered. Choose x1 := �(x0): If y0 is right-scattered and y1 := �(y0) then part

(iii) of Proposition 3 gives∫ y1

y0

∫ x1

x0

f(x; y)�xIy= h(x0)k(y0)f(x0; y0)¿ 0:

Next, assume x0 is right-scattered and y0 is right-dense. Then part (i) of Proposition 3 gives∫ x1

x0

f(x; y)�x= h(x0)f(x0; y):

Since h(x0)f(x0; y) is an rd-continuous function of y, there exists y1 ∈Y with y0¡y1 such that
f(x0; y)¿ 0 for y06y6y1 and

∫ y1
y0
h(x0)f(x0; y)Iy¿ 0. Thus∫ y1

y0

∫ x1

x0

f(x; y)�xIy=
∫ y1

y0

h(x0)f(x0; y)Iy¿ 0:

Case (ii): x0 is right-dense.
The proof for the case where x0 is right-dense and y0 is right-scattered proceeds by selecting

y1 := �(y0) and noting that since f(x; y0) is continuous at x0; there exists an x1 with x1¿x0 such
that f(x; y0)¿ 0 on [x0; x1]: Since∫ �(y0)

y0

g(y)Iy= g(y0)k(y0)

for any g(y) which is de-ned at y0, the choice of g(y) :=
∫ x1
x0
f(x; y)�x gives∫ y1

y0

∫ x1

x0

f(x; y)�xIy=
∫ y1

y0

g(y)Iy= g(y0)k(y0)= k(y0)
∫ x1

x0

f(x; y0)�x¿ 0:

If both x0 and y0 are right-dense, then f is continuous at (x0; y0). Then there exists a )¿ 0 such
that f(x; y)¿f(x0; y0)=2 on

{(x; y): (x; y)∈X×Y; x06 x6 x0 + ); y06y6y0 + )}:
Then there exists x1 ∈X ∩ (x0; x0 + )] and y1 ∈Y ∩ (y0; y0 + )] such that f(x; y)¿f(x0; y0)=2 for
(x; y)∈{(x; y): x06 x6 x1; y06y6y1; (x; y)∈X×Y}: Thus∫ y1

y0

∫ x1

x0

f(x; y)�xIy¿
∫ y1

y0

∫ x1

x0

(f(x0; y0)=2)�xIy¿
∫ y1

y0

∫ x1

x0

0�xIy=0:

2. Next we establish the second quadrant result. If x0 is a maximal point of X and y0 is not a
maximal point of Y, then there exists a point (x2; y2) in X×Y with x2¡x0 and y0¡y2 such that∫ y2
y0

∫ x0
x2
f(x; y)�xIy¿ 0:

Assume x0 is maximal and hence is not isolated. Then f( · ; y0) is continuous at x0 and there
exists a point x2 in [a; x0) such that f(x; y0)¿ 0 on [x2; x0].
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Consider the case of y0 right-scattered. Set y2 = �(y0) for∫ y2

y0

∫ x0

x2

f(x; y)�xIy=
∫ y2

y0

∫ x0

x2

f(x; y0)�xIy¿ 0:

In the case of y0 right-dense, f(x; y) is continuous at (x0; y0) and there exists (x2; y2) such that
f(x; y)¿ 0 on [x2; x0]× [y0; y2]:
3. Next we establish the third quadrant result. If x0 is a maximal point of X and y0 is a max-

imal point of Y then there exists a point (x3; y3) in X × Y with x3¡x0 and y3¡y0 such that∫ y0
y3

∫ x0
x3
f(x; y)�xIy¿ 0:

Assume that x0 is maximal (hence not isolated) and y0 is maximal (hence not isolated). Then x0
and y0 are left-dense, f is continuous at (x0; y0); and there exists a point (x3; y3); x3¡x0; y3¡y0;
such that f(x; y)¿ 0 on [x3; x0]× [y3; y0]:

4. Next we establish the fourth quadrant result. If x0 is not a maximal point of X and y0 is a
maximal point of Y, then there exists a point (x4; y4) in X×Y with x0¡x4 and y4¡y0 such that∫ y0
y4

∫ x4
x0
f(x; y)�xIy¿ 0:

Assume x0 is not a maximum and y0 is a maximum (hence not isolated). If x0 is right-dense,
then f(x; y) is continuous at (x0; y0) and there exists a point (x4; y4); x0¡x4; y4¡y0; such that
f(x; y)¿ 0 on [x0; x4]× [y4; y0]: If x0 is right-scattered, set x4 = �(x0): Then∫ x4

x0

f(x; y)�x=f(x0; y)h(x0)¿ 0

for y46y6y0 for some y4 in [c; y0): Hence∫ y0

y4

∫ x4

x0

f(x; y)�xIy¿ 0:

A proof of the continuous case of the following lemma is found in [7].

