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Approximate Solutions of Polynomial Equations
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In this paper, we introduce “approximate solutions” to solve the following problem:
given a polynomial F (x̄, y) over Q, where x̄ represents an n-tuple of variables, can we

find all the polynomials G(x̄) such that F (x̄, G(x̄)) is identically equal to a constant

c in Q? We have the following: let F (x̄, y) be a polynomial over Q and the degree of
y in F (x̄, y) be n. Either there is a unique polynomial g(x̄) ∈ Q[x̄], with its constant

term equal to 0, such that F (x̄, y) =
∑n

j=0 cj(y − g(x̄))j for some rational numbers cj ,
hence, F (x̄, g(x̄) + a) ∈ Q for all a ∈ Q, or there are at most t distinct polynomials

g1(x̄), . . . , gt(x̄), t ≤ n, such that F (x̄, gi(x̄)) ∈ Q for 1 ≤ i ≤ t. Suppose that F (x, y) is

a polynomial of two variables. The polynomial g(x) for the first case, or g1(x), . . . , gt(x)
for the second case, are approximate solutions of F (x, y), respectively. There is also

a polynomial time algorithm to find all of these approximate solutions. We then use

Kronecker’s substitution to solve the case of F (x̄, y).

c© 2002 Academic Press

1. Introduction

Finding factors of a polynomial is an interesting and important problem. However, in
applications, there are cases where we may not have complete information on the poly-
nomial we want to factor. Given a polynomial f(x, y) over Q with its constant term
not known, do we have an algorithm to find all the possible polynomials g(x) such that
f(x, g(x)) = 0? This is equivalent to the problem of whether, given a polynomial f(x, y),
we have an algorithm to find all the polynomials g(x) such that y − g(x) is a factor of
f(x, y)− c, or f(x, g(x)) ≡ c, for some c ∈ Q. In a certain sense, this problem is not well
posed, since given a polynomial f(x, y) there may exist infinitely many distinct polyno-
mials g(x) such that f(x, g(x)) ∈ Q. If f(x, y) =

∑n
j=0 cj(y − g(x))j for some cj ∈ Q

and a polynomial g(x) ∈ Q[x], then for any a ∈ Q, f(x, g(x) + a) ∈ Q. However, it will
be shown that given a polynomial f(x, y) this is the only case where there are infinitely
many distinct polynomials g(x) such that f(x, g(x)) ∈ Q. Hence, if for this case g(x) is
required with its constant term equal to 0, then such g(x) is unique. Moreover, if there
is no polynomial g(x) such that f(x, y) =

∑n
j=0 cj(y − g(x))j , for some cj ∈ Q, then the

number of polynomials h(x) such that f(x, h(x)) ∈ Q is less than or equal to the degree
of y in f(x, y). We then may wonder whether there is a polynomial time algorithm to
find all of these polynomials. The main result of this paper is showing that there is a
polynomial time algorithm to find the unique g(x), with its constant term equal to 0, for
the first case, or all the polynomials h(x) for the second case. The existing polynomial
time algorithms for factoring multivariate polynomials apparently do not apply to this
situation (Lenstra et al., 1982; Kaltofen, 1985; Chistov, 1986; Lenstra, 1987, 1984). An
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alternative method is needed. For this purpose, we introduce the concept of “approxi-
mate solutions” to solve this problem. Using iteration to find approximate solutions is
common in numerical analysis. A similar idea is used here. Q[x] is an Euclidean domain
and its size function is the degree of polynomial (Dean, 1990). The size function of Q[x]
plays the role of the usual Euclidean norm of Rn. However, the “discreteness” of the size
function here guarantees that we shall get all the possible factors. Whether we can have
an algorithm which directly finds all such factors is an interesting problem.

To study this problem is motivated by the decision problem of diophantine equations
with parameters. Given a polynomial f(x1, . . . , xn, y1, . . . , ym), diophantine equations
with parameters ask whether for any numbers a1, . . . , an the equation
f(a1, . . . , an, y1, . . . , ym) = 0 is solvable. This is equivalent to asking whether

∀x1 · · · ∀xn∃y1 · · · ∃ymf(x1, . . . , xn, y1, . . . , ym) = 0

is true or not. The quantified variables range over N , Z or Q depending on whether the
solvability of the equation is being asked over N , Z or Q, respectively. Schinzel (1982)
gave a review of this topic. The computational complexities of various known decidable
cases of diophantine equations with parameters are given in Tung (1987). In particular,
it is shown that the decision problem of deciding whether

