Classification of Simple Novikov Algebras and Their Irreducible Modules of Characteristic 0

Xiaoping Xu

Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Communicated by Georgia Benkart

Received September 1, 2000

In this paper, we first present a classification theorem of simple infinite-dimensional Novikov algebras over an algebraically closed field of characteristic 0. Then we classify all the irreducible modules of certain infinite-dimensional simple Novikov algebras with an idempotent element whose left action is locally finite.

© 2001 Elsevier Science

1. INTRODUCTION

A left-symmetric algebra is an algebra whose associators are left symmetric. The commutator algebra associated with a left-symmetric algebra forms a Lie algebra. Left-symmetric algebras play a fundamental role in the theory of affine manifolds (cf. [A], [FG]). Kim [K1, K2] classified all the complete left-symmetric algebras whose commutator Lie algebras are nilpotent and of dimension ≤ 4. Left-symmetric rings were studied by Kleinfeld [K1]. A real finite-dimensional left-symmetric algebra \mathfrak{g} with $[\mathfrak{g}, \mathfrak{g}] = 0$ is trivial (cf. [H]). Moreover, a finite-dimensional left-symmetric algebra, whose commutator Lie algebra is semi-simple over a field of characteristic 0, does not exist by Whitehead’s Lemma. Over a field of characteristic p, Burde proved that there exist finite-dimensional left-symmetric algebras whose commutator Lie algebras are classical simple Lie algebras with dimension divisible by p or nonrestricted simple Lie algebras of Cartan type, and Shen [S] found some special left-symmetric algebras whose commutator Lie algebras are Witt algebras.

1 Research supported by Hong Kong RGC Competitive Earmarked Research Grant HKUST6133/00P.
A Novikov algebra is a left-symmetric algebra whose right multiplication operators are mutually commutative. Novikov algebras appeared in the work of Gel’fand and Dorfman [GDo], corresponding to certain type of Hamiltonian operators. Balinskii and Novikov [BN] found the same algebraic structure in connection with Poisson brackets of hydrodynamic type. The abstract study of Novikov algebras was started by Zel’manov [Z] and Filipov [F]. The term “Novikov algebra” was given by Osborn [O1].

In this paper, we first present a classification theorem of simple infinite-dimensional Novikov algebras over an algebraically closed field of characteristic 0. Then we classify all the irreducible modules of certain infinite-dimensional simple Novikov algebras with an idempotent element whose left action is locally finite.

To our best knowledge, there are no relatively complete classification results on simple left-symmetric algebras. However, we do have some relatively complete classification results on simple Novikov algebras. Zel’manov [Z] proved that a finite-dimensional simple Novikov algebra over an algebraically closed field of characteristic 0 is one-dimensional. Osborn [O1] proved that for any finite-dimensional simple Novikov algebra over a perfect field of characteristic \(p > 2 \), the associated commutator Lie algebra is isomorphic to a rank-1 Witt algebra. These Witt algebras play fundamental roles in Lie algebras over a field of prime characteristic and are also important in other mathematical fields. An element \(e \) of a Novikov algebra \((\mathcal{N}, \circ) \) over a field \(F \) is called idempotent if \(e \circ e \in F e \). Moreover, Osborn [O2] classified finite-dimensional simple Novikov algebras with an idempotent element over an algebraically closed field of characteristic \(p > 2 \). We gave in [X1] a complete classification of finite-dimensional simple Novikov algebras over an algebraically closed field of characteristic \(p > 2 \) without any conditions. Although the classification problem of finite-dimensional irreducible modules of its associated rank-1 Witt algebra is still open, finite-dimensional irreducible modules of a finite-dimensional simple Novikov algebra over an algebraically closed field of characteristic \(p > 2 \) were completely determined in [X1].

In [X1], we also introduced “Novikov–Poisson algebras,” which are analogs of (Lie) Poisson algebras, and their tensor theory. Structures of Novikov–Poisson algebras have given us a better picture of simple Novikov algebras and their modules. Before our work [X2], all the known simple Novikov algebras (cf. [F], [Z], [O1–O3], [X1]) had an idempotent element. A natural question was whether there exist simple Novikov algebras without idempotent elements. In [X2], a large family of simple Novikov algebras without idempotent elements was constructed through Novikov–Poisson algebras. Besides, a large class of Novikov–Poisson algebras are NX-bialgebras, which determine certain Hamiltonian superoperators of one supervariable (cf. [X3]).
Osborn [O3] gave a classification of infinite-dimensional simple Novikov algebras with an idempotent element, assuming the existence of generalized-eigenspace decomposition with respect to its left multiplication operator. There are four fundamental mistakes in his classification. The first is the use of Proposition 2.6(d) in [O1] with \(\beta \neq 0 \), which was misproved. The second is that the eigenspace \(A_0 \) in Lemma 2.12 of [O3] does not form a field when \(b = 0 \) with respect to the Novikov algebraic operation. The third is that \(A_0 \) may not be a perfect field when \(b \neq 0 \). The fourth is that the author forgot the case \(b = 0 \) and \(\Delta = \{0\} \) in Lemma 2.8. In addition to these four mistakes, there are gaps in the arguments of the classification in [O3]. It seems that one cannot draw any conclusions of the classifications based on the arguments in [O3]. In [O5], Osborn has given certain properties of modules of infinite-dimensional simple Novikov algebras with an idempotent element.

A linear transformation \(T \) of a vector space \(V \) is called *locally finite* if the subspace

\[
\sum_{m=0}^{\infty} F T^m(v) \text{ is finite-dimensional for any } v \in V.
\]

(1.1)

An element \(u \) of a Novikov algebra \(\mathcal{N} \) is called *left locally finite* if its left multiplication operator \(L_u \) is locally finite.

The aim of this paper is to classify infinite-dimensional simple Novikov algebras over an algebraically closed field \(\mathbb{F} \) of characteristic 0, which contain a left locally finite element \(e \) whose right multiplication operator \(R_e \) is a constant map and whose left multiplication operator is surjective if \(R_e = 0 \) (see Theorem 3.4), and to classify all the irreducible modules of certain infinite-dimensional simple Novikov algebras with an idempotent element whose left action is locally finite (see Theorem 4.3).

Throughout this paper, all the vector spaces are assumed over a field \(\mathbb{F} \) of characteristic 0. Denote by \(\mathbb{Z} \) the ring of integers and by \(\mathbb{N} \) the additive semi-group of nonnegative integers.

The paper is organized as follows. Section 2 is a preparation for our classification of algebras, where we discuss “homological group algebras” and their connection with simple Novikov algebras. The classification of simple Novikov algebras is given in Section 3. In Section 4, we classify the irreducible modules.

2. HOMOLOGICAL GROUP ALGEBRAS

In this section, we shall introduce the notion “homological group algebra” and use it to construct a family of simple Novikov algebras larger than the one we obtained in Section 2 of [X2].
Definition 2.1. Let G be a group and let \mathbb{F}_1 be any field. Set
\[
\mathbb{F}_1^* = \mathbb{F}_1 \setminus \{0\}. \tag{2.1}
\]
We view \mathbb{F}_1^* as the multiplication group of \mathbb{F}_1. A map $f: G \times G \to \mathbb{F}_1^*$ is called a two-cocycle if
\[
f(g_1, g_2)f(g_1g_2, g_3) = f(g_1, g_2g_3)f(g_2, g_3)
\] for $g_1, g_2, g_3 \in G$. \tag{2.2}

We denote the set of two-cocycles by $Z^2(G, \mathbb{F}_1^*)$. The multiplication on $Z^2(G, \mathbb{F}_1^*)$ is defined by
\[
(f_1f_2)(g_1, g_2) = f_1(g_1, g_2)f_2(g_1, g_2)
\] for $f_1, f_2 \in Z^2(G, \mathbb{F}_1^*)$, $g_1, g_2 \in G$. \tag{2.3}

With respect to the above operation, $Z^2(G, \mathbb{F}_1^*)$ forms an abelian group. For any map $\eta: G \to \mathbb{F}_1^*$, we define
\[
d_\eta(g_1, g_2) = \eta(g_1g_2)\eta(g_1)^{-1}\eta(g_2)^{-1}, \quad g_1, g_2 \in G. \tag{2.4}
\]

Then
\[
d_\eta(g_1, g_2)d_\eta(g_1g_2, g_3)
\]
\[
= \eta(g_1g_2)\eta(g_1)^{-1}\eta(g_2)^{-1}\eta(g_1g_2g_3)\eta(g_1g_2)^{-1}\eta(g_3)^{-1}
\]
\[
= \eta(g_1)^{-1}\eta(g_2)^{-1}\eta(g_3)^{-1}\eta(g_1g_2g_3)
\]
\[
= \eta(g_1g_2g_3)\eta(g_1)^{-1}\eta(g_2g_3)^{-1}\eta(g_2g_3)^{-1}\eta(g_2)^{-1}\eta(g_3)^{-1}
\]
\[
= d_\eta(g_1, g_2g_3)d_\eta(g_2, g_3) \tag{2.5}
\]
for $g_1, g_2, g_3 \in G$. So $d_\eta \in Z^2(G, \mathbb{F}_1^*)$. We call d_η a two-boundary. The set $B^2(G, \mathbb{F}_1^*)$ of two-boundaries forms a subgroup of $Z^2(G, \mathbb{F}_1^*)$. We define the second cohomology group:
\[
H^2(G, \mathbb{F}_1^*) = Z^2(G, \mathbb{F}_1^*)/B^2(G, \mathbb{F}_1^*). \tag{2.6}
\]

For any $f \in Z^2(G, \mathbb{F}_1^*)$, we define a homological group algebra $\mathbb{F}_1[G]_f$ to be a vector space with a basis $\{e_g \mid g \in G\}$ and its algebraic operation “.” defined by
\[
e_{g_1}e_{g_2} = f(g_1, g_2)e_{g_1g_2} \quad \text{for} \quad g_1, g_2 \in \Gamma. \tag{2.7}
\]
Expression (2.2) implies the associativity of $(\mathbb{F}_1[G]_f, \cdot)$. For any map $\eta: G \to \mathbb{F}_1^*$, $\{\eta(g)^{-1}e_g \mid g \in G\}$ is also a basis of $\mathbb{F}_1[G]_f$. Moreover,
\[
(\eta(g_1)^{-1}e_{g_1})(\eta(g_2)^{-1}e_{g_2})
\]
\[
= f(g_1, g_2)\eta(g_1g_2)\eta(g_1)^{-1}\eta(g_2)^{-1}(\eta(g_1g_2)^{-1}e_{g_1g_2}) \tag{2.8}
\]
Thus we have an induced group action of Aut absolute second cohomology of group algebras. So each element in $H^2(G, F^\times_1)$ corresponds to a homological group algebra over F_1. Another factor causing an isomorphism between two homological group algebras is the automorphism group $\text{Aut} G$ of G. For $\sigma \in \text{Aut} G$, we define its action on $Z^2(G, F^\times_1)$ by

\[(\sigma f)(g_1, g_2) = f(\sigma^{-1}g_1, \sigma^{-1}g_2)\]

for $f \in Z^2(G, F^\times_1), \quad g_1, g_2 \in G. \quad (2.9)$

This provides a group action of $\text{Aut} G$ on $Z^2(G, F^\times_1)$. Similarly, we define a group action of $\text{Aut} G$ on the set $\text{Map}(G, F^\times_1)$ of maps from G to F_1^\times by

\[(\sigma \eta)(g) = \eta(\sigma^{-1}g) \quad \text{for} \quad \eta \in \text{Map}(G, F^\times_1), \quad \sigma \in \text{Aut} G, \quad g \in G. \quad (2.10)\]

Furthermore, for $\eta \in \text{Map}(G, F^\times_1)$ and $\sigma \in \text{Aut} G,$

\[(\sigma d_{\eta})(g_1, g_2) = d_{\eta}(\sigma^{-1}g_1, \sigma^{-1}g_2)\]

\[= \eta(\sigma^{-1}(g_1))\sigma^{-1}(g_2))\eta(\sigma^{-1}g_1)^{-1}\eta(\sigma^{-1}g_2)^{-1}
\[= \eta(\sigma^{-1}(g_1)g_2))\eta(\sigma^{-1}g_1)^{-1}\eta(\sigma^{-1}g_2)^{-1}
\[= d_{\sigma \eta}(g_1, g_2) \quad (2.11)\]

for $g_1, g_2 \in G.$ Thus

\[\sigma d_{\eta} = d_{\sigma \eta} \quad \text{for} \quad \eta \in \text{Map}(G, F^\times_1), \quad (2.12)\]

which implies

\[(\text{Aut} G)(B^2(G, F^\times_1)) = B^2(G, F^\times_1). \quad (2.13)\]