Lemma 8 (the fundamental lemma). If R= [a; b]× [c; d]; M is continuous on (Ri)i ; and∫ d

c

∫ b

a
M (x; y),��(x; y)�xIy=0 (13)

for any C1 function ,(x; y) which vanishes on the boundary of R; then the function M (x; y) is 0
at every time scale point (x; y) in (Ri)i.

1-d Proof. We -rst establish the single integral result that if∫ b

a
M (x)-�(x)�x=0

for all -∈C1 with -(a)= 0= -(b); then M (x) ≡ 0 on ([a; b]i)i :
Case A: We establish that M is zero at left-dense points in ([a; b]i)i : Assume M (x0)¿ 0 where

x0 is left-dense and in ([a; b]i)i : (Hence x0 �= a:) By continuity there exists a )¿ 0 such that
M (x)¿M (x0)=2 for time scale points x with |x− x0|6 ): Then there exists an increasing sequence
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uk , k =1; : : : ; of time scale points in [x0 − ); x0) such that uk converges to x0 from below. Then
�(u1)6 u2¡x0 and we de-ne - by

-(x) := (x − �(u1))2(�(x0)− x)2

for �(u1)6 x6 �(x0); and -(x) := 0; otherwise. Then -�(x)= 0 for x6 u1 and -�(x)= 0 for x¿ x0:
Since u16 �(u1)6 u2¡u36 �(u3)¡x0; we have -(�(u3))¿ 0; hence M (u3)-�(u3)¿ 0; and
Proposition 7 gives the contradiction

0=
∫ b

a
M (x)-�(x)�x=

∫ x0

u1

M (x)-�(x)�x¿ 0:

Case B: We establish that M is zero at right-dense points in ([a; b]i)i : The proof di#ers from
Case A only in that we have a decreasing sequence of time scale points vk in (x0; x0 + )] which
converges from above to x0: Then �(v1)¿x0 and we de-ne - by

-(x) := (x − �(x0))2(�(v1)− x)2;
for �(x0)6 x6 �(v1); and -(x) := 0; otherwise. Then M (v3)-�(v3)¿ 0 and Proposition 7 gives the
contradiction

0=
∫ b

a
M (x)-�(x)�x=

∫ v1

x0

M (x)-�(x)�x¿ 0:

Case C: x0 is left-scattered, right-scattered and �(x0)¡�2(x0) := �(�(x0)) or a= x0¡�(x0)¡
�2(x0): Assume M (x0)¿ 0: De-ne - by -(�(x0)) := 1 and -(x) := 0; otherwise. Then since #(x0);
the left jump of x0; satis-es #(x0)¡x0 or a= x0 = #(x0); we have the contradiction

0=
∫ b

a
M (x)-�(x)�x=

∫ x0

#(x0)
M (x)-�(x)�x

+
∫ �(x0)

x0

M (x)-�(x)�x=0 + h(x0)M (x0)¿ 0:

Case D: x0 is left-scattered, right-scattered and �(x0)= �2(x0): Then x0 in (Ri)i implies �(x0)¡b:
Thus �(x0) is right-dense and by Case B, M (�(x0))= 0: Assume M (x0)¿ 0: Continuity of M at
�(x0) implies existence of a )¿ 0 such that )¡�(x0) − x0 and |M (x)|6 1 on [�(x0); �(x0) + )]:
Let vk , k =1; : : : ; be a decreasing sequence of time scale points in (�(x0); �(x0)+)) which converge
to �(x0) from above. For k =2; : : : ; let .k := (�(x0)− x0)2(�(x0)− �(vk))2 and de-ne -k by

-k(x) := (1=.k)(x − x0)2(x − �(vk))2

on [x0; �(vk)]; and -k(x) := 0; otherwise. Then -k(�(x)) is 0 outside [#(x0); vk]; we have -k(�(x0))= 1;
and ∫ �(x0)

x0

M (x)-�k (x)�x= h(x0)M (x0)-k(�(x0))= h(x0)M (x0):