∀x1 · · · ∀xn∃yf(x1, . . . , xn, y) = 0

is true over Z is co-NP-complete if n ≥ 1. We then may ask whether, given a polynomial
f(x1, . . . , xn, y) over Z, there is a decision procedure to determine whether or not

∃z∀x1 · · · ∀xn∃y f(x1, . . . , xn, y) = z

is true over Z. Let f(x1, . . . , xn, y) ∈ Q[x1, . . . , xn, y], then

∃z∀x1 · · · ∀xn∃y f(x1, . . . , xn, y) = z

is true over Z if and only if there is an a ∈ Z, and for any integer a1, . . . , an there is a
g(x1, . . . , xn) ∈ Q[x1, . . . , xn] such that y−g(x1, . . . , xn) is a factor of f(x1, . . . , xn, y)−a
in Q[x1, . . . , xn, y] and g(a1, . . . , an) ∈ Z (Tung, 1985). Since the number a in the above
formula is not known in advance, we need to find linear factors of f(x1, . . . , xn, y) over
Q; assume that the constant term is not known. This paper shows that we can do it and
in polynomial time. From this result, it is shown in Tung (unpublished) that, given a
polynomial f(x1, . . . , xn, y) over Z, the decision problem of determining whether

∃z∀x1 · · · ∀xn∃y f(x1, . . . , xn, y) = z

is true over Z is co-NP-complete. Various other related NP-complete number theoretic
decision problems are also shown in Tung (unpublished).

All the results in this paper are stated over Q. It should be easy to see that these results
also hold in more general fields. In fact, all the results in Section 2 are true for polynomials
over an arbitrary field. A fact used repeatedly is deg(f(x) ·g(x)) = deg(f(x))+deg(g(x)).
That polynomial time algorithms for factoring polynomials are available is another fact
used repeatedly in Section 3.

2. Approximate Solutions

In this section, we shall define approximate solutions of a polynomial equation. We first
give some properties concerning linear factors of a polynomial. These properties then are
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used to show that the number of approximate solutions of a polynomial equation has a
natural bound.

We fix some notation. We use x̄ to represent an n-tuple of variables 〈x1, . . . , xn〉. If f(x)
is a polynomial of one variable, then deg(f(x)) is the degree of f(x). For a multivariate
polynomial F (x1, . . . , xn), degxi

(F (x1, . . . , xn)) denotes the degree of xi, 1 ≤ i ≤ n, in
F (x1, . . . , xn).

Let F (x̄, y) be a polynomial over Q where F (x̄, g(x̄)) = b1, F (x̄, h(x̄)) = b2 for some
polynomials g(x̄), h(x̄) and some rational numbers b1, b2, respectively. Thus,

F (x̄, y) = (y − g(x̄))G(x̄, y) + b1 = (y − h(x̄))H(x̄, y) + b2.

If b1 = b2, then there are two possible cases. First, if g(x̄) = h(x̄) then G(x̄, y) = H(x̄, y).
If g(x̄) 6= h(x̄), then

F (x̄, y) = (y − g(x̄))(y − h(x̄))f(x̄, y) + b1

for an f(x̄, y) ∈ Q[x̄, y]. What happens if b1 6= b2? This is answered in the following
proposition. Moreover, we combine the cases where b1 = b2 and b1 6= b2 with one formula.

Proposition 2.1. Let F (x̄, y), g(x̄) and h(x̄) be polynomials over Q. Let b1 and b2 be
elements of Q. Suppose also that if b1 = b2, then g(x̄) 6= h(x̄). Then F (x̄, g(x̄)) ≡ b1 and
F (x̄, h(x̄)) ≡ b2 if and only if there exists a d in Q and a polynomial f(x̄, y) in Q[x̄, y]
such that

F (x̄, y) = [y − g(x̄)] · [(y − h(x̄))f(x̄, y) + (b2 − b1)/d] + b1

and if b1 6= b2, then also such that h(x̄) = g(x̄) + d with d 6= 0.

Proof. Clearly, if b1 = b2, then

F (x̄, y) = [y − g(x̄)] · [(y − h(x̄))f(x̄, y) + (b2 − b1)/d] + b1

implies that
F (x̄, y) = [y − g(x̄)] · [(y − h(x̄))f(x̄, y)] + b1.