Thus we have an induced group action of $\text{Aut} G$ on $H^2(G, F^\times_1).$ We define the absolute second cohomology of G over F_1 as the set of $(\text{Aut} G)$-orbits:

\[H^{1,2}(G, F^\times_1) = H^2(G, F^\times_1)/(\text{Aut} G). \quad (2.14)\]

When G is torsion-free, every invertible element in a homological group algebra $F_1[G]$ is of form λe_g for some $\lambda \in F^\times_1$ and $g \in G.$ Hence we have:

Proposition 2.2. There exists a one-to-one correspondence between the set of isomorphism classes of homological group algebras and absolute second cohomology when the group is torsion-free.
Note that there exists an identity element 1 in $Z^2(G, \mathbb{F}_1^\times)$ defined by

$$1(g_1, g_2) = 1_{f_1} \quad \text{for } g_1, g_2 \in G. \quad (2.15)$$

In particular, $\mathbb{F}_1[G]_1$ is the usual group algebra of G over \mathbb{F}_1. When the context is clear, we also use 1 to denote its image in $H^2(G, \mathbb{F}_1^\times)$. Recall that a perfect field \mathbb{F}_1 is a field such that $x^n - \lambda = 0$ has a solution in \mathbb{F}_1 for any positive integer n and $\lambda \in \mathbb{F}_1$. A two-cycle f of G is called symmetric if

$$f(g_1, g_2) = f(g_2, g_1) \quad \text{for } g_1, g_2 \in G. \quad (2.16)$$

Note that when $g_2 = g_3 = 1$ in (2.2), we have

$$f(g_1, 1)f(1, 1) = f(g_1, 1)f(1, 1) \quad \text{for } g_1 \in G, \quad (2.17)$$

equivalently,

$$f(g_1, 1) = f(1, 1) \quad \text{for } g_1 \in G. \quad (2.18)$$

Similarly, we get

$$f(1, 1) = f(1, g_3) \quad \text{for } g_3 \in G. \quad (2.19)$$

Moreover, we define $\zeta \in \text{Map}(G, \mathbb{F}_1)$ by

$$\zeta(g) = f(1, 1)^{-\delta_{1, \zeta}} \quad \text{for } g \in G. \quad (2.20)$$

Then

$$(fd_\zeta)(1, g) = (fd_\zeta)(g, 1) = 1 \quad \text{for } g \in G. \quad (2.21)$$

Proposition 2.3. Suppose that G is a torsion-free abelian group and $f \in Z^2(G, \mathbb{F}_1^\times)$ is symmetric. We have $f \in B^2(G, \mathbb{F}_1^\times)$ if G is a free group or \mathbb{F}_1 is perfect.

Proof. To prove the conclusion is equivalent to proving that $\mathbb{F}_1[G]_f$ is isomorphic to $\mathbb{F}_1[G]_1$ for any symmetric $f \in Z^2(G, \mathbb{F}_1^\times)$. For convenience, we use + to denote the group operation of the torsion-free abelian group G and 0 to denote 1G. Let $f \in Z^2(G, \mathbb{F}_1^\times)$ be a given symmetric element. By (2.17)–(2.21), we can assume

$$f(0, \alpha) = f(\alpha, 0) = 1 \quad \text{for } \alpha \in G. \quad (2.22)$$

Thus e_0 is an identity element of the algebra $\mathbb{F}_1[G]_f$, which is commutative by (2.16).

Assume that G is a free abelian group with a generator set $\Gamma(\mathbb{Z}$-basis). For any $\gamma \in \Gamma$, we let

$$\vartheta_{\gamma} = e_{\gamma}, \quad \vartheta_{-\gamma} = f(\gamma, -\gamma)^{-1}e_{-\gamma}. \quad (2.23)$$
Any element \(\alpha \in G \) can be written as \(\alpha = \sum_{\gamma \in \Gamma} \epsilon_\gamma n_{\gamma} \gamma \) with \(n_{\gamma} \in \mathbb{N} \) and \(\epsilon_\gamma \in \{1, -1\} \); we define
\[
\vartheta_a = \prod_{\gamma \in \Gamma} \vartheta_{\epsilon_\gamma n_{\gamma}}^{n_{\gamma}} \in \mathbb{F}_1 e_a. \tag{2.24}
\]

Then we have
\[
\vartheta_a \cdot \vartheta_\beta = \vartheta_{a+\beta} \tag{2.25}
\]
for \(\alpha, \beta \in G \). So \(\mathbb{F}_1[G] \) is isomorphic to \(\mathbb{F}_1[G]_1 \).

Suppose that \(\mathbb{F}_1 \) is perfect. We let \(\vartheta_0 = e_0 \). Assume that we have chosen
\[
\{0 \neq \vartheta_a \in \mathbb{F}_1 e_a \mid \alpha \in G'\} \tag{2.26}
\]
for a subgroup \(G' \) of \(G \) such that (2.25) holds for \(\alpha, \beta \in G' \). Let \(\gamma \in G \backslash G' \). If \(\mathbb{Z}_\gamma \cap G' = \{0\} \), we choose \(\vartheta_{\pm \gamma} \) as in (2.23) and define
\[
\vartheta_{\pm n \gamma + a} = (\vartheta_{\pm \gamma})^n \cdot \vartheta_a \text{ for } n \in \mathbb{N}, \alpha \in G'. \tag{2.27}
\]
Then (2.25) holds for \(\alpha, \beta \in \mathbb{Z}_\gamma + G' \). If \(\mathbb{Z}_\gamma \cap G' \neq \{0\} \), then
\[
\mathbb{Z}_\beta \cap G' = \mathbb{Z} m_\gamma \tag{2.28}
\]
for some positive integer \(m \). Note that
\[
epsilon_\gamma^m = \lambda \vartheta_{m \gamma} \text{ for some } 0 \neq \lambda \in \mathbb{F}_1. \tag{2.29}
\]
Choose any \(\mu \in \mathbb{F}_1 \) such that \(\mu^m = \lambda \) and define
\[
\vartheta_\gamma = \mu e_\gamma, \quad \vartheta_{-\gamma} = \mu^{-1} f(\gamma, -\gamma)^{-1} e_{-\gamma}. \tag{2.30}
\]
Then (2.27) is well defined. Again (2.25) holds for \(\alpha, \beta \in \mathbb{Z}_\gamma + G' \). Since (2.25) holds for \(\alpha, \beta \in G' \) when \(G' = \{0\} \), we can choose \(\{0 \neq \nu_a \in \mathbb{F}_1 e_a \mid \alpha \in G\} \) such that (2.25) holds for \(\alpha, \beta \in G \) by induction on subgroup \(G' \). So \(\mathbb{F}_1[G] \) is again isomorphic to \(\mathbb{F}_1[G]_1 \).

Let us now give a detailed definition of “Novikov algebra.” A Novikov algebra is a vector space \(\mathcal{N} \) with an algebraic operation \(\circ \) such that
\[
(u \circ v) \circ w = (u \circ w) \circ v, \tag{2.31}
\]
\[
(u \circ v) \circ w - u \circ (v \circ w) = (v \circ u) \circ w - v \circ (u \circ w) \tag{2.32}
\]
for \(u, v, w \in \mathcal{N} \). A subspace \(\mathcal{I} \) of the Novikov algebra \(\mathcal{N} \) is called a left ideal (right ideal) if \(\mathcal{N} \circ \mathcal{I} \subseteq \mathcal{I} (\mathcal{I} \circ \mathcal{N} \subseteq \mathcal{I}) \). A subspace is called an ideal if it is both left and a right ideal. The algebra \(\mathcal{N} \) is called simple if the only ideals of \(\mathcal{N} \) are the trivial ideals: \(\{0\}, \mathcal{N} \), and \(\mathcal{N} \circ \mathcal{N} \neq \{0\} \).

Now we want to construct simple Novikov algebras. Let \(\Delta \) be an additive subgroup of the base field of \(\mathbb{F} \) and let \(\mathbb{F}_1 \) be an extension field of \(\mathbb{F} \). For
a symmetric element $f \in Z^2(\Delta, \mathbb{F}_1)$, we define $\mathcal{A}(\Delta, f, \mathbb{N})$ to be a vector space over \mathbb{F}_1 with a basis

$$\{ u_{\alpha,j} | (\alpha, j) \in \Delta \times \mathbb{N} \},$$

(2.33)

and define an algebraic operation “.” on $\mathcal{A}(\Delta, f, \mathbb{N})$ by

$$u_{\alpha_1,j_1} \cdot u_{\alpha_2,j_2} = f(\alpha_1, \alpha_2) u_{\alpha_1+\alpha_2,j_1+j_2}$$

for $(\alpha_1, j_1), (\alpha_2, j_2) \in \Delta \times \mathbb{N}$. (2.34)

Then $(\mathcal{A}(\Delta, f, \mathbb{N}), \cdot)$ forms a commutative associative algebra and

$$(\mathcal{A}(\Delta, f, \mathbb{N}), \cdot) \cong \mathbb{F}_1[\Delta] \otimes \mathbb{F}_1[1]$$

(2.35)

as associative algebras. Moreover,

$$\mathcal{A}(\Delta, f, \{0\}) = \sum_{\alpha \in \Delta} \mathbb{F}_1 u_{\alpha,0}$$

(2.36)

forms a subalgebra that is isomorphic to $\mathbb{F}_1[\Delta]$. Let $J \in \{\{0\}, \mathbb{N}\}$. The algebra $\mathcal{A}(\Delta, f, J)$ is defined as in the above. We define $\partial \in \text{End}_{\mathbb{F}_1} \mathcal{A}(\Delta, f, J)$ by

$$\partial(u_{\alpha,j}) = \alpha u_{\alpha,j} + j u_{\alpha,j-1}$$

for $(\alpha, j) \in \Delta \times J$. (2.37)

We view $\mathcal{A}(\Delta, f, J)$ as an algebra over \mathbb{F}. Then ∂ is again a derivation. For any $\xi \in \mathcal{A}(\Delta, f, J)$, we define the algebraic operation \circ_{ξ} on $\mathcal{A}(\Delta, f, J)$ over \mathbb{F} by

$$u \circ_{\xi} v = u \cdot \partial(v) + \xi \cdot u \cdot v$$

for $u, v \in \mathcal{A}(\Delta, f, J)$. (2.38)

By the proof of Theorem 2.9 in [X2], we have:

Proposition 2.4. The algebra $(\mathcal{A}(\Delta, f, J), \circ_{\xi})$ forms a simple Novikov algebra over the field \mathbb{F}.

3. CLASSIFICATION OF ALGEBRAS

In this section, we shall classify infinite-dimensional simple Novikov algebras containing a left locally finite element e whose right multiplication operator R_e is a constant map and whose left multiplication operator is surjective if $R_e = 0$.

Let (\mathcal{N}, \circ) be a Novikov algebra. For $u \in \mathcal{N}$, we define the left multiplication operator L_u and the right multiplication operator R_u by

$$L_u(v) = u \circ v, \quad R_u(v) = v \circ u$$

for $v \in \mathcal{N}$. (3.1)
Equation (2.31) implies
\[R_u R_v = R_v R_u, \quad L_{u v} = R_u L_u \quad \text{for } u, v \in \mathcal{N}. \] (3.2)

Define
\[[u, v] = u \circ v - v \circ u \quad \text{for } u, v \in \mathcal{N}. \] (3.3)

Then \((\mathcal{N}, [\cdot, \cdot])\) forms a Lie algebra, which is called the commutator Lie algebra associated with the Novikov algebra \((\mathcal{N}, \circ)\). Moreover, (2.32) shows
\[L_{[u, v]} = [L_u, L_v], \quad [L_u, R_v] = R_{u v} - R_v R_u \quad \text{for } u, v \in \mathcal{N}. \] (3.4)

For a fixed element \(u \in \mathcal{N}\) and \(\lambda \in \mathbb{F}\), we define
\[\mathcal{N}_{u, \lambda} = \{ v \in \mathcal{N} \mid (R_u - \lambda)^m(v) = 0 \text{ for some } m \in \mathbb{N} \}. \] (3.5)

Lemma 3.1 (Zel’manov, [Z]). The subspace \(\mathcal{N}_{u, \lambda}\) is an ideal of \(\mathcal{N}\).