For k =2; : : : ; we have

0¡�(vk)− �(x0)6 vk+1 − �(x0)¡)¡�(x0)− x0:
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Since �(x0) is closer to �(vk) than to x0; the function -k(x) has its maximum value at
a point in [x0; �(x0)] and since -k(�(x0))= 1; we have |M (x)-�k (x)|6 1 on [�(x0); vk]
and | ∫ vkx0 M (x)-�k (x)�x|6 vk − �(x0): Thus

0=
∫ b

a
M (x)-�k (x)�x=

∫ x0

#(x0)
M (x)-�(x)�x +

∫ �(x0)

x0

M (x)-�(x)�x +
∫ vk

�(x0)
M (x)-�(x)�x

=0 + h(x0)M (x0) +
∫ vk

�(x0)
M (x)-�(x)�x:

As k → ∞; the last integral goes to 0, since the integrand is bounded in absolute value and the
length of the interval goes to 0. Thus we obtain in the limit that 0= h(x0)M (x0)¿ 0 which is a
contradiction to M (x0)¿ 0: Thus Case D is established.

Note that x0 = a is included in Case B if right-dense and in Case C if right-scattered. Also x0 = b
is included in Case A if left-dense and is not in ([a; b]i)i if left-scattered. Thus the one-dimensional
Fundamental Lemma is established.

2-d Proof. First relabel the previous cases A, B, C, D on x0 as cases a, b, c, d on y0. Relabel x0
as y0; -(x) by /(y); �(x) by �(y); #(x); the backward jump by $(y); ui by si; vk by tj and de-ne
,(x; y) by

,(x; y) := -(x)/(y):

Cases on (x0; y0) of Aa, Ab, Ac, Ba, Bb, Bb, Ca, Cb, Cc follow directly from showing that the
integrand M (x; y),��(x; y) is nonnegative on Ri and positive at some point of Ri: Then Proposition
7 yields a contradiction. Cases involving Case D or Case d require a limiting argument.

Case Da is the case of x0 left- and right-scattered with �(x0)= �2(x0) and y0 left-dense. (Hence
x0¿a and y0¿c:) Then M (�(x0); y0)= 0 by Case Ba. Assume M (x0; y0)¿ 0: Continuity of M
implies existence of a )¿ 0 such that M (x; y)¿M (x0; y0)=2 for |x − x0|6 ), |y − y0|6 ) and
|M (x; y)|6 1 for |x− �(x0)|6 ) and |y− y0|6 ): Since y0 is left-dense, there exists an increasing
sequence sk ∈ [y0 − ); y0) converging to y0 from below. De-ne / by

/(y) := (y − �(s1))2(�(y0)− y)2

for �(s1)6y6 �(y0) and /(y) := 0; otherwise. For vk and -k(x) as in Case D, set ,k(x; y) :=
-k(x)/(y): Then ,��k is 0 outside [#(x0); vk]× [s1; y0] and

0 =
∫ d

c

∫ b

a
M (x; y),��k (x; y)�xIy=

∫ y0

s1

∫ vk

#(x0)
M (x; y),��k (x; y)�xIy

= 0 +
∫ y0

s1

∫ �(x0)

x0

M (x; y),��k (x; y)�xIy +
∫ y0

s1

∫ vk

�(x0)
M (x; y),��k (x; y)�xIy

→
∫ y0

s1

∫ �(x0)

x0

M (x; y),��k (x; y)�xIy¿ 0 as k → ∞:
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Case Ad is dual to Case Da and follows by reversing the roles of the x and y axis, i.e., Rip the
transparency of the region of integration for Case Da about the 45◦ line for case Ad.
Case Db di#ers only from Case Da in that y0 is right-dense and uses a decreasing sequence tj

converging from above to y0: De-ne / by

/(y) := (y − �(y0))2(�(t1)− y)2

for �(y0)6y6 �(t1) and /(y) := 0; otherwise. For vk and -k(x) as in Case D, set ,k(x; y) :=
-k(x)/(y): Then

0 =
∫ d

c

∫ b

a
M (x; y),��k (x; y)�xIy=

∫ t1

y0

∫ vk

#(x0)
M (x; y),��k (x; y)�xIy

= 0 +
∫ t1

y0

∫ �(x0)

x0

M (x; y),��k (x; y)�xIy +
∫ t1

y0

∫ vk

�(x0)
M (x; y),��k (x; y)�xIy

→
∫ t1

y0

∫ �(x0)

x0

M (x; y),��k (x; y)�xIy¿ 0; as k → ∞:

Case Bd is dual to Case Db.
Case Dc is the case of x0 left- and right-scattered with �(x0)= �2(x0) and y0 left- and right-scattered

with �(y0)¡�2(y0): De-ne -k(x) as in Case D and de-ne / by /(�(y0)) := 1 and /(y) := 0; oth-
erwise. The point (�(x0); y0) satis-es Case Bc; hence M (�(x0); y0)= 0. Then for ) and vk chosen
properly we have

0=
∫ d

c

∫ b

a
M (x; y),��k (x; y)�xIy=

∫ �(y0)

$(y0)

∫ vk

#(x0)
M (x; y),��k (x; y)�xIy

=
∫ y0

$(y0)

∫ vk

#(x0)
M (x; y),��k (x; y)�xIy +

∫ �(y0)

y0

∫ vk

#(x0)
M (x; y),��k (x; y)�xIy:

Proposition 4 reduces integrals over [$(y0); y0] to 0 because ,��(x; $(y0))= 0: Thus

0 =
∫ �(y0)

y0

∫ x0

#(x0)
M,��k �xIy +

∫ �(y0)

y0

∫ �(x0)

x0

M,��k �xIy +
∫ �(y0)

y0

∫ vk

�(x0)
M,��k �xIy

= 0 +M (x0; y0)-k(�(x0))/(�(y0))h(x0)k(y0) +
∫ �(y0)

y0

∫ vk

�(x0)
M,��k �xIy

→M (x0; y0)h(x0)k(y0)¿ 0 as k → ∞:

Case Cd is dual to Case Dc.
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The -nal case, that of Case Dd is the case of x0 left- and right-scattered with �(x0)= �2(x0) and
y0 left- and right-scattered with �(y0)= �2(y0): Then M (�(x0); y0)= 0; since (�(x0); y0) is Case Bb.
Also, M (x0; �(y0))= 0; since (x0; �(y0)) is Case Db and M (�(x0); �(y0))= 0; since (�(x0); �(y0)) is
Case Bb. Assume M (x0; y0)¿ 0: Thus for proper choices of ); a sequence vk converging from above
to �(x0), and a sequence tj converging to �(y0) from above, we have for ,jk(x; y) := -k(x)/�j(y) the
resulting contradiction

0 =
∫ d

c

∫ b

a
M,��jk �xIy=

∫ tj

$(y0)

∫ vk

#(x0)
M,��jk �xIy=

∫ tj

y0

∫ vk

#(x0)
M,��jk �xIy

=
∫ �(y0)

y0

∫ x0

#(x0)
M,��jk �xIy +

∫ �(y0)

y0

∫ �(x0)

x0

M,��jk �xIy +
∫ �(y0)

y0

∫ vk

�(x0)
M,��jk �xIy

+
∫ tj

�(y0)

∫ x0

#(x0)
M,��jk �xIy +

∫ tj

�(y0)

∫ �(x0)

x0

M,��jk �xIy +
∫ tj

�(y0)

∫ vk

�(x0)
M,��jk �xIy

→M (x0; y0)h(x0)k(y0)¿ 0 as j; k → ∞:

4. Double integral calculus of variations

Bohner’s [9] single integral variational calculus on time scales is now extended to double integral
variational calculus on time scales. Discrete variational theory was summarized in Chap. 4 and 5 of
Ref. [6]. Consider time scales X= [a; b] and Y= [c; d]: Let R= [a; b]× [c; d]: Consider a functional
J de-ned by

J (z)=
∫ d

c

∫ b

a
L(x; y; z(�(x); �(y)); z�(x; �(y)); zI(�(x); y))�xIy; (14)

where L(x; y; z; p; q) is a continuous function de-ned on X×Y×R3; (where R is the reals), and is
C2 in the last three variables. Following Bohner, we de-ne the norm

‖f‖= max
(x;y)∈Ri

|f(�(x); �(y))|+ max
(x;y)∈Ri

|(f(x; �(y)))�|+ max
(x;y)∈Ri

|(f(�(x); y))I|:

Consider the collection of all z(x; y)∈CC1
rd in R which become a given continuous function on

the boundary of R. We call such functions admissible. A function ẑ ∈CC1
rd is called a weak local

minimum for J (z) of Eq. (14) provided there exists )¿ 0 such that J (ẑ)6 J (z) for all z ∈CC1
rd

with z admissible and ‖z − ẑ‖¡). A function ,∈CC1
rd is called an admissible variation provided

,=0 on the boundary of R.