This has been discussed in the above. Hence, we prove only the case where b1 6= b2.
We first prove the direction (⇐). Suppose that

F (x̄, y) = [y − g(x̄)] · [(y − h(x̄))f(x̄, y) + (b2 − b1)/d] + b1

for a d 6= 0 in Q and h(x̄) = g(x̄) + d. Then,

F (x̄, g(x̄)) = [g(x̄)− g(x̄)] · [(g(x̄)− h(x̄))f(x̄, g(x̄)) + (b2 − b1)/d] + b1

= b1.

Also,

F (x̄, h(x̄)) = [h(x̄)− g(x̄)] · [(h(x̄)− h(x̄))f(x̄, h(x̄)) + (b2 − b1)/d] + b1

= [h(x̄)− h(x̄) + d] · [0 · f(x̄, h(x̄)) + (b2 − b1)/d] + b1

= d · [(b2 − b1)/d] + b1

= b2.

Next, we prove the other direction (⇒). From the assumptions, there exist G(x̄) and
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H(x̄) in Q[x̄] such that

F (x̄, y) = (y − g(x̄)) ·G(x̄, y) + b1 = (y − h(x̄)) ·H(x̄, y) + b2.

Substituting y = h(x̄) in F (x̄, y) we obtain that

(h(x̄)− g(x̄)) ·G(x̄, h(x̄)) = b2 − b1 6= 0.

This implies that the degree of h(x̄) − g(x̄) must be zero; hence, h(x̄) − g(x̄) = d for
a rational number d 6= 0, and d · G(x̄, h(x̄)) = b2 − b1. This implies that G(x̄, y) =
(y − h(x̄))f(x̄, y) + (b2 − b1)/d, and

F (x̄, y) = [y − g(x̄)] · [(y − h(x̄))f(x̄, y) + (b2 − b1)/d] + b1

for an f(x̄, y) ∈ Q[x̄, y]. 2

This fact is the key of the algorithm in the next section. It means that whether b1 = b2

or not, one formula suffices. Hence, one algorithm suffices. This fact needs to be extended
to the cases where the number of those polynomials g(x̄) where F (x̄, g(x̄)) ∈ Q is more
than two. This is what we do below.

Lemma 2.2. Let F (x̄, y) and gi(x̄), 1 ≤ i ≤ m, be polynomials over Q, where gi(x̄) are
all distinct, and there exist 1 ≤ p < q ≤ m such that gp(x̄) 6= gq(x̄) + a for any a ∈ Q.
Then, F (x̄, gi(x̄)) ∈ Q for every i, 1 ≤ i ≤ m, if and only if F (x̄, y) =

[∏m
i=1(y−gi(x̄))

]
·

G(x̄, y) + c for a c ∈ Q and a G(x̄, y) ∈ Q[x̄, y].

Proof. (⇐) Clearly, if F (x̄, y) =
[∏m

i=1(y − gi(x̄))
]
· G(x̄, y) + c for a c ∈ Q and a

G(x̄, y) ∈ Q[x̄, y], then F (x̄, gi(x̄)) = c ∈ Q for every i, 1 ≤ i ≤ m.
Now, we prove the direction (⇒). Assume that gp(x̄) 6= gq(x̄) + a for any a ∈ Q. From

Proposition 2.1, we obtain that

F (x̄, y) = (y − gp(x̄))Gp(x̄, y) + c = (y − gq(x̄))Gq(x̄, y) + c

for some c ∈ Q. Then F (x̄, y) = (y − gp(x̄))(y − gq(x̄))h(x̄, y) + c for some polynomial
h(x̄, y) over Q because y− gp(x̄) and y− gq(x̄) are relatively prime over Q[x̄, y] and both
are factors of F (x̄, y) − c. Now for any other polynomial gr(x̄), with r 6= p and r 6= q,
either gr(x̄) 6= gp(x̄) + b or gr(x̄) 6= gq(x̄) + b for all b in Q. Without loss of generality,
we may assume that gr(x̄) 6= gp(x̄) + b for any b in Q, then with the same arguments
as above we obtain that F (x̄, y) = (y − gp(x̄))(y − gr(x̄))H(x̄, y) + d for a polynomial
H(x̄, y) over Q and a d in Q. Since

F (x̄, y) = (y − gp(x̄))(y − gq(x̄))h(x̄, y) + c = (y − gp(x̄))(y − gr(x̄))H(x̄, y) + d,

we obtain that d = c by substituting gp(x̄) for y. Then, y−gr(x̄) is a factor of F (x̄, y)−c.
This argument shows that every y − gi(x̄), 1 ≤ i ≤ m, is a factor of F (x̄, y)− c. Hence,
F (x̄, y) =

[∏m
i=1(y − gi(x̄))

]
·G(x̄, y) + c for a G(x̄, y) ∈ Q[x̄, y]. 2

Now, we are ready to extend the results in Proposition 2.1 to more general cases. For
simplicity, we do not state the results in all the detail which is done in Proposition 2.1.
As we said previously, “one formula suffices”.