A module \(M\) of a Novikov algebra \((\mathcal{N}, \circ)\) is a vector space with two linear maps \(L_M, R_M: \mathcal{N} \to \text{End} M\) such that the operation defined by
\[L_M(u)(w) = u \circ w, \quad R_M(u)(w) = w \circ u \quad \text{for } u \in \mathcal{N}, \ w \in M \] (3.6)
satisfies (2.31) and (2.32) when one of the elements \(\{u, v, w\}\) is in \(M\) and the other two are in \(\mathcal{N}\).

Let \(M\) be a module of a Novikov algebra \((\mathcal{N}, \circ)\). We have the following fact:

Lemma 3.2. Suppose that \(\mathcal{N}\) has an element \(e\) such that
\[e \circ e = \lambda e. \] (3.7)
Then we have the following identity:
\[(R_M(e) - \lambda)^2 R_M(e) = 0. \] (3.8)

Proof. Let \(w \in M\). By (2.32),
\[(w \circ e) \circ e - w \circ (e \circ e) = (e \circ w) \circ e - e \circ (w \circ e), \] (3.9)
which is equivalent to
\[(w \circ e) \circ e - \lambda w \circ e = \lambda e \circ w - e \circ (w \circ e) \] (3.10)
by (2.31) and (3.7). Multiplying on the right by \(e\), we obtain
\[((w \circ e) \circ e) \circ e - \lambda (w \circ e) \circ e = \lambda (e \circ w) \circ e - (e \circ (w \circ e)) \circ e, \] (3.11)
which is equivalent to
\[((w \circ e) \circ e) \circ e - \lambda (w \circ e) \circ e = \lambda^2 e \circ w - \lambda e \circ (w \circ e) \] (3.12)
by (2.31). Subtracting \(\lambda \times (3.10)\) from (3.12), we get
\[((w \circ e) \circ e) \circ e - 2\lambda (w \circ e) \circ e + \lambda^2 w \circ e = 0, \] (3.13)
equivalently,
\[(R_M(e) - \lambda)^2 R_M(e)(w) = 0. \] (3.14)
Since \(w\) is arbitrary, (3.8) follows from (3.14).
Lemma 3.3. Let \((\mathcal{N}, \circ) \) be a simple Novikov algebra with an element \(e \) such that \(e \circ e = be \) with \(b \in \mathbb{F} \) and \(L_e \) is locally finite. Set
\[
\mathcal{N}'_a = \{ u \in \mathcal{N} \mid (L_e - \alpha - b)m(u) = 0 \text{ for some } m \in \mathbb{N} \} \quad \text{for } \alpha \in \mathbb{F},
\] (3.15)
and denote
\[
\Delta = \{ \alpha \in \mathbb{F} \mid \mathcal{N}'_a \neq \{0\} \}.
\] (3.16)
Then
\[
\mathcal{N} = \bigoplus_{\alpha \in \Delta} \mathcal{N}'_a
\] (3.17)
and
\[
\mathcal{N}'_a \circ \mathcal{N}'_b \subset \mathcal{N}'_{a+b} \quad \text{for } \alpha, \beta \in \Delta \text{ when } R_e |_{\mathcal{N}'_a} = bId_{\mathcal{N}'_a},
\] (3.18)
\[
\mathcal{N}'_{-b} \circ \mathcal{N}'_b \subset \mathcal{N}'_{-b} + \mathcal{N}'_{-2b} \quad \text{for } \beta \in \Delta.
\] (3.19)
In particular, (3.18) implies
\[
\mathcal{N}'_a \circ \mathcal{N}'_b \subset \mathcal{N}'_{a+b} \quad \text{for } \alpha, \beta \in \Delta, \quad \alpha \neq -b.
\] (3.20)

Proof. Note that (3.17) follows from the local finiteness of \(L_e \). We define
\[
\partial = L_e - b.
\] (3.21)
For \(u, v \in \mathcal{N} \) such that \(u \circ e = bu \), we get
\[
\partial(u \circ v) = e \circ (u \circ v) - b(u \circ v)
\]
\[
= (e \circ u) \circ v + u \circ (e \circ v) - (u \circ e) \circ v - b(u \circ v)
\]
\[
= (e \circ u) \circ v + u \circ (e \circ v) - 2b(u \circ v)
\]
\[
= (e \circ u - bu) \circ v + u \circ (e \circ v - bv)
\]
\[
= \partial(u) \circ v + u \circ \partial(v)
\] (3.22)
by (2.32). Observe that
\[
\mathcal{N}'_a = \{ u \in \mathcal{N} \mid (\partial - \alpha)m(u) = 0 \text{ for some } m \in \mathbb{N} \} \quad \text{for } \alpha \in \Delta.
\] (3.23)
Suppose that \(u, v \in \mathcal{N} \) satisfy \(u \circ e = bu \) and
\[
(\partial - \alpha)^{m_1}(u) = 0, \quad (\partial - \beta)^{m_2}(v) = 0
\]
for some \(\alpha, \beta \in \Delta, \quad m_1, m_2 \in \mathbb{N},
\] (3.24)
\[(\partial - \alpha - \beta)^{m_1 + m_2}(u \circ v) \]
\[= (\partial - \alpha - \beta)^{m_1 + m_2 - 1}(\partial(u \circ v) - (\alpha + \beta)u \circ v) \]
\[= (\partial - \alpha - \beta)^{m_1 + m_2 - 1}(\partial u \circ v + u \circ \partial(v) - (\alpha + \beta)u \circ v) \]
\[= (\partial - \alpha - \beta)^{m_1 + m_2 - 1}(\partial(\alpha \circ v + u \circ (\partial - \beta)(v)) \]
\[= \sum_{j=0}^{m_1 + m_2 - j}(m_1 + m_2)(\partial - \alpha)(u)(\partial - \beta)^{m_1 + m_2 - j}(v) = 0, \quad (3.25) \]

because of the fact that either \(j \geq m_1 \) or \(m_1 + m_2 - j \geq m_2 \). Thus \((3.18) \) holds. Furthermore, by linear algebra,
\[e \circ N'_{\alpha} = N'_{\alpha} \quad \text{for } -b \neq \alpha \in \Delta. \quad (3.26) \]
By \((3.21) \),
\[R_{e|N'_{\alpha}} = b \text{Id}_{N'_{\alpha}} \quad \text{for } -b \neq \alpha \in \Delta. \quad (3.27) \]
Hence \((3.20) \) is implied by \((3.18) \).
For any \(\alpha \in \mathbb{F} \), we set
\[N_{\alpha} = \{ u \in N \mid L_{e}(u) = (\alpha + b)u \}. \quad (3.28) \]
Since \((R_{e} - b)(e) = 0 \), we have
\[(R_{e} - b)^2 = 0 \quad (3.29) \]
by Lemmas \(3.1 \) and \(3.2 \). For any \(u \in N \), we have
\[e \circ (u \circ e - bu) = (e \circ u) \circ e + u \circ (e \circ e) - (u \circ e) \circ e - be \circ u \]
\[= (e \circ e) \circ u + bu \circ e - (u \circ e) \circ e - be \circ u \]
\[= (bR_{e} - R_{e}^2)(u) \]
\[= (b^2 - bR_{e})(u) \]
\[= -b(u \circ e - bu) \quad (3.30) \]
by \((3.21), (3.22) \), and \((3.29) \), and
\[(u \circ e - bu) \circ e = (R_{e}^2 - bR_{e})(u) \]
\[= (bR_{e} - b^2)(u) = b(u \circ e - bu) \quad (3.31) \]
by \((3.29) \). So
\[(R_{e} - b)(N') \subset N'_{-2b} \quad R_{e}|(R_{e} - b)(u) = b. \quad (3.32) \]
Let \(u, v \in N \) such that
\[(\partial + b)^{m_1}(u) = 0, \quad (\partial - \beta)^{m_2}(v) = 0 \]
for some \(\beta \in \Delta \), \(m_1, m_2 \in \mathbb{N} \). \quad (3.33)
By (3.25) and (3.32),

\[(\partial - \beta + 2b)^{m_{1}}[(\partial + b)^{j_{1}}(b - R_{e})(u)] \circ (\partial - \beta)^{j_{2}}(v) = 0\]

for \(j_{1}, j_{2} \in \mathbb{N}\). (3.34)

Since

\[(\partial - \beta + 2b)^{m_{2}}(\partial - \beta + b)(u \circ v)\]

\[= (\partial - \beta + 2b)^{m_{2}}[e \circ (u \circ v) - \beta(u \circ v)]\]

\[= (\partial - \beta + 2b)^{m_{2}}[(e \circ u) \circ v + u \circ (e \circ v)\]

\[= (\partial - \beta + 2b)^{m_{2}}[(\partial + b)(u) \circ v + u \circ (e - \beta - b) \circ v\]

\[+ (b - R_{e})(u) \circ v]\]

\[= (\partial - \beta + 2b)^{m_{2}}[(\partial + b)(u) \circ v + u \circ (\partial - \beta)(v)]\]

by (3.32) and (3.34), we have

\[(\partial - \beta + 2b)^{m_{2}}(\partial - \beta + b)^{m_{1} + m_{2}}(u \circ v)\]

\[= \sum_{j=0}^{m_{1} + m_{2}} \binom{m_{1} + m_{2}}{j} (\partial - \beta + 2b)^{m_{1}}(\partial + b)^{j} (u)\]

\[\times (\partial - \beta)^{m_{1} + m_{2} - j}(v) = 0.\] (3.36)

Thus (3.19) holds.

Note the arguments in the above proof also show the following properties on the eigenspaces:

\[\mathcal{N}_{\alpha} \cap \mathcal{N}_{\beta} \subset \mathcal{N}_{\alpha + \beta}\]

for \(\alpha, \beta \in \Delta\) when \(R_{e}|_{\mathcal{N}_{\alpha}} = b \text{Id}_{\mathcal{N}_{\alpha}}\), (3.37)

\[\mathcal{N}_{-b} \cap \mathcal{N}_{\beta} \subset \mathcal{N}_{\beta - b} + \mathcal{N}_{\beta - 2b}\]

for \(\beta \in \Delta\). (3.38)

In particular, (3.37) implies

\[\mathcal{N}_{\alpha} \cap \mathcal{N}_{\beta} \subset \mathcal{N}_{\alpha + \beta}\]

for \(\alpha, \beta \in \Delta, \quad \alpha \neq -b\). (3.39)

Below, we shall re-establish a classification theorem, partially based on Osborn's arguments in [O3]. We assume that \(\mathcal{F}\) is algebraically closed. The following is the first main theorem in this paper.

Theorem 3.4. Suppose that \((\mathcal{N}, \circ)\) is an infinite-dimensional simple Novikov algebra with a left locally finite element \(e\) whose right multiplication operator \(R_{e}\) is a constant map and whose left multiplication operator is surjective if \(R_{e} = 0\). Then there exist an additive subgroup \(\Delta\) of \(\mathcal{F}\), an extension field \(\mathcal{F}_{1}\) of \(\mathcal{F}\), a symmetric element \(f \in Z^{2}(\Delta, \mathcal{F}_{1})\), \(J \in \{0\} \cup \mathbb{N}\), and \(\xi \in \mathcal{F}\) such that the algebra \((\mathcal{N}, \circ)\) is isomorphic to \((\mathcal{S}(\Delta, f, J), \circ_{\xi})\) (cf. (2.38)).
Proof. Let \((\mathcal{N}, \circ)\) be the Noviko algebra in the theorem. Assume
\[
R_e = b \text{ Id}_\mathcal{N} \quad \text{with } b \in \mathbb{F}. \tag{3.40}
\]
In particular,
\[
e \circ e = be. \tag{3.41}
\]
We shall use the notations and conclusions of the above lemma. Let
\[
\hat{\mathcal{N}} = e \circ \mathcal{N}. \tag{3.42}
\]
Then
\[
\hat{\mathcal{N}} \supset \sum_{-b \neq a \in \Delta} \mathcal{N}'_a \tag{3.43}
\]
by (3.26). In fact, one can derive
\[
R_e |_{\hat{\mathcal{N}}} = b \text{ Id}_{\hat{\mathcal{N}}} \tag{3.44}
\]
from (3.41) by (3.31) without assumption (3.40). The assumption (3.40) is a replacement of (3.41) that was used in [O3] in the following Case 3 of our classification.