Theorem 9 (Euler–Lagrange). Let X and Y be bounded time scales each containing at least three
points. Set a :=minX, b :=maxX; c :=minY; and d :=maxY: Let R=X × Y= [a; b] × [c; d]:
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Consider a functional J de8ned by (14). Assume that L has the properties∫ d

c

∫ b

a
Lz�xIy=

∫ b

a

∫ d

c
LzIy�x; (15)

∫ d

c

∫ b

a
Lp�xIy=

∫ b

a

∫ d

c
LpIy�x; (16)

∫ d

c

∫ b

a
Lq�xIy=

∫ b

a

∫ d

c
LqIy�x: (17)

If ẑ is a weak local minimum for J (z) of Eq. (14) such that for functions p(x; y) := ẑ�(x; �(y))
and q(x; y) := ẑI(�(x); y); the function ẑ(�(x); �(y)); is continuous on Ri; Lp(x; y; ẑ(�(x); �(y)); p; q);
Lq(x; y; ẑ(�(x); �(y)); p; q); and Lz(x; y; ẑ(�(x); �(y)); p; q); are continuous on Ri; and the partial
derivatives (Lp(x; y; ẑ(�(x); �(y)); p; q))�; (Lq(x; y; ẑ(�(x); �(y)); p; q))I exist and are continuous on
(Ri)i ; then the Euler–Lagrange equation

Lz(x; y; ẑ(�(x); �(y)); p; q)= (Lp(x; y; ẑ(�(x); �(y)); p; q))� + (Lq(x; y; ẑ(�(x); �(y)); p; q))I;
(18)

holds for (x; y)∈ (Ri)i :

Proof. Let , be an admissible variation, i.e., a real-valued function on R=X × Y such that ,�

and ,I both exist, are in CCrd ; and , is zero on the boundary of the rectangle R: Let Z(x; y; �)=
z(�(x); �(y)) + �,(�(x); �(y)), P(x; y; �)=p(x; �(y)) + �,�(x; �(y)), and Q(x; y; �)= q(�(x); y) +
�,I(�(x); y): De-ne

7(�)=
∫ d

c

∫ b

a
L(x; y; Z; P; Q)�xIy: (19)

Then

7′(�)=
∫ d

c

∫ b

a

@
@�
L(x; y; Z; P; Q)�xIy (20)

follows in a similar way to Bohner’s proof [9] in the case of one independent variable.
Since ẑ is a local minimum of (14) and �=0 is an interior point of the domain of 7, 7′(0)= 0.

Thus setting �=0 yields

0=7′(0) =
∫ d

c

∫ b

a
Lz(x; y; ẑ(�(x); �(y)); p; q),(�(x); �(y))�xIy

+
∫ d

c

∫ b

a
Lp(x; y; ẑ(�(x); �(y)); p; q),�(x; �(y))�xIy

+
∫ d

c

∫ b

a
Lq(x; y; ẑ(�(x); �(y)); p; q),I(�(x); y)�xIy:
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Using formula (5) for integration by parts with respect to x, we have

∫ d

c

∫ b

a
Lp(x; y; ẑ(�(x); �(y)); p; q),�(x; �(y))�xIy

=−
∫ d

c

∫ b

a
(Lp(x; y; ẑ(�(x); �(y)); p; q))�,(�(x); �(y))�xIy

+
∫ d

c
Lp(b; y; ẑ(�(b); �(y)); ẑ�(b; �(y)); ẑI(�(b); y)),(b; y)Iy

−
∫ d

c
Lp(a; y; ẑ(�(a); �(y)); ẑ�(a; �(y)); ẑI(�(a); y)),(a; y)Iy

=−
∫ d

c

∫ b

a
(Lp(x; y; ẑ(�(x); �(y)); p; q))�,(�(x); �(y))�xIy

and formula (6) for integration by parts with respect to y; we have

∫ d

c

∫ b

a
Lq(x; y; ẑ(�(x); �(y)); p; q),I(�(x); y)�xIy

=−
∫ b

a

∫ d

c
(Lq(x; y; ẑ(�(x); �(y)); p; q))I,(�(x); �(y))Iy�x

+
∫ b

a
Lq(x; y; ẑ(�(x); �(d))ẑ�(�(x); d); ẑI(x; �(d))),(x; d)�x

−
∫ b

a
Lq(x; y; ẑ(�(x); �(c))ẑ�(�(x); c); ẑI(x; �(c))),(x; c)�x

=−
∫ b

a

∫ d

c
(Lq(x; y; ẑ(�(x); �(y)); p; q))I,(�(x); �(y))Iy�x:

Thus

∫ d

c

∫ b

a
Lz(x; y; ẑ(�(x); �(y)); p; q),(�(x); �(y))�xIy

+
∫ d

c

∫ b

a
Lp(x; y; ẑ(�(x); �(y)); p; q),�(x; �(y))�xIy
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+
∫ d

c

∫ b

a
Lq(x; y; ẑ(�(x); �(y)); p; q),I(�(x); y)�xIy

=
∫ b

c

∫ b

a
(Lz(x; y; ẑ(�(x); �(y)); p; q)− Lp(x; y; ẑ(�(x); �(y)); p; q)�

−Lq(x; y; ẑ(�(x); �(y)); p; q)I),(�(x); �(y))�xIy=0: (21)

By Lemma 8, the Euler–Lagrange equation (18) holds for (x; y)∈ (Ri)i :
The discrete version, given in symmetric form (i.e., formally self-adjoint form) by Ahlbrandt

and Harmsen in [5], of the two variable Euler–Lagrange equation uses the notation z(i; j) :=
z(xi; yj) and

pi;j =
1

Ixi−1
[z(xi; yj)− z(xi−1; yj)] ≡ �izi−1; j

Ixi−1
; (22)

qi; j =
1

Iyj−1
[z(xi; yj)− z(xi; yj−1)] ≡ �jzi; j−1

Iyj−1
(23)

in the discrete Euler–Lagrange equation

Lz(xi−1; yj−1; xi; yj; zi; j; pi; j; qi; j) =
1

Ixi−1
�iLp(xi−1; yj−1; xi; yj; zi; j; pi; j; qi; j)

+
1

Iyj−1
�jLq(xi−1; yj−1; xi; yj; zi; j; pi; j; qi; j): (24)

5. A double integral Picone identity

Bohner and Agarwal [2] derived a single independent variable Picone identity on time scales.
This can be generalized to a two independent variable Picone identity for elliptic operators on time
scales which will reduce to the continuous Picone identity on a rectangle. Then this Picone identity
can be used to prove a two-variable Sturm–Picone comparison theorem which generalizes Kreith’s
result [18] in the continuous case except for the fact that Kreith’s result allows nonrectangular
domains.

Theorem 10 (a Picone identity). Let X and Y be time scales. Suppose that m(x; y) and M (x; y)
are continuous 2× 2 positive de8nite diagonal matrices de8ned on X×Y with m and M in CC1

rd.
Let P(x; y) and p(x; y) be in CCrd. Suppose that u(x; y) and v(x; y) are solutions of

(m11(u�)�)� + (m22(u�)I)I + pu��=0 (25)

and

(M11(v�)�)� + (M22(v�)I)I + Pv��=0; (26)
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on X×Y; respectively. Also assume that v(x; y) is never 0 for all (x; y)∈X×Y: Then

(u�m11(u�)�)� + (u�m22(u�)I)I −
(
(u�)2

v�
M11(v�)�

)�
−

(
(u�)2

v�
M22(v�)I

)I

= (P − p)(u��)2 + [(u�)� (u�)I](m−M)[(u�)� (u�)I]T

+
(

(u�)� − u�

v� (v
�)�

(u�)I − u�

v� (v
�)I

)T ( v�

v��M11 0
0 v�

v��M22

)(
(u�)� − u�

v� (v
�)�

(u�)I − u�

v� (v
�)I

)
: (27)

Proof. The proof is based on Kreith’s proof [18] with the modi-cations for derivatives on time
scales used by Agarwal and Bohner [2]. Calculating the -rst two terms of the left-hand side of Eq.
(27) yields

(u�m11(u�)�)� + (u�m22(u�)I)I

= (u�)�m11(u�)� + u��(m11(u�)�)� + (u�)Im22(u�)I + u��(m22(u�)I)I

= u��((m11(u�)�)� + (m22(u�)I)I) + m11((u�)�)2 + m22((u�)I)2

=− p(u��)2 + m11((u�)�)2 + m22((u�)I)2: (28)

To calculate the second pair of terms of the left-hand side of Eq. (27) we need to -rst calculate