Theorem 2.3. Let F (x̄, y) and gi(x̄), 1 ≤ i ≤ m, be polynomials over Q, and gi(x̄) are
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all distinct. Then, F (x̄, gi(x̄)) ∈ Q for every i, 1 ≤ i ≤ m, if and only if

F (x̄, y) = (y − g1(x̄)){(y − g2(x̄))[(y − g3(x̄))(· · · (G(x̄, y) · · ·) + d3] + d2}+ d1,

where G(x̄, y) ∈ Q[x̄, y] and di ∈ Q for 1 ≤ i ≤ m.

Proof. Suppose that there exist 1 ≤ p < q ≤ m such that gp(x̄) 6= gq(x̄) + a for
any a ∈ Q. From Lemma 2.2, F (x̄, gi(x̄)) ∈ Q for every i, 1 ≤ i ≤ m, if and only if
F (x̄, y) =

[∏m
i=1(y − gi(x̄))

]
· G(x̄, y) + c for a c ∈ Q and a G(x̄, y) ∈ Q[x̄, y]. Thus, we

take di = 0 for 2 ≤ i ≤ m, and d1 = c.
Assume that these m polynomials gi(x̄) all differ only by a constant, i.e. there is a

polynomial g(x̄) over Q and rational numbers ai, 1 ≤ i ≤ m, such that gi(x̄) = g(x̄)+ai.
We prove the direction (⇒) first. From Proposition 2.1, if

F (x̄, y) = (y − g(x̄)− a1)G1(x̄, y) + b1 = (y − g(x̄)− a2)G2(x̄, y) + b2,

for some b1, b2 ∈ Q, then

F (x̄, y) = (y − g(x̄)− a1)((y − g(x̄)− a2)f1(x̄, y) + (b2 − b1)/(a2 − a1)) + b1

for an f1(x̄, y) ∈ Q[x̄, y]. With the same argument and substituting y with g(x̄)− a3, we
obtain that f1(x̄, y) = (y − g(x̄)− a3)f2(x̄, y) + d with some d ∈ Q. By induction,

F (x̄, y) = (y− g(x̄)−a1){(y− g(x̄)−a2)[(y− g(x̄)−a3)(· · · (G(x̄, y) · · ·)+ d3]+ d2}+ d1,

where G(x̄, y) ∈ Q[x̄, y] and di ∈ Q for 1 ≤ i ≤ m.
Now, we prove the other direction (⇐) and assume that

F (x̄, y) = (y − g1(x̄)){(y − g2(x̄))[(y − g3(x̄))(· · · (G(x̄, y) · · ·) + d3] + d2}+ d1.

Since gi(x̄) = g(x̄)+ai for some rational numbers ai, with a similar calculation as is done
in the proof of Proposition 2.1 we obtain that F (x̄, gi(x̄)) ∈ Q for every i, 1 ≤ i ≤ m. 2

From Theorem 2.3, we also have the following lemma. This lemma gives us a case
where for a given polynomial F (x̄, y) over Q there may exist infinitely many distinct
polynomials g(x̄) ∈ Q[x̄], such that F (x̄, g(x̄)) ∈ Q. As will be shown, this is the only
case where there are so many such polynomials.

Lemma 2.4. Let F (x̄, y) be a polynomial over Q and degy(F (x̄, y)) = n. Let g(x̄) ∈ Q[x̄]
and a1, . . . , an+1 be distinct rational numbers. Then, F (x̄, g(x̄)+ai) ∈ Q for 1 ≤ i ≤ n+1,
if and only if F (x̄, y) =

∑n
j=0 cj(y − g(x̄))j for some rational numbers c0, . . . , cn.

Proof. First we prove the direction (⇐). Suppose that F (x̄, y) =
∑n

j=0 cj(y − g(x̄))j

where cj are rational numbers and g(x̄) ∈ Q[x̄]. Put bi =
∑n

j=0 cj(ai)j , (i = 1, . . . , n+1).
Substitute y = g(x̄) + ai, 1 ≤ i ≤ n + 1, F (x̄, g(x̄) + ai) =

∑n
j=0 cj(ai)j = bi.