For
\[
u \in \sum_{n=0}^{\infty} (R_e)^n(e) \quad \text{and} \quad v \in \mathcal{N}, \tag{3.45}
\]
define
\[
u \cdot (e \circ v) = u \circ v. \tag{3.46}
\]
Then "\(!\)\: \hat{\mathcal{N}} \times \hat{\mathcal{N}} \to \mathcal{N}\) is a commutative bilinear map by (2.31). For any \(u, v, w \in \mathcal{N}\) such that \((e \circ v) \circ w \in \hat{\mathcal{N}}\), we have
\[
(e \circ u) \cdot [(e \circ v) \cdot (e \circ w)] = [(e \circ v) \cdot (e \circ w)] \cdot (e \circ u)
\]
\[
= ((e \circ v) \circ w) \circ u
\]
\[
= ((e \circ u) \circ v) \circ w
\]
\[
= [(e \circ u) \cdot (e \circ v)] \cdot (e \circ w) \tag{3.47}
\]
by (2.31) and the commutativity. So the map "\(!\)\) is associative. Furthermore, when \(e \in \hat{\mathcal{N}}\),
\[
e \cdot (e \circ u) = e \circ u \quad \text{for } u \in \mathcal{N}. \tag{3.48}
\]
Hence \(e\) is an identity element of \((\hat{\mathcal{N}}, \cdot)\) when \(b \neq 0\).
We use the notation in (3.21). For \(u, v \in \mathcal{N} \), by (3.22), we get
\[
\partial[(e \circ u) \cdot (e \circ v)] = \partial[(e \circ u) \circ v] \\
= \partial(e \circ u) \circ v + (e \circ u) \circ \partial(u) \\
= \partial(e \circ u) \circ v + (e \circ u) \cdot (e \circ \partial(v)) \\
= \partial(e \circ u) \cdot (e \circ v) + (e \circ u) \cdot \partial(e \circ v).
\]
(3.49)
So \(\partial \) is a derivation with respect to \((\widehat{\mathcal{N}}, \cdot)\). Moreover,
\[
(e \circ u) \circ v = (e \circ u) \cdot (e \circ v) = (e \circ u) \cdot (\partial(v) + bv) \quad \text{for} \ u, v \in \mathcal{N}.
\]
(3.50)
Furthermore, by (3.18) and the fact that \(e \circ \mathcal{N}_\alpha' \subset \mathcal{N}_\alpha' \) for any \(\alpha \in \Delta \) (cf. (3.16)), we have
\[
\mathcal{N}_\alpha' \cdot \mathcal{N}_\beta' \subset \mathcal{N}_{\alpha + \beta}' \quad \text{for} \ \mathcal{N}_\alpha', \mathcal{N}_\beta' \subset \widehat{\mathcal{N}}.
\]
(3.51)

Case 1. \(\mathcal{N} = \widehat{\mathcal{N}} \).

Under this assumption, \((\mathcal{N}, \cdot)\) is a \(\partial \)-simple commutative and associative algebra by (3.50) and the simplicity of \((\mathcal{N}, \circ)\); that is, the only \(\partial \)-invariant ideals of \((\mathcal{N}, \cdot)\) are \(\mathcal{N} \) and \(\{0\} \). Hence
\[
(\mathcal{N}, \cdot) \cong \mathfrak{g}(\Delta, f, \mathbb{N})
\]
(3.52)
(cf. (2.33), (2.34)) by Theorem 2.1 in [SXZ]. Therefore, by (3.50),
\[
(\mathcal{N}, \circ) \cong (\mathfrak{g}(\Delta, f, \mathbb{N}), \circ_b).
\]
(3.53)

Case 2. \(\widehat{\mathcal{N}} \neq \mathcal{N}, b \neq 0, \) and
\[
\mathcal{N}_{\alpha-b}' \subset \sum_{0,-b \neq a \in \Delta} \mathcal{N}_a' \circ \mathcal{N}_{\alpha-a}'
\]
(3.54)
(cf. (3.18)).

Replacing \(e \) by \(b^{-1}e \), we can assume \(b = 1 \). If \(-1 \notin \Delta\), then \(\widehat{\mathcal{N}} = \mathcal{N} \), which is in Case 1. So we assume \(-1 \in \Delta\). In this case, we can derive (3.40) from (3.41) and (3.54) by (2.31). For \(0 \neq u \in \mathcal{N}_\alpha \) with \(\alpha \in \Delta \), we set
\[
I_u = \sum_{n=0}^{\infty} (R_x)^n(u).
\]
(3.55)
Note that \(e \circ u = (\alpha + 1)u \in I_u \). Suppose that
\[
e \circ ((\cdots ((u \circ v_1) \circ v_2) \cdots) \circ v_k) \in I_u \quad \text{for} \ v_s \in \mathcal{N}, \ s = 1, \ldots, k.
\]
(3.56)
Denote
\[
w = (\cdots ((u \circ v_1) \circ v_2) \cdots) \circ v_k.
\]
(3.57)
For any $v_{k+1} \in \mathcal{N}$, we have
\[e \circ (w \circ v_{k+1}) = (e \circ w) \circ v_{k+1} + w \circ (e \circ v_{k+1}) - (w \circ e) \circ v_k \in I_u. \quad (3.58) \]

By induction on k, we have
\[e \circ I_u \subset I_u. \quad (3.59) \]

Hence
\[\hat{N} \circ I_u = (e \circ \mathcal{N}) \circ I_u = (e \circ I_u) \circ \mathcal{N} \subset I_u. \quad (3.60) \]

Moreover, by (2.31), (3.43), and (3.54), I_u is an ideal of \mathcal{N}. Since $u = u \circ e \in I_u$, I_u is a nonzero ideal. The simplicity of \mathcal{N} implies
\[I_u = \mathcal{N}. \quad (3.61) \]

Note that
\[\hat{N} \circ \mathcal{N}_{-1} = (e \circ \mathcal{N}) \circ \mathcal{N}_{-1} = (e \circ \mathcal{N}_{-1}) \circ \mathcal{N} = \{0\} \quad (3.62) \]

by (2.31) and (3.28). Moreover, (3.54) and (3.62) imply
\[\mathcal{N} \circ \mathcal{N}_{-1} = \{0\} \quad (3.63) \]

by (2.31). Suppose that
\[u \circ v = 0 \quad \text{for some } 0 \neq u \in \mathcal{N}_\alpha', \quad 0 \neq v \in \mathcal{N}_\beta'. \quad (3.64) \]

Let m_1, m_2 be the minimal nonnegative integers such that
\[\begin{align*}
(\partial - \alpha)^{m_1}(u) &\neq 0, \\
(\partial - \beta)^{m_2}(v) &\neq 0, \\
(\partial - \alpha)^{m_1+1}(u) &\equiv (\partial - \beta)^{m_2+1}(v) = 0
\end{align*} \quad (3.65) \]

(cf. (3.23)). By (3.25), we have
\[\begin{align*}
0 &= (\partial - \alpha - \beta)^{m_1+m_2}(u \circ v) \\
&= \left(\frac{m_1 + m_2}{m_1}\right) (\partial - \alpha)^{m_1}(u) \circ (\partial - \beta)^{m_2}(v).
\end{align*} \quad (3.66) \]

So we have
\[(\partial - \alpha)^{m_1}(u) \circ (\partial - \beta)^{m_2}(v) = 0. \quad (3.67) \]

Observe that $(\partial - \alpha)^{m_1}(u) \in \mathcal{N}_\alpha$ by (3.65). Hence
\[\mathcal{N} \circ (\partial - \beta)^{m_2}(v) = I_{(\partial - \alpha)^{m_1}(u)} \circ (\partial - \beta)^{m_2}(v) = \{0\} \quad (3.68) \]
by (2.31), (3.55), and (3.61). Furthermore, by (3.25) and (3.68), we have

\[0 = (\partial - \alpha - \beta)^{m_1 + m_2 - 1}(u \circ v) \]
\[= \binom{m_1 + m_2 - 1}{m_1} (\partial - \alpha)^{m_1}(u) \circ (\partial - \beta)^{m_2 - 1}(v) \tag{3.69} \]

when \(m_2 > 0 \). By the above arguments, we get

\[\mathcal{N} \circ (\partial - \beta)^{m_2 - 1}(v) = \{0\} \tag{3.70} \]

when \(m_2 > 0 \). Continuing this process, we can prove

\[\mathcal{N} \circ v = 0. \tag{3.71} \]

In particular,

\[e \circ v = 0. \tag{3.72} \]

Hence

\[v \in \mathcal{N}_{-1}. \tag{3.73} \]

Therefore,

\[R_v \text{ is injective for } v \in \left(\bigcup_{\alpha \in \Delta} \mathcal{N}_\alpha' \right) \setminus \mathcal{N}_{-1}. \tag{3.74} \]

For any \(\alpha \in \Delta \), we pick \(0 \neq u \in \mathcal{N}_\alpha \). Expressions (3.55) and (3.61) imply that there exists \(\{v_s \in \mathcal{N}_s', \ s = 1, \ldots, k\} \) such that

\[0 \neq (\cdots ((u \circ v_1) \circ v_2) \cdots) \circ v_k \in \mathcal{N}_0'. \tag{3.75} \]

Moreover, \(v_s \notin \mathcal{N}_{-1} \) by (3.63) for each \(s \in \{1, \ldots, k\} \) and \(\sum_{j=1}^k \beta_j = -\alpha \).

By (3.64),

\[0 \neq (\cdots (v_1 \circ v_2) \cdots) \circ v_k \in \mathcal{N}_{-\alpha}'. \tag{3.76} \]

So

\[-\alpha \in \Delta \quad \text{for } \alpha \in \Delta. \tag{3.77} \]

Therefore, \(\Delta \) forms an additive subgroup of \(\mathbb{F} \) by (3.18) and the fact that \(e \in \mathcal{N}_0 \).

By (3.21) and (3.28),

\[e \circ u = u, \quad \partial(u) = 0 \quad \text{for } u \in \mathcal{N}_0 \tag{3.78} \]

(recall \(b = 1 \)). Moreover,

\[u \circ v = u \cdot (e \circ v) = u \cdot v \quad \text{for } u \in \widehat{\mathcal{N}}, \ v \in \mathcal{N}_0. \tag{3.79} \]
Let $u_1 \in \mathcal{N}'_\alpha$, $u_2 \in \mathcal{N}'_\beta$ with $-1 \neq \alpha, \beta \in \Delta$ and $v_1, v_2 \in \mathcal{N}_0$. When $\alpha + \beta \neq -1$, we have

$$(u_1 \circ v_1) \circ (u_2 \circ v_2) = (u_1 \circ v_1) \circ (u_2 \circ v_2)$$

by (2.31), (3.18), (3.47), (3.49), (3.50), (3.78), and (3.79). When $\alpha + \beta = -1$, we write $u_1 = e \circ w$ with $w \in \mathcal{N}'_\alpha$ and obtain

$$(u_1 \circ v_1) \circ (u_2 \circ v_2) = ((e \circ w) \circ v_1) \circ (u_2 \circ v_2)$$

by (2.31) and (3.80). Now for $u_1 \in \mathcal{N}'_\alpha$, $u_2 \in \mathcal{N}'_{-\alpha - 1}$, $u_3 \in \mathcal{N}'_\beta$ with $-1 \neq \alpha, \beta \in \Delta$ and $v_1, v_2 \in \mathcal{N}_0$, we have

$$[(u_1 \circ u_2) \circ v_1] \circ (u_3 \circ v_2) = [(u_1 \circ v_1) \circ (u_3 \circ v_2)] \circ u_2$$

by (2.31), (3.80), and (3.81). Hence we get

$$(u_1 \circ v_1) \circ (u_2 \circ v_2) = (u_1 \circ u_2) \circ (v_1 \circ v_2)$$

for $u_1 \in \mathcal{N}'_\alpha$, $u_2 \in \mathcal{N}'_\beta$ with $\alpha, \beta \in \Delta$, $\beta \neq -1$, and $v_1, v_2 \in \mathcal{N}_0$ by (3.54) and (3.80)–(3.82).