(
(u�)2

v�
M11(v�)�

)�
+
(
(u�)2

v�
M22(v�)I

)I

+
v�

v��
M11

(
(u�)� − u�

v�
(v�)�

)2

+
v�

v��
M22

(
(u�)I − u�

v�
(v�)I

)2

=
(u��)2

v��
(M11(v�)�)� +

(u��)2

v��
(M22(v�)I)I + M11

(
u�(u�)�(v�)�

v��
+
u��(u�)�(v�)�

v��

−(u�)2((v�)�)2

v�v��
+
v�

v��
((u�)�)2 − 2(u�)�(v�)�u�

v��
+

(u�)2((v�)�)2

v��v�

)

+M22

(
u�(u�)I(v�)I

v��
+
u��(u�)I(v�)I

v��

− (u�)2((v�)I)2

v�v��
+
v�

v��
((u�)I)2 − 2(u�)I(v�)Iu�

v��
+

(u�)2((v�)I)2

v�v��

)
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=
(u��)2

v��
((M11(v�)�)� + (M22(v�)I)I)

+M11

(
v�

v��
((u�)�)2 + (u��−u�)(u

�)�(v�)�

v��

)
+M22

(
v�

v��
((u�)I)2 + (u�� − u�)(u

�)I(v�)I

v��

)

=
(u��)2

v��
(−Pv��) +M11

(
v�

v��
((u�)�)2 +

h(u�)�(u�)�(v�)�

v��

)

+M22

(
v�

v��
((u�)I)2 +

k(u�)I(u�)I(v�)I

v��

)

=− P(u��)2 +M11

(
v� + h(v�)�

v��

)
((u�)�)2 +M22

(
v� + k(v�)I

v��

)
((u�)I)2

=− P(u��)2 +M11
v��

v��
((u�)�)2 +M22

v��

v��
((u�)I)2

=− P(u��)2 +M11((u�)�)2 +M22((u�)I)2:

Thus the negative of the second pair of terms of the left-hand side of Eq. (27) are determined by

(
(u�)2

v�
M11(v�)�

)�
+
(
(u�)2

v�
M22(v�)I

)I

=− P(u��)2 +M11((u�)�)2 +M22((u�)I)2 − v�

v��
M11

(
(u�)� − u�

v�
(v�)�

)2

− v�

v��
M22

(
(u�)I − u�

v�
(v�)I

)2

: (29)

The left-hand side of the Picone Identity, Eq. (27), is obtained by subtracting (29) from (28) for

(u�m11(u�)�)� + (u�m22(u�)I)I −
(
(u�)2

v�
M11(v�)�

)�
−

(
(u�)2

v�
M22(v�)I

)I

=− p(u��)2 + m11((u�)�)2 + m22((u�)I)2 − (−P(u��)2 +M11((u�)�)2 +M22((u�)I)2

− v�

v��
M11

(
(u�)� − u�

v�
(v�)�

)2

− v�

v��
M22

(
(u�)I − u�

v�
(v�)I

)2
)
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= (P − p)(u��)2 + ((u�)�; (u�)I)(m−M)((u�)�; (u�)I)T

+
v�

v��
M11

(
(u�)� − u�

v�
(v�)�

)2

+
v�

v��
M22

(
(u�)I − u�

v�
(v�)I

)2

= (P − p)(u��)2 + ((u�)�; (u�)I)(m−M)((u�)�; (u�)I)T

+
(

(u�)� − u�

v� (v
�)�

(u�)I − u�

v� (v
�)I

)T ( v�

v��M11 0
0 v�

v��M22

)(
(u�)� − u�

v� (v
�)�

(u�)I − u�

v� (v
�)I

)

which gives the Picone Identity, Eq. (27). This result can be extended in a natural way to 3 × 3
diagonal matrices. That result can be found in [21].

6. A Sturm−Picone comparison theorem

Picone identities on time scales can be used to prove Sturm–Picone comparison theorems on time
scales. Because of discrete cases, second-order equations are only satis-ed on (Ri)i : Before using
the Picone identity for Sturmian theory let us start by considering compact time scales X and Y,
each of which contain at least six points. Let a=minX and c=minY and suppose b∈ (Xi)i and
d∈ (Yi)i are such that [a; b] and [c; d] each contain at least four time scale points. Let R be the
time scale region [a; b]× [c; d]: Introduce some notation. Let Ro denote the set

Ro = {(x; y)∈X×Y: a¡x¡b; c¡y¡d} (30)

and Rj; the jump set, is de-ned by

Rj = {(x; y)∈X×Y: (x; y); (�(x); y); (x; �(y)); (�(x); �(y))∈Ro}: (31)

De-ne Rs; the shadow set, by

Rs = {(x; y)∈X×Y: a6 x6 �(b); c6y6 �(d)}: (32)

Note that R; Rj; Ro; and Rs are all nonempty.
The continuous case of the following Sturm–Picone comparison theorem is a result of Kreith [18].