Now we prove the direction (⇒). From Theorem 2.3, if g(x̄) ∈ Q[x̄] and a1, . . . , an are
distinct rational numbers, and F (x̄, g(x̄) + ai) ∈ Q for 1 ≤ i ≤ n, then

F (x̄, y) = (y− g(x̄)− a1){(y− g(x̄)− a2)[(y− g(x̄)− a3)(· · · (h(x̄, y) · · ·) + d3] + d2}+ d1,

where h(x̄, y) ∈ Q[x̄, y] and di ∈ Q for 1 ≤ i ≤ n. In fact, h(x̄, y) has no variable y, i.e.
h(x̄, y) ≡ h(x̄) ∈ Q[x̄] since degy(F (x̄, y)) = n. Moreover, h(x̄) must be a number in Q,
otherwise, F (x̄, g(x̄) + an+1) cannot be a number in Q. Therefore,

F (x̄, y) = (y − g(x̄)− a1){(y − g(x̄)− a2)[(y − g(x̄)− a3)(· · · (c) · · ·) + d3] + d2}+ d1,



244 S. P. Tung

for some c ∈ Q. We may rewrite the term and obtain that

F (x̄, y) = c(y − g(x̄)− a1){(y − g(x̄)− a2)[(y − g(x̄)− a3)(· · ·) + e3] + e2}+ e1,

with all ai, ei, and c in Q and F (x̄, y) =
∑n

j=0 cj(y − g(x̄))j for some rational number
c0, . . . , cn. 2

Theorem 2.5. Let F (x̄, y) be a polynomial over Q and degy(F (x̄, y)) = n. Either there is
a unique polynomial g(x̄) ∈ Q[x̄], with its constant term equal to 0, such that F (x̄, y) =∑n

j=0 cj(y − g(x̄))j for some rational numbers cj, hence F (x̄, g(x̄) + a) ∈ Q for all
a ∈ Q, or there are at most n distinct polynomials g1(x̄), . . . , gt(x̄), t ≤ n, such that
F (x̄, gi(x̄)) ∈ Q for 1 ≤ i ≤ t.

Proof. Let gi(x̄), 1 ≤ i ≤ t, be distinct polynomials and F (x̄, gi(x̄)) ∈ Q. Assume that
there exist 1 ≤ p < q ≤ t such that gp(x̄) 6= gq(x̄)+a for any a ∈ Q. Then, by Lemma 2.2

F (x̄, y) =

[
t∏

i=1

(y − gi(x̄))

]
·G(x̄, y) + c

for a c ∈ Q and a G(x̄, y) ∈ Q[x̄, y]. This implies that degy(F (x̄, y)) = n ≥ t. On the other
hand, if these t polynomials gi(x̄) all differ only by a constant, then there is a polynomial
g(x̄) ∈ Q[x̄] with its constant term equal to 0, and rational numbers bi, 1 ≤ i ≤ t, such
that gi(x̄) = g(x̄) + bi. If t > n, then by Lemma 2.4, F (x̄, y) =

∑n
j=0 cj(y− g(x̄))j where

cj ∈ Q. Thus, for all a in Q,

F (x̄, g(x̄) + a) =
n∑

j=0

cj(g(x̄) + a− g(x̄))j =
n∑

j=0

cja
j

is in Q. Now, let h(x̄) be an arbitrary polynomial over Q but h(x̄)−g(x̄) is not a number
in Q. Then,

F (x̄, h(x̄)) =
n∑

j=0

cj(h(x̄)− g(x̄))j

is a polynomial but not a number in Q. This implies that polynomial g(x̄) is unique if
its constant term is required to be 0. 2

The situation we have now is similar to the case of equations over Q. If an equation
f(x) = 0 of degree n has n + 1 solutions, then f(x) ≡ 0. This implies that every a ∈ Q
is a solution of f(x) = 0. From Theorem 2.5, we can see that if the degree of y in
F (x̄, y) is n and there are n + 1 distinct polynomials {g1(x̄), . . . , gn+1(x̄)} such that
F (x̄, gi(x̄))− bi ≡ 0 for some bi in Q, then for every a ∈ Q, F (x̄, g1(x̄) + a))− b ≡ 0 for
some b ∈ Q.

Now, we define “approximate solutions” which extends the meaning of “solutions” of
equations in Q[x]. Here, we use the convention that a zero polynomial is of degree −∞.