Observe

$$e \circ (u \circ v) = (e \circ u) \circ v + u \circ (e \circ v) - (u \circ e) \circ v = (e \circ u) \circ v$$

for $u \in \mathcal{N}$ and $v \in \mathcal{N}_0$ by (2.32), (3.40), and (3.78) (recall $b = 1$). Thus for $u_1 \in \mathcal{N}'_\alpha$ with $\alpha \neq -1$, $u_2 \in \mathcal{N}_{-1}$, and $v_1, v_2 \in \mathcal{N}_0$, we write $u_1 = e \circ w$ with
$w \in \mathcal{N}_a'$ and get

$$
(u_1 \circ v_1) \circ (u_2 \circ v_2) = ((e \circ w) \circ v_1) \circ (u_2 \circ v_2) = ((e \circ (u_2 \circ v_2)) \circ w) \circ v_1 = (((e \circ u_2) \circ v_2) \circ w) \circ v_1 = (((e \circ u_2) \circ w) \circ v_2) \circ (e \circ v_1) = (((e \circ u_2) \circ w) \circ (v_2 \circ v_1)) = (u_1 \circ u_2) \circ (v_1 \circ v_2)
$$

(3.85)

by (2.31), (3.83), and (3.84). Moreover, for $u_1 \in \mathcal{N}_a'$, $u_2 \in \mathcal{N}_{-a-1}'$ with $-1 \neq \alpha \in \Delta$, $u_3 \in \mathcal{N}_{-1}'$, and $v_1, v_2 \in \mathcal{N}_0$, we have (3.82). Therefore, by (3.54), (3.82) with $u_3 \in \mathcal{N}_{-1}'$, (3.83), and (3.85), we get

$$
(u_1 \circ v_1) \circ (u_2 \circ v_2) = (u_1 \circ u_2) \circ (v_1 \circ v_2)
$$

for $u_1, u_2 \in \mathcal{N}$, $v_1, v_2 \in \mathcal{N}_0$. (3.86)

Let $0 \neq v \in \mathcal{N}_0$. Then $\mathcal{N} \circ v$ is a nonzero ideal of \mathcal{N} by (3.86) with $v_1 = e$. Hence

$$
\mathcal{N} \circ v = \mathcal{N},
$$

(3.87)

which implies

$$
\mathcal{N}_0' \circ v = \mathcal{N}_0'
$$

(3.88)

by (3.54). Thus there exists $u \in \mathcal{N}_0'$ such that

$$
u \circ v = e.
$$

(3.89)

By (3.78),

$$
0 = \partial(u \circ v) = \partial(u) \circ v + u \circ \partial(v) = \partial(u) \circ v.
$$

(3.90)

So $\partial(u) = 0$ by (3.74). Thus $u \in \mathcal{N}_0$ by (3.21) and (3.28). Therefore, (\mathcal{N}_0, \circ) forms a field by (3.79) and the commutativity and associativity of (\mathcal{N}_0, \cdot). Moreover, \mathcal{N}_a' and \mathcal{N}_a are right vector spaces over \mathcal{N}_0 for $\alpha \in \Delta$ by (3.86) with $u_2 = e$. For $1 \neq \alpha \in \Delta$ and $0 \neq v \in \mathcal{N}_{-\alpha}$, $R_v : \mathcal{N}_a \rightarrow \mathcal{N}_0$ is an injective \mathcal{N}_0-linear map by (3.37) and (3.74) and (3.86) with $v_2 = e$. So dim$(\mathcal{N}_a/\mathcal{N}_0) = 1$. In particular, dim$(\mathcal{N}_2/\mathcal{N}_0) = 1$. We choose $0 \neq u \in \mathcal{N}_1$. Then $R_u : \mathcal{N}_1 \rightarrow \mathcal{N}_2$ is an injective \mathcal{N}_0-linear map. Hence dim$(\mathcal{N}_1/\mathcal{N}_0) = 1$. Therefore, we get

$$
\text{dim}(\mathcal{N}_a/\mathcal{N}_0) = 1 \quad \text{for } \alpha \in \Delta.
$$

(3.91)

Since we assume $\hat{\mathcal{N}} \neq \mathcal{N}$, (3.91) implies

$$
\mathcal{N}_a' = \mathcal{N}_a \quad \text{for } \alpha \in \Delta.
$$

(3.92)
Again we let $F_1 = N_0$. We choose \(\{0 \neq e_\alpha \in N_\alpha \mid -1 \neq \alpha \in \Delta \} \) and
\[
e_{-1} = e_{-2} \circ e_1.
\] (3.93)

We define an algebraic operation "\(\cdot \)" on \(N \) over \(F_1 \)
\[
e_\alpha \cdot e_\beta = (\beta + 1)^{-1} e_\alpha \cdot (e \circ e_\beta) = (\beta + 1)^{-1} e_\alpha \circ e_\beta
\] (3.94)
and
\[
e_\alpha \cdot e_{-1} = 2(e_\alpha \cdot e_{-2}) \cdot e_1
\] (3.95)
for \(\alpha, \beta \in \Delta, \beta \neq -1 \). This definition coincides with (3.46) on \(\hat{N} = \sum_{-1 \neq \alpha \in \Delta, N_\alpha} \). For \(-1 \neq \alpha \in \Delta \),
\[
e_\alpha \cdot e_{-1} = 2(e_{-2} \cdot e_\alpha) \cdot e_1
= (\alpha + 1)^{-1} (e_{-2} \circ e_\alpha) \circ e_1
= (\alpha + 1)^{-1} (e_{-2} \circ e_1) \circ e_\alpha
= e_{-1} \cdot e_\alpha
\] (3.96)
by (2.31), (3.94), (3.95), and the commutativity of \((\hat{N}, \cdot) \). Hence \((N, \cdot) \) is commutative. Thus for \(\alpha, \beta, \gamma \in \Delta \) such that \(\alpha, \gamma \neq -1 \), we have
\[
e_\alpha \cdot (e_\beta \cdot e_\gamma) = (e_\beta \cdot e_\gamma) \cdot e_\alpha
= (\alpha + 1)^{-1} (\gamma + 1)^{-1} (e_\beta \circ e_\gamma) \circ e_\alpha
= (\alpha + 1)^{-1} (\gamma + 1)^{-1} (e_\gamma \circ e_\alpha) \circ e_\gamma
= (e_\beta \cdot e_\alpha) \cdot e_\gamma
= (e_\alpha \cdot e_\beta) \cdot e_\gamma
\] (3.97)
by (2.31). For \(\alpha, \beta \in \Delta \) and \(\alpha \neq -1 \), we get
\[
(e_\alpha \cdot e_\beta) \cdot e_{-1} = 2((e_\beta \cdot e_\alpha) \cdot e_{-2}) \cdot e_1
= -(\alpha + 1)^{-1} ((e_\beta \circ e_\alpha) \circ e_{-2}) \circ e_1
= -(\alpha + 1)^{-1} ((e_\beta \circ e_{-2}) \circ e_1) \circ e_\alpha
= 2((e_\beta \cdot e_{-2}) \cdot e_1) \cdot e_\alpha
= (e_\beta \cdot e_{-1}) \cdot e_\alpha
= e_\alpha \cdot (e_\beta \cdot e_{-1})
\] (3.98)
\[
(e_{-1} \cdot e_\beta) \cdot e_{-1} = e_{-1} \cdot (e_{-1} \cdot e_\beta) = e_{-1} \cdot (e_\beta \cdot e_{-1}).
\] (3.99)
Thus \((N, \cdot) \) forms a commutative and associative algebra. According to Theorem 2.1 in [SXZ], we get
\[
(N, \circ) \equiv (\tilde{N}(\Delta, f, \{0\}), \circ_1)
\] (3.100)
by (3.62), (3.95), and the fact

\[(\partial + 1)(N_{-1}) = (-1 + 1)N_{-1} = \{0\}. \tag{3.101}\]

Case 3. $b \neq 0$ and (3.54) does not hold and $\hat{N} \neq N$.

Again we can assume $b = 1$ and $-1 \in \Delta$. Otherwise (3.54) holds. Let

\[\Delta' = \Delta \setminus \mathbb{Z}. \tag{3.102}\]

By (2.32), (3.17), (3.19), and (3.20), the subspace

\[U = \sum_{\alpha \in \Delta} N'_\alpha + \sum_{\alpha, \beta \in \Delta'} N'_\alpha \circ N'_\beta \tag{3.103}\]

is an ideal of N. If $\Delta' \neq \emptyset$, then $U = N$. So

\[N''_{-1} \subseteq \sum_{\alpha, \beta \in \Delta'} N'_\alpha \circ N'_\beta, \tag{3.104}\]

that is, (3.54) holds. Hence

\[\Delta \subset \mathbb{Z}. \tag{3.105}\]

The assumption in (3.40) is crucial to the following proof of $1 \in \Delta$. Expression (3.40) implies the equation in (3.18) holds for any $\alpha, \beta \in \Delta$. Since $\sum_{\alpha \neq m \in \Delta} N''_m + \sum_{\alpha \neq \beta, m \in \Delta} N'_\alpha \circ N'_\beta$ is an ideal by (3.17) and (3.18), we have

\[N = \sum_{\alpha \neq m \in \Delta} N''_m + \sum_{\alpha \neq \beta, m \in \Delta} N'_\alpha \circ N'_\beta. \tag{3.106}\]

Hence

\[N''_0 \subseteq \sum_{\alpha \neq \beta, \gamma \in \Delta} N'_m \circ N'_{m-1}. \tag{3.107}\]

Moreover, $N \circ N = N$ by the simplicity of N. Thus

\[
N''_{-1} \subset \sum_{m \in \Delta} N''_m \circ N'_{m-1} = \sum_{0, -1 \neq m \in \Delta} N''_m \circ N'_{m-1} + N''_0 \circ N'_{-1} + N''_{-1} \circ N''_0
\]
\[
\subset \sum_{0, -1 \neq m \in \Delta} N''_m \circ N'_{m-1}
\]
\[
+ \sum_{0 \neq m \in \Delta} \left[(N''_m \circ N'_{m-1}) \circ N'_{-1} + N''_{-1} \circ (N''_m \circ N'_{m-1}) \right]
\]
\[
= \sum_{0, -1 \neq m \in \Delta} N''_m \circ N'_{m-1}
\]
\[
+ \sum_{0 \neq m \in \Delta} \left[(N''_m \circ N'_{m-1}) \circ N'_{-1} + (N''_{-1} \circ N''_m) \circ N'_{m-1}
\]
\[
+ N''_m \circ (N''_{-1} \circ N'_{m-1}) \right]
\]
\[
= \sum_{0, -1 \neq m \in \Delta} N''_m \circ N'_{m-1} + (N''_{-1} \circ N''_m) \circ N'_{-1}
\]
\[
+ (N''_{-1} \circ N'_{m-1}) \circ N''_m + N''_m \circ (N''_{-1} \circ N'_{m-1}) \tag{3.108}\]
by (2.31), (2.32), (3.18), (3.40), and (3.107). Since (3.54) fails, we have

$$1 \in \Delta, \quad (3.109)$$

which is important in this case of the classification.

Let \(0 \neq v \in \mathcal{N}_k \) with \(k \in \mathbb{N} \). Set

$$\Psi = \{ u \in \mathcal{N} \mid u \circ v = 0 \}. \quad (3.110)$$

Then

$$\Psi \circ \mathcal{N} \subset \Psi \quad (3.111)$$

by (2.31). Moreover, for \(u \in \Psi \),

$$\quad (e \circ u) \circ v = e \circ (u \circ v) + (u \circ e) \circ v - u \circ (e \circ v) = -ku \circ v = 0 \quad (3.112)$$

by (2.31) and (2.32). So \(L_e(\Psi) \subset \Psi \). Thus

$$\Psi = \sum_{m \in \Delta} \Psi_m, \quad \Psi_m = \Psi \cap \mathcal{N}_m'. \quad (3.113)$$

Note that

$$\widehat{\mathcal{N}} \circ \Psi = (e \circ \mathcal{N}) \circ \Psi = (e \circ \Psi) \circ \mathcal{N} \subset \Psi \quad (3.114)$$

by (2.31), (3.111), and (3.112). Let \(u \in \mathcal{N}_{k-1} \) and \(w \in \Psi_m \). We have

$$\quad (m + 1)(u \circ w) \circ v = (m + 1)[u \circ (w \circ v) + (w \circ u) \circ v - w \circ (u \circ v)]$$

$$= -(m + 1)w \circ (u \circ v)$$

$$= (L_e - m - 1)(w) \circ (u \circ v) - (e \circ w) \circ (u \circ v)$$

$$= (L_e - m - 1)(w) \circ (u \circ v) - (e \circ (u \circ v)) \circ w$$

$$= (L_e - m - 1)(w) \circ (u \circ v)$$

$$- [(e \circ u) \circ v + u \circ (e \circ v) - (u \circ e) \circ v] \circ w$$

$$= (L_e - m - 1)(w) \circ (u \circ v)$$

$$- (L_e(u) \circ v + (k + 1)u \circ v - u \circ v) \circ w$$

$$= (L_e - m - 1)(w) \circ (u \circ v)$$

$$- (L_e(u) \circ v) \circ w - k(u \circ v) \circ w$$

$$= ((L_e - m - 1)(w) \circ u) \circ v$$

$$+ u \circ ((L_e - m - 1)(w) \circ v)$$

$$- (u \circ (L_e - m - 1)(w)) \circ v$$

$$- (L_e(u) \circ w) \circ v - k(u \circ w) \circ v$$

$$= -[L_e(u) \circ w + u \circ (L_e - m - 1)(w)] \circ v$$

$$- k(u \circ w) \circ v \quad (3.115)$$
by (2.31), (2.32), (3.40), (3.111), and (3.112). Thus

\[(m + k + 1)(u \circ w) \circ v = -\{L_e(u) \circ w + u \circ (L_e - m - 1)(w)\} \circ v.\]