Theorem 11. Assume that X and Y are compact time scales each containing at least six points.
Let a; b; c; d be as above. Assume that u(x; y) and v(x; y) satisfy (25); and (26); respectively; on R
with u(x; y)= 0 on the boundary of the rectangle R and u¿ 0 in Ro. Suppose that in R

(i) P(x; y)¿p(x; y); P �≡ p in Rj;
(ii) 0¡9TM96 9Tm9for all real vectors 9 �=0.

Then v(x; y) has a zero in Rs.
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Proof. Assume v(x; y)¿ 0 on Rs: Since u=0 on the boundary of R,

∫ d

c

∫ b

a
(u�m11(u�)�)��xIy

=
∫ d

c
{[u(x; �(y))m11(x; y)(u(x; �(y)))�]x=bx=a}Iy

=
∫ d

c
{u(b; �(y))m11(b; y)(u(b; �(y)))� − u(a; �(y))m11(a; y)(u(a; �(y)))�}Iy=0; (33)

∫ d

c

∫ b

a
(u�m22(u�)I)I�xIy

=
∫ b

a

∫ d

c
(u�m22(u�)I)IIy�x

=
∫ b

a
{[(u(�(x); y)m22(x; y)(u(�(x); y))I]y=dy=c}�x

=
∫ b

a
{(u(�(x); d)m22(x; d)(u(�(x); d))I − (u(�(x); c)m22(x; c)(u(�(x); c))I}�x=0; (34)

∫ d

c

∫ b

a

(
(u�)2

v�
M11(v�)�

)�
�xIy

=
∫ d

c

{[
(u(x; �(y)))2

v(x; �(y))
M11(x; y)(v(x; �(y)))�

]x=b
x=a

}
Iy

=
∫ d

c

{
(u(b; �(y)))2

v(b; �(y))
M11(b; y)(v(b; �(y)))� − (u(a; �(y)))2

v(a; �(y))
M11(a; y)(v(a; �(y)))�

}
Iy=0;

(35)

and

∫ d

c

∫ b

a

(
(u�)2

v�
M22(v�)I

)I

�xIy

=
∫ b

a

∫ d

c

(
(u�)2

v�
M22(v�)I

)I

Iy�x
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=
∫ b

a

{[
(u(�(x); y))2

v(�(x); y)
M22(x; y)(v(�(x); y))I

]y=d
y=c

}
�x

=
∫ b

a

{
(u(�(x); d))2

v(�(x); d)
M22(x; d)(v(�(x); d))I − (u(�(x); c))2

v(�(x); c)
M22(x; c)(v(�(x); c))I

}
�x=0:

(36)

Then by the Picone identity (27) and (33), (34), (35), (36), we have

0 =
∫ d

c

∫ b

a
(u�m11(u�)�)� + (u�m22(u�)I)I −

(
(u�)2

v�
M11(v�)�

)�
−

(
(u�)2

v�
M22(v�)I

)I

�xIy

=
∫ d

c

∫ b

a
(P − p)(u��)2 + [(u�)� (u�)I](m−M)[(u�)� (u�)I]T

+
[
(u�)� − u�

v� (v
�)�

(u�)I − u�

u� (v
�)I

]T [ v�

v��M11 0
0 v�

v��M22

] [
(u�)� − u�

v� (v
�)�

(u�)I − u�

u� (v
�)I

]
�xIy

¿
∫ d

c

∫ b

a

{
(P − p)(u��)2 + [(u�)� (u�)I](m−M)[(u�)� (u�)I]T

}
�xIy:

Since P �≡ p and P¿p on Rj there exists a point (x1; y1)∈Rj such that (P − p)(x1; y1)¿ 0:
Since (x1; y1)∈Rj; (�(x1); �(y1))∈Ro: Then (�(x1); �(y1))∈Ro and u((�(x1); �(y1))¿ 0 so (u((�(x1);
�(y1)))2¿ 0: Thus the term

(P − p)(x1; y1)(u((�(x1); �(y1)))2
is positive and as a consequence of Proposition 7, the last integral of the previous display is positive.
Thus we have a contradiction. Therefore v must have a zero on Rs.
The above Picone identity (27) may be generalized to 2× 2 positive-de-nite symmetric matrices.

Further work in extending Kreith’s papers [19,20] may be found in [21]
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