(3.116)

Let \(n\) be a positive integer such that \((L_e)^n(u) = (L_e - m - 1)^n(w) = 0\). Then

\[(m + k + 1)^{2n}(u \circ w) \circ v = \sum_{j=0}^{2n} \binom{2n}{j} [L_e^j(u) \circ (L_e - m - 1)^{2n-j}(w)] \circ v = 0.\]

(3.117)

When \(m \neq -k - 1\), we get \((u \circ w) \circ v = 0\). Hence

\[\mathcal{N}'_{-1} \circ \Psi_m \subset \Psi \quad \text{for} \quad -k - 1 \neq m \in \Delta.\]

(3.118)

Set

\[V = \Psi + \sum_{n=1}^{\infty} (L_{\mathcal{N}'_{-1}})^n(\Psi_{-k-1}).\]

(3.119)

Note

\[\mathcal{N} \circ \Psi \subset \Psi + L_{\mathcal{N}'_{-1}}(\Psi_{-k-1}) \subset V\]

(3.120)

by (3.14) and (3.118). Assume that

\[\mathcal{N} \circ (L_{\mathcal{N}'_{-1}})^n(\Psi_{-k-1}) \subset V;\]

(3.121)

\[\mathcal{N} \circ (L_{\mathcal{N}'_{-1}})^{n+1}(\Psi_{-k-1}) = (\mathcal{N} \circ \mathcal{N}'_{-1} - \mathcal{N}'_{-1} \circ \mathcal{N}) \circ (L_{\mathcal{N}'_{-1}})^n(\Psi_{-k-1}) + L_{\mathcal{N}'_{-1}}(\mathcal{N} \circ (L_{\mathcal{N}'_{-1}})^n(\Psi_{-k-1})) \subset V\]

(3.122)

by (2.32) and (3.121). By induction on \(n\), (3.121) holds for any \(n \in \mathbb{N}\). Hence \(V\) is a left ideal. Furthermore, \(V\) is a right ideal by (2.31), (3.111), and (3.121). If \(V = \mathcal{N}\), then

\[e \in \Psi\]

(3.123)

by (3.18) and the fact \(k \geq 0\). Thus

\[0 = e \circ v = (k + 1)v,\]

(3.124)

which is absurd. Thus \(V = \{0\}\), and we have

\[R_v \text{ is injective} \quad \text{for} \quad 0 \neq v \in \mathcal{N}_k, \quad k \in \mathbb{N}.\]

(3.125)
Next we choose $0 \neq u \in \mathcal{N}_n$ for any $-1 \neq n \in \Delta$. Note that $\mathcal{N} \circ u$ is a right ideal. Moreover, for $v_1, v_2 \in \mathcal{N}$, we get
\[(e \circ v_1) \circ (v_2 \circ u) = (e \circ (v_2 \circ u)) \circ v_1\]
\[= [(e \circ v_2) \circ u + v_2 \circ (e \circ u) - (v_2 \circ e) \circ u] \circ v_1\]
\[= [(e \circ v_2) \circ u + (n + 1)v_2 \circ u - v_2 \circ u] \circ v_1\]
\[= [(e \circ v_2) \circ v_1 + n v_2 \circ v_1] \circ u \subseteq \mathcal{N} \circ u \quad (3.126)\]
by (2.31) and (2.23). Hence
\[\mathcal{N}_m' \circ (\mathcal{N} \circ u) \subseteq \mathcal{N} \circ u \quad \text{for} \ -1 \neq m \in \Delta \quad (3.127)\]
by (2.26). Furthermore, for $v_1 \in \mathcal{N}_{-1}'$ and $v_2 \in \mathcal{N}_m'$ with $-1 \neq m \in \Delta$, we have
\[v_1 \circ (v_2 \circ u) = (v_1 \circ v_2) \circ u + v_2 \circ (v_1 \circ u) - (v_2 \circ v_1) \circ u \in \mathcal{N} \circ u \quad (3.128)\]
by (2.32) and (3.127). Thus
\[\mathcal{N} \circ u + \sum_{j=1}^{\infty} (L_{\mathcal{N}_{-1}'})^j(u) \quad (3.129)\]
is a nonzero ideal of \mathcal{N} by the same arguments as (3.120)–(3.122). So
\[\mathcal{N} = \mathcal{N} \circ u + \sum_{j=1}^{\infty} (L_{\mathcal{N}_{-1}'})^j(u). \quad (3.130)\]
Expressions (3.18) and (3.130) show
\[\mathcal{N}_n' = \mathcal{N}_{m-n} \circ u \quad \text{for} \ n - 1 \leq m \in \Delta. \quad (3.131)\]
If $-2 \in \Delta$, we take $n = -2$ in the above and get
\[\mathcal{N}_1' \circ u = \mathcal{N}_{-2}', \quad (3.132)\]
which implies (3.54). Thus $\mathcal{N}_{-2}' = \{0\}$. Furthermore, (3.125) with $k = 1$ implies
\[\Delta = \{-1\} \cup \mathbb{N}. \quad (3.133)\]
For $u \in \mathcal{N}_{-1}'$ and $v_1, v_2 \in \mathcal{N}_0$, we have
\[(u \circ v_1) \circ v_2 - u \circ (v_1 \circ v_2)\]
\[= (v_1 \circ u) \circ v_2 - v_1 \circ (u \circ v_2)\]
\[= ((e \circ v_1) \circ u) \circ v_2 - (e \circ v_1) \circ (u \circ v_2)\]
\[= ((e \circ u) \circ v_1) \circ v_2 - (e \circ (u \circ v_2)) \circ v_1\]
\[= ((e \circ u) \circ v_1) \circ v_2 - ((e \circ u) \circ v_2) \circ v_1 = 0 \quad (3.134)\]
by (2.31), (2.32), (3.77), and (3.83). Moreover, for \(u_1 \in \mathcal{N}'_{-1}, u_2 \in \mathcal{N}_\beta \) with \(\beta \neq -1 \) and \(v_1, v_2 \in \mathcal{N}_0 \), we get

\[
(u_1 \circ v_1) \circ (u_2 \circ v_2) = (u_1 \circ (u_2 \circ v_2)) \circ v_1
\]

\[
= [(u_1 \circ u_2) \circ v_2 + u_2 \circ (u_1 \circ v_2) - (u_2 \circ u_1) \circ v_2] \circ v_1
\]

\[
= [(u_1 \circ u_2) \circ v_2 + (u_2 \circ u_1) \circ v_2 - (u_2 \circ u_1) \circ v_2] \circ v_1
\]

\[
= (u_1 \circ u_2) \circ (v_2 \circ v_1)
\]

\[
= (u_1 \circ u_2) \circ (v_1 \circ v_2)
\]

(3.135)

by (2.31), (2.32), (3.40), (3.79), (3.85), (3.134), and the commutativity of \((\mathcal{N}_0, \circ) \). Furthermore,

\[
\mathcal{N}'_{-1} \circ \mathcal{N}'_{-1} = \{0\}
\]

(3.136)

by (3.18) and (3.133). Thus (3.86) holds in this case by (3.80), (3.85), (3.135), and (3.136). Therefore, \((\mathcal{N}_0, \circ) \) forms a field and (3.92) holds. Pick any \(0 \neq e' \in \mathcal{N}_{-1} \), then

\[
e' \circ e' = 0
\]

(3.137)

by (3.136) and

\[
e' \circ \mathcal{N} = \mathcal{N}
\]

(3.138)

by (3.86), (3.92), (3.125), and (3.138). By (2.31), (3.137), and (3.138), \(R_{e'} = 0 \). Replacing \(e \) by \(e' \), we go back to Case 1.

This completes the proof of Theorem 3.4. ■

4. CLASSIFICATION OF IRREDUCIBLE MODULES

In this section, we shall classify all the irreducible modules of certain infinite-dimensional simple Novikov algebras with an idempotent element whose left action is locally finite.

As usual, a submodule of a module \(M \) of a Novikov algebra \((\mathcal{N}, \circ) \) is a subspace \(V \) of \(M \) such that

\[
u \circ V, V \circ u \subseteq V \quad \text{for } u \in \mathcal{N}.
\]

(4.1)

The module \(M \) is called irreducible if it does not contain any proper nonzero submodule. First we present a lemma due to Osborn [O4] and give a proof for the reader's convenience. Recall the notations in (3.6).
LEMMA 4.1 (Osborn). Let M be an irreducible module of a Novikov algebra (\mathcal{N}, \circ). Suppose that $R_M([\mathcal{N}, \mathcal{N}]^-) \neq \{0\}$. If T is a polynomial of right multiplication operators on \mathcal{N} such that $T(\mathcal{N}) = \{0\}$, then the operator T' obtained for T with $R_M(u)$ replaced by $R_M(u)$ also satisfies $T'(M) = \{0\}$.

Proof. Note that $\mathcal{N} \circ M$ is a submodule of M by (2.31). If $M = \mathcal{N} \circ M$, then

$$T'(M) = T'(\mathcal{N} \circ M) = T(\mathcal{N}) \circ M = \{0\}$$

(4.2)

by (2.31). So the lemma holds.

If $M \neq \mathcal{N} \circ M$, then $\mathcal{N} \circ M = \{0\}$ by the irreducibility of M. For $u_1, u_2 \in \mathcal{N}$ and $w \in M$, we have

$$(w \circ u_1) \circ u_2 - w \circ (u_1 \circ u_2) = (w \circ u_1) \circ u_2 - (w \circ u_2) \circ u_1 = 0$$

(4.3)

by (2.32). Moreover,

$$R_M([u_1, u_2^-]) (w) = w \circ (u_1 \circ u_2 - u_2 \circ u_1)$$

$$= (w \circ u_1) \circ u_2 - (w \circ u_2) \circ u_1$$

$$= (w \circ u_2) \circ u_1 - (w \circ u_1) \circ u_2 = 0$$

(4.4)

by (2.31) and (4.3). Since w is arbitrary, $R_M([u_1, u_2^-]) = 0$. Hence $R_M([\mathcal{N}, \mathcal{N}]^-) = \{0\}$, which contradicts our assumption. \[\blacksquare\]

Next we shall give the constructions of irreducible modules. Take J to be the additive semi-group $\{0\}$ or \mathbb{N}. Let \mathcal{A} be a vector space with a basis

$$\{u_{\alpha, i} \mid \alpha \in \mathbb{F}, i \in J\}.$$

(4.5)

Define the operation “$.$” on \mathcal{A} by

$$u_{\alpha, i} \cdot u_{\beta, j} = u_{\alpha + \beta, i+j} \quad \text{for } \alpha, \beta \in \mathbb{F}, \ i, j \in J.$$

(4.6)

Then (\mathcal{A}, \cdot) forms a commutative associative algebra with the identity element $1 = u_{0,0}$. We define the map $\partial: \mathcal{A} \rightarrow \mathcal{A}$ by

$$\partial(u_{\alpha, j}) = \alpha u_{\alpha, j} + j u_{\alpha, j-1} \quad \text{for } \alpha \in \mathbb{F}, \ j \in J.$$

(4.7)

Let Δ be an additive subgroup of \mathbb{F} such that $J + \Delta \neq \{0\}$. Set

$$\mathcal{N} = \sum_{\alpha \in \Delta, i \in J} \mathbb{F} u_{\alpha, i}.$$

(4.8)

Next, for any fixed element $\xi \in \mathcal{N}$, we define the operation “\circ” on \mathcal{A} by

$$u \circ v = u \cdot \partial(v) + \xi \cdot u \cdot v \quad \text{for } u, v \in \mathcal{A}.$$

(4.9)
By Theorem 2.9 in [X2], \((\mathcal{A}, \circ)\) forms a simple Novikov algebra and \((\mathcal{N}, \circ)\) forms a simple subalgebra of \((\mathcal{A}, \circ)\). For \(\lambda \in \mathcal{F}\), we set
\[
M(\lambda) = \sum_{\alpha \in \Delta, i \in J} \mathbb{F}u_{\alpha+\lambda, i}.
\] (4.10)

Expression (4.9) shows
\[
\mathcal{N} \circ M(\lambda), \ M(\lambda) \circ \mathcal{N} \subset M(\lambda).
\] (4.11)

Thus \(M(\lambda)\) forms an \(\mathcal{N}\)-module. In fact, by a proof similar to that of Theorem 2.9 in [X2], we obtain:

Theorem 4.2. The \(\mathcal{N}\)-module \(M(\lambda)\) is irreducible.

A natural question is to what extent the modules \(\{M(\lambda) \mid \lambda \in \mathcal{F}\}\) cover the irreducible modules of \(\mathcal{N}\). Up to this point, we are not able to answer this for a general element \(\xi \in \mathcal{N}\). The following is our second main theorem in this paper.

Theorem 4.3. If \(\xi = b \in \mathcal{F}\), then any irreducible \(\mathcal{N}\)-module \(M\) with locally finite \(L_M(u_{0,0})\) is isomorphic to \(M(\lambda)\) for some \(\lambda \in \mathcal{F}\).

Proof. Assume \(\xi = b\). Then (4.9) becomes
\[
u_{\alpha, i} \circ u_{\beta, j} = (\beta + b)u_{\alpha+\beta, i+j} + ju_{\alpha+\beta, i+j-1}
\] for \(\alpha, \beta \in \mathcal{F}, \ i, j \in J\). (4.12)

In particular,
\[
u_{0, 0} \circ u_{\gamma, l} = (\gamma + b)u_{\gamma, l} + lu_{\gamma, l-1}
\] for \(\gamma \in \Delta, \ l \in J\). (4.13)

and
\[
u_{\alpha, i} \circ u_{\lambda, 0} = (\lambda + b)u_{\alpha+\lambda, i}
\] for \(\alpha, \lambda \in \mathcal{F}, \ i \in J\). (4.14)

Expression (4.14) implies
\[
R_{u_{0, 0}} = b \text{Id}_{\mathcal{D}}.
\] (4.15)

Let \(M\) be an \(\mathcal{N}\)-module \(M\) with locally finite \(L_M(u_{0,0})\). The local finiteness of \(L_M(u_{0,0})\) implies the existence of its eigenvectors in \(M\).

Case 1. The operator \(L_M(u_{0,0})\) has an eigenvector with a nonzero eigenvalue.

Let \(w\) be the eigenvector and let \(\lambda + b\) be the corresponding nonzero eigenvalue. Set
\[
M' = \mathcal{N} \circ w = \sum_{\alpha \in \Delta, i \in J} \mathbb{F}u_{\alpha, i} \circ w.
\] (4.16)
In particular, $w \in M'$. For $\alpha \in \Delta$, $i \in J$, and $u \in N$,

$$(u_{\alpha,i} \circ w) \circ u = (u_{\alpha,i} \circ u) \circ w \in M'$$

(4.17)

by (2.31). Note that

$$(u_{0,0} \circ (u_{\alpha,i} \circ w)) \circ u = (u_{0,0} \circ u_{\alpha,i}) \circ w + u_{\alpha,i} \circ (u_{0,0} \circ w)$$

$$(a + b)u_{\alpha,i} \circ w + (\lambda + b)u_{\alpha,i} \circ w$$

by (2.32). Moreover,

$$(u_{0,0} \circ u) \circ (u_{\alpha,i} \circ w)$$

$$(a + \alpha + b)u_{\alpha,i} \circ w + i(u_{\alpha,i} \circ u) \circ w$$

(4.19)

by (2.31) and (4.18). Furthermore, (4.13) shows

$$(u_{0,0} \circ u_0 \circ \alpha) = \mathcal{N}$$

if $J = \mathbb{N}$ or $b \notin \Delta$.

(4.20)

Thus N' is a nonzero submodule of M if $J = \mathbb{N}$ or $b \notin \Delta$ by (4.17) and (4.19). Assume that $J = \{0\}$ and $b \in \Delta$. Since we assume $J + \Delta \neq \{0\}$, we have $\Delta \neq \{0\}$. In this case,

$$(u_{\alpha,0} \circ \alpha) = \mathcal{N}$$

for $-b \neq \alpha \in \Delta$

(4.21)

by (4.13). Since char $F = 0$, we have $|\Delta| = \infty$. There exists $\gamma \in \Delta$ such that $\gamma \neq 0, -b$. Since $u_{-\gamma-b,0}, u_{\gamma,0} \in u_{0,0} \circ \alpha$ by (4.21), hence

$$(u_{-\gamma-b,0} \circ (u_{\gamma,0} \circ w) = (\gamma + b)^{-1}(u_{-\gamma-b,0} \circ u_{\gamma,0}) \circ (u_{\gamma,0} \circ w)$$

$$(\gamma + b)^{-1}(u_{-\gamma-b,0} \circ (u_{\gamma,0} \circ w)) \circ u_{\gamma,0}$$

$$\in (\mathcal{N} \circ w) \circ u_{\gamma,0}$$

$$= (\mathcal{N} \circ u_{\gamma,0}) \circ w$$

$$\subset \mathcal{N} \circ w$$

$$= M'$$

(4.22)

for $\alpha \in \Delta$ by (2.31), (4.14), and (4.19). Therefore, M' is again a nonzero submodule of M. The irreducibility of M shows

$$M = M'$$

(4.23)
We define a linear map \(\sigma: M(\lambda) \to M \) by
\[
\sigma(u_{\alpha+\lambda, i}) = u_{\alpha, i} \circ w \quad \text{for } \alpha \in \Delta, \quad i \in J.
\] (4.24)

By (4.12) and (4.17),
\[
\sigma(u_{\alpha+\lambda, i} \circ u_{\beta, j}) = \sigma((\beta + b)u_{\alpha+\beta+\lambda, i+j} + ju_{\alpha+\beta+\lambda, i+j-1})
= (\beta + b)\sigma(u_{\alpha+\beta+\lambda, i+j}) + j\sigma(u_{\alpha+\beta+\lambda, i+j-1})
= (\beta + b)u_{\alpha+\beta, i+j} \circ w + ju_{\alpha+\beta, i+j-1} \circ w
= [(\beta + b)u_{\alpha+\beta, i+j} + ju_{\alpha+\beta, i+j-1}] \circ w
= (u_{\alpha, i} \circ u_{\beta, j}) \circ w
= (u_{\alpha, i} \circ w) \circ u_{\beta, j}
= \sigma(u_{\alpha+\lambda, i}) \circ u_{\beta, j}
\] (4.25)

for \(\alpha, \beta \in \Delta \) and \(i, j \in J \). Moreover, (4.13) and (4.17) show
\[
\sigma(u_{0, 0} \circ u_{\alpha+\lambda, i}) = \sigma((\alpha + \lambda + b)u_{\alpha+\lambda, i} + ju_{\alpha+\lambda, i-1})
= (\alpha + \lambda + b)\sigma(u_{\alpha+\lambda, i}) + i\sigma(u_{\alpha+\lambda, i-1})
= (\alpha + \lambda + b)u_{\alpha, i} \circ w + ju_{\alpha, i-1} \circ w
= u_{0, 0} \circ (u_{\alpha, i} \circ w)
= u_{0, 0} \sigma(u_{\alpha+\lambda, i})
\] (4.26)

for \(\alpha \in \Delta \) and \(i \in J \). Furthermore,
\[
\sigma((u_{0, 0} \circ u_{\beta, j}) \circ u_{\alpha+\lambda, i}) = \sigma((u_{0, 0} \circ u_{\alpha+\lambda, i}) \circ u_{\beta, j})
= \sigma(u_{0, 0} \circ u_{\alpha+\lambda, i}) \circ u_{\beta, j}
= (u_{0, 0} \circ \sigma(u_{\alpha+\lambda, i})) \circ u_{\beta, j}
= (u_{0, 0} \circ u_{\beta, j}) \circ \sigma(u_{\alpha+\lambda, i})
\] (4.27)

for \(\alpha, \beta \in \Delta \) and \(i, j \in J \). Thus \(\sigma \) is an \(\mathcal{N} \)-module homomorphism when \(J = \mathbb{N} \) or \(b \notin \Delta \) by (4.20). If \(J = \{0\} \) and \(b \notin \Delta \), we choose \(\gamma \in \Delta \) such that \(\gamma \neq 0, -b \) and get
\[
\sigma(u_{-b, 0} \circ u_{\alpha+\lambda, 0}) = (\gamma + b)^{-1} \sigma((u_{-\gamma-b, 0} \circ u_{\gamma, 0}) \circ u_{\alpha+\lambda, 0})
= (\gamma + b)^{-1} \sigma((u_{-\gamma-b, 0} \circ u_{\alpha+\lambda, 0}) \circ u_{\gamma, 0})
= (\gamma + b)^{-1} \sigma(u_{-\gamma-b, 0} \circ u_{\alpha+\lambda, 0}) \circ u_{\gamma, 0}
= (\gamma + b)^{-1}(u_{-\gamma-b, 0} \circ \sigma(u_{\alpha+\lambda, 0})) \circ u_{\gamma, 0}
= (\gamma + b)^{-1}(u_{-\gamma-b, 0} \circ u_{\gamma, 0}) \circ \sigma(u_{\alpha+\lambda, 0})
= u_{-b, 0} \circ \sigma(u_{\alpha+\lambda, 0})
\] (4.28)
by (4.21) and (4.27). Again σ is an \(\mathcal{N}\)-module homomorphism. Since \(M(\lambda)\) is irreducible and \(M \neq \{0\}\), σ must be an \(\mathcal{N}\)-module isomorphism.

Case 2. The operator \(L_M(u_{0,0})\) has only zero eigenvalue.

By (4.12),

\[
[u_\alpha, i, u_\beta, j]^- = (\beta - \alpha)u_{\alpha + \beta, i+j} + (j - i)u_{\alpha + \beta, i+j-1}
\]

for \(\alpha, \beta \in \Delta, \ i, j \in J\). (4.29)

In particular,

\[
[u_{0,0}, u_\beta, j]^- = \beta u_{\beta, j} + j u_{\beta, j-1} \quad \text{for } \beta \in \Delta, \ j \in J.
\] (4.30)

Hence

\[
[u_{0,0}, \mathcal{N}]^- = \mathcal{N}
\] (4.31)

if \(J = \mathbb{N}\). When \(J = \{0\}, \Delta \neq \{0\}\) by our assumption. Note that (4.30) shows

\[
u_{\alpha, 0} \in [u_{0,0}, \mathcal{N}]^- \quad \text{for } 0 \neq \alpha \in \Delta.
\] (4.32)

Moreover,

\[
[u_{-\alpha, 0}, u_{\alpha, 0}]^- = 2\alpha u_{0,0} \quad \text{for } \alpha \in \Delta.
\] (4.33)

Thus we always have

\[
[\mathcal{N}, \mathcal{N}]^- = \mathcal{N}.
\] (4.34)

If \(R_M([\mathcal{N}, \mathcal{N}]^-) = \{0\}\), then \(R_M(\mathcal{N}) = 0\). So \(\mathcal{N} \circ M \neq \{0\}\) because \(M\) is not trivial. Since \(\mathcal{N} \circ M\) is a submodule of \(M, \mathcal{M} = \mathcal{N} \circ M\). But

\[
\mathcal{M} = \mathcal{N} \circ M = (\mathcal{N} \circ \mathcal{N}) \circ M = (\mathcal{N} \circ M) \circ \mathcal{N} = \{0\},
\] (4.35)

which contradicts the nontriviality of \(M\). Thus \(R_M([\mathcal{N}, \mathcal{N}]^-) \neq \{0\}\). By Lemma 4.1 and (4.15), we have

\[
R_M(u_{0,0}) = b \Id_M.
\] (4.36)

Again we let \(w\) be an eigenvector of \(L_{u_{0,0}}\) (remember the corresponding eigenvalue is 0). Then we have

\[
u_{0,0} \circ (w \circ u_{\alpha, i}) = (u_{0,0} \circ w) \circ u_{\alpha, i} + w \circ (u_{0,0} \circ u_{\alpha, i}) - (w \circ u_{0,0}) \circ u_{\alpha, i}
\]

\[= w \circ ((\alpha + b)u_{\alpha, i} + i u_{\alpha, i-1}) - bw \circ u_{\alpha, i}
\]

\[= \alpha w \circ u_{\alpha, i} + iw \circ u_{\alpha, i-1}
\] (4.37)
for $\alpha \in \Delta$ and $i \in J$ by (2.32), (4.13), and (4.36). In particular, $w \circ u_{\alpha,0}$ is an eigenvector with the eigenvalue α if it is not zero. Hence by our assumption of the zero eigenvalue of $L_M(u_{0,0})$, we have

$$w \circ u_{\alpha,0} = 0 \quad \text{for } 0 \neq \alpha \in \Delta.$$ \hspace{1cm} (4.38)

Moreover, (4.37) shows that $w \circ u_{\alpha,1}$ is an eigenvector with the eigenvalue α if it is not zero. So

$$w \circ u_{\alpha,1} = 0 \quad \text{for } 0 \neq \alpha \in \Delta.$$ \hspace{1cm} (4.39)

Continuing this process, we can prove

$$w \circ u_{\alpha,i} = 0 \quad \text{for } 0 \neq \alpha \in \Delta, \quad i \in J.$$ \hspace{1cm} (4.40)

Note that

$$(u_{0,0} \circ u_{\alpha,i}) \circ w = (u_{0,0} \circ w) \circ u_{\alpha,i} = 0 \quad \text{for } \alpha \in \Delta, \quad i \in J.$$ \hspace{1cm} (4.41)

So

$$\mathcal{N} \circ w = \{0\} \quad \text{if } J = \mathbb{N} \text{ or } b \notin \Delta$$ \hspace{1cm} (4.42)

by (4.20). Assume that $J = \{0\}$ and $b \in \Delta$; then

$$u_{\alpha,0} \circ w = 0 \quad \text{for } -b \neq \alpha \in \Delta$$ \hspace{1cm} (4.43)

by (4.21). Moreover, we choose $\gamma \in \Delta$ such that $\gamma \neq 0$, $-b$ and get

$$u_{-b,0} \circ w = (\gamma + b)^{-1}(u_{-\gamma-b} \circ u_{\gamma,0}) \circ w$$

$$= (\gamma + b)^{-1}(u_{-\gamma-b} \circ w) \circ u_{\gamma,0} = 0$$ \hspace{1cm} (4.44)

by (2.31). Thus we always have

$$\mathcal{N} \circ w = \{0\}.$$ \hspace{1cm} (4.45)

If $\Delta \neq \{0\}$, then we choose any $0, -b \neq \beta \in \Delta$. We get

$$(\beta + b)w \circ u_{0,j} + jw \circ u_{0,j-1} = w \circ (u_{-\beta,0} \circ u_{\beta,j})$$

$$= (w \circ u_{-\beta,0}) \circ u_{\beta,j} + u_{-\beta,0} \circ (w \circ u_{\beta,j})$$

$$- (u_{-\beta,0} \circ w) \circ u_{\beta,j} = 0$$ \hspace{1cm} (4.46)

by (2.32), (4.40), and (4.45). By induction on j, we get

$$w \circ u_{0,j} = 0 \quad \text{for } j \in J.$$ \hspace{1cm} (4.47)

So $\mathbb{F}w$ is a trivial submodule by (4.40), (4.45), and (4.47), which contradicts the irreducibility of M. Thus $\Delta = \{0\}$, which implies $J = \mathbb{N}$ by our assumption.
We redenote $u_{0,j}$ by u_j for $j \in \mathbb{N}$. Now (4.37) becomes

$$u_0 \circ (w \circ u_i) = iw \circ u_{i-1} \quad \text{for } i \in \mathbb{N}. \quad (4.48)$$

Note that for $i, j, l \in \mathbb{N}$ and $\gamma \in \mathbb{F}$, we have

$$R_{u_j}R_{u_i}(u_{\gamma,l}) = R_{u_i}(bu_{\gamma,i+l} + iu_{\gamma,i+l-1})$$

$$= b^2 u_{\gamma,i+j+l} + (i + j)bu_{\gamma,i+j+l-1} + iu_{\gamma,i+j+l-2} \quad (4.49)$$

by (4.12). If $b = 0$ and $i + j > 1$, the above expression shows

$$R_{u_j}R_{u_i} = ij(i + j - 1)^{-1}R_{u_{i+j-1}} \quad (4.50)$$

on \mathcal{M}, and in particular on \mathcal{N}. Assume $b \neq 0$. Then

$$R_{u_j}R_{u_i} = bR_{u_{i+j}} + ijb^{-1}\left(R_{u_{i+j-1}} + \sum_{k=1}^{i+j-2} (-1)^k b^{-k}(i + j - 1) \cdots (i + j - k)R_{u_{i+j+k-1}} \right) \quad (4.51)$$

on \mathcal{M} and in particular on \mathcal{N}. By Lemma 4.1, we must have

$$R_M(u_j)R_M(u_i) = ij(i + j - 1)^{-1}R_M(u_{i+j-1})$$

for $i, j \in \mathbb{N}$, $i + j > 1$ \quad (4.52)

when $b = 0$ and

$$R_M(u_j)R_M(u_i) = bR_M(u_{i+j}) + ijb^{-1}\left(R_M(u_{i+j-1}) + \sum_{k=1}^{i+j-2} (-1)^k b^{-k}(i + j - 1) \cdots (i + j - k)R_M(u_{i+j+k-1}) \right) \quad (4.53)$$

for $i, j \in \mathbb{N}$ when $b \neq 0$.

Set

$$M' = \sum_{j=0}^{\infty} \mathbb{F}w \circ u_j. \quad (4.54)$$

Then

$$(w \circ u_0) \circ u_j = bw \circ u_j \quad \text{for } j \in \mathbb{N}. \quad (4.55)$$

For $0 < i, j \in \mathbb{N}$, we have

$$(w \circ u_i) \circ u_j = ij(i + j - 1)^{-1}w \circ u_{i+j-1} \quad \text{when } b = 0 \quad (4.56)$$
by (4.52) and
\[
(w \circ u_i) \circ u_j = bw \circ u_{i+j} + ijb^{-1}(w \circ u_{i+j-1}) + \sum_{k=1}^{i+j-2} (-1)^k b^{-k}(i + j - 1) \cdots (i + j - k)w \circ u_{i+j-k-1} \tag{4.57}
\]
when \(b \neq 0 \). So
\[
M' \circ N \subset M' \tag{4.58}
\]
by (4.36), (4.55)–(4.57). Furthermore,
\[
(u_0 \circ u) \circ (w \circ u_i) = (u_0 \circ (w \circ u_i)) \circ u_j = i(w \circ u_{i-1}) \circ u_j \in M' \tag{4.59}
\]
for \(0 < i, j \in \mathbb{N} \) by (2.31), (4.48), and (4.57). Since \(u_0 \circ N = N \) by (4.13), \(M' \) is a submodule of \(M \) by (4.45), (4.48), (4.58), and (4.59). When \(b \neq 0, w = b^{-1}w \circ u_0 \in M' \). So \(M' \neq \{0\} \). If \(b = 0 \), then \(w \circ u_0 = 0 \). If \(M' = \{0\} \), then \(w \) forms a trivial submodule by (4.45), which contradicts the irreducibility of \(M \). Hence, we always have \(M' \neq \{0\} \). Thus
\[
M' = M. \tag{4.60}
\]
Assume \(b \neq 0 \). Observe that (4.12) implies
\[
u_{-b,0} \circ u_i = bu_{-b,i} + iu_{-b,i-1} \quad \text{for } i \in \mathbb{N}. \tag{4.61}
\]
Hence
\[
\{u_{-b,0} \circ u_i \mid i \in \mathbb{N}\} \tag{4.62}
\]
is a basis of \(M(-b) \). We define a linear map \(\sigma : M(-b) \to M \) by
\[
\sigma(u_{-b,0} \circ u_i) = w \circ u_i \quad \text{for } i \in \mathbb{N}. \tag{4.63}
\]
By (4.13) and (4.61),
\[
u_0 \circ (u_{-b,0} \circ u_i) = u_0 \circ (bu_{-b,i} + iu_{-b,i-1}) = i(bu_{-b,i-1} + (i - 1)u_{-b,i-2}) = i(u_{-b,0} \circ u_{i-1}). \tag{4.64}
\]
Moreover,
\[
\sigma((u_{-b,0} \circ u_i) \circ u_j) = \sigma(bR_{u_{i+j-1}} + \sum_{k=1}^{i+j-2} (-1)^k b^{-k}(i + j - 1) \cdots (i + j - k)R_{u_{i+j-k-1}})(u_{-b,0})
\]
\[
= \left[bR_M(u_{i+j}) + \sum_{k=1}^{i+j-2} (-1)^k b^{-k}(i + j - 1) \cdots (i + j - k)R_M(u_{i+j-k-1}) \right](w)
\]
\[
= (w \circ u_i) \circ u_j = \sigma(u_{-b,0} \circ u_i) \circ u_j
\]

for \(i, j \in \mathbb{N}\) by (4.51) and (4.53). Furthermore,
\[
\sigma((u_0 \circ u_j) \circ (u_{-b,0} \circ u_i)) = \sigma((u_0 \circ (u_{-b,0} \circ u_i)) \circ u_j)
\]
\[
= i\sigma((u_{-b,0} \circ u_{i-1}) \circ u_j)
\]
\[
= i\sigma(u_{-b,0} \circ u_{i-1}) \circ u_j
\]
\[
= i(w \circ u_{i-1}) \circ u_j
\]
\[
= (u_0 \circ (w \circ u_i)) \circ u_j
\]
\[
= (u_0 \circ u_j) \circ (w \circ u_{i-1})
\]
\[
= (u_0 \circ u_j) \circ \sigma(u_{-b,0} \circ u_i)
\]

by (2.31), (4.48), (4.64), and (4.65). Since \(u_0 \circ \mathcal{N} = \mathcal{N}\), \(\sigma\) is an \(\mathcal{N}\)-module homomorphism by the above two expressions. Therefore, \(\sigma\) is an isomorphism by the irreducibility of \(M(-b)\).

Finally, we assume \(b = 0\). In this case,
\[
u_0 \circ u_j = ju_{j-1} \quad \text{for } j \in \mathbb{N}.
\]

Hence
\[
\{u_0 \circ u_j \mid j \in \mathbb{N}\}
\]
forms a basis of \(\mathcal{N} = M(0)\). We define a linear map \(\sigma: \mathcal{N} \to M\) by
\[
\sigma(u_0 \circ u_i) = w \circ u_i \quad \text{for } i \in \mathbb{N}.
\]
By (4.67),
\[u_0 \circ (u_0 \circ u_i) = iu_0 \circ u_{i-1}. \] (4.70)

Moreover, for \(0 < i, j \in \mathbb{N} \),
\[
\sigma((u_0 \circ u_i) \circ u_j) = ij(i + j - 1)^{-1} \sigma(u_0 \circ u_{i+j-1})
\]
\[= ij(i + j - 1)^{-1} w \circ u_{i+j-1} \]
\[= (w \circ u_i) \circ u_j \]
\[= \sigma(w \circ u_i) \circ u_j \] (4.71)

by (4.52). In addition, (4.15) and (4.36) show
\[
\sigma((u_0 \circ u_i) \circ u_0) = \sigma(0) = 0 = \sigma(u_0 \circ u_i) \circ u_0. \] (4.72)

Furthermore,
\[
\sigma((u_0 \circ u_j) \circ (u_0 \circ u_i)) \circ u_j
\]
\[= i \sigma((u_0 \circ u_{i-1}) \circ u_j)
\]
\[= i \sigma(u_0 \circ u_{i-1}) \circ u_j
\]
\[= i(w \circ u_{i-1}) \circ u_j
\]
\[= (u_0 \circ (w \circ u_{i-1})) \circ u_j
\]
\[= (u_0 \circ u_j) \circ (w \circ u_{i-1})
\]
\[= (u_0 \circ u_j) \circ \sigma(u_{-i,0} \circ u_i) \] (4.73)

for \(i, j \in \mathbb{N} \) by (2.31), (4.48), and (4.70)–(4.72). Since \(u_0 \circ \mathcal{N} = \mathcal{N} \), \(\sigma \) is an \(\mathcal{N} \)-module homomorphism by the above three expressions, which must be an isomorphism because \(M(0) \cong \mathcal{N} \) is an irreducible \(\mathcal{N} \)-module.

REFERENCES