Definition. Let F (x, y) ∈ Q[x, y] and z be an indeterminate.
1. Let a ∈ Q and a 6= 0. If deg(F (x, axs)) < degx(F (x, zxs)), then axs is called an
approximate solution of F (x, y) = 0 of order s.
2. If H(x) =

∑s
i=m+1 aix

i ∈ Q[x] is an approximate solution of F (x, y) = 0 of order
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m + 1, and G(x) = H(x) + bxm ∈ Q[x] with deg(F (x, G(x)) < degx(F (x,H(x) + zxm)),
then G(x) is an approximate solution of F (x, y) of order m.

Note that the coefficient b in G(x) may equal zero. G(x) is then written as H(x)+0xm.
Thus, H(x) equals G(x) mathematically. However, like significant figures in scientific
measurements, they have different orders of accurracy. In this case, we shall view G(x) and
H(x) as two approximate solutions of F (x, y) of different orders. Let F (x, y) ∈ Q[x, y],
we may view F (x, y) = F̄ (y) as a polynomial of one variable y over the ring Q[x], and we
may require the root of the equation F̄ (y) = 0 in Q[x]. From our definition of approximate
solution, we can see that every solution of the polynomial equation F̄ (y) = 0 in Q[x] is
an approximate solution of F (x, y) = 0 too.

Example. Let f(x, y) = (2y − x3 − x2 + 3x + 1)(2y − x3 − x2 + x + 2) + 5. Then,
G(x) = x3/2 is an approximate solution of f(x, y) of order 3, since

f(x, zx3) = ((2z − 1)x3 − x2 + 3x + 1)((2z − 1)x3 − x2 + x + 2) + 5

is a polynomial with its x degree equal to 6 and deg(f(x, x3/2)) = 4. Similarly, (x3 +
x2)/2 is an approximate solution of order 2. Since degx(f(x, (x3 + x2)/2 + zx)) = 2,
deg(f(x, (x3 + x2 − 3x)/2)) = 1, and deg(f(x, (x3 + x2 − x)/2)) = 1, (x3 + x2 − 3x)/2
and (x3 + x2 − x)/2 are approximate solutions of order 1, respectively. Polynomials
(x3 +x2− 3x− 1)/2 and (x3 +x2−x− 2)/2 are approximate solutions with order 0, and
the only two approximate solutions of order 0.

Let F (x, y) be a polynomial over Q and degy(F (x, y)) = n. If there is a polynomial
g(x) =

∑m
i=1 aix

i ∈ Q[x] such that F (x, y) =
∑n

j=0 cj(y − g(x))j for some rational
numbers cj , then g(x) is an approximate solution of F (x, y) of order 1. Then, α is a root
of the equation f(z) =

∑n
j=0 cjz

j = 0 in Q if and only if g(x) + α is an approximate
solution of F (x, y) of order 0. If F (x, y) is not in this case, by Theorem 2.5, there are
at most n distinct polynomials g1(x), . . . , gt(x), t ≤ n, such that F (x, gi(x)) ∈ Q for
1 ≤ i ≤ t. These polynomials g1(x), . . . , gt(x) are the only approximate solutions of
order 0 of F (x, y). Therefore, in either case there are at most n distinct approximate
solutions of order 0. This is true for other orders by Theorem 2.7 below.

We may also discuss the approximate solutions from another point of view. Let F (x, y)
be a polynomial over Q and Q(x) an approximate solution of F (x, y) as defined above.
We say Q(x) is an approximate solution of rank s if deg(F (x,Q(x)) = s. Previously,
people focused on solving equations. Thus, we may say that given a polynomial F (x, y)
we want to find approximate solution G(x) of rank −∞, i.e. F (x, g(x)) ≡ 0. There are
cases where such solutions do not exist, like the polynomial f(x, y) in the above example.
But, f(x, y) has approximate solution of rank 0. We may say that for a given polynomial
F (x, y), in this paper, we wish to find all approximate solutions g(x) of F (x, y) of rank 0,
i.e. F (x, g(x)) ≡ c for some c in Q.

We next give two facts concerning approximate solutions, which will be needed to
show the correctness and polynomial time complexity of the algorithm given in the next
section.

Proposition 2.6. Let F (x, y) =
∑s

k=0 fk(x)yk =
∑s

k=0

(∑tk

l=0 bk,lx
l
)
yk be a polynomial

with its degree of y equal to s. Let m be a positive integer such that sm + ts ≥ km + tk
for 0 ≤ k < s. Then, the degree of every approximate solution of F (x, y) is less than or
equal to m. In particular, the maximum of tk, 0 ≤ k < s, suffices.



246 S. P. Tung

Proof. Let F (x, y) =
∑s

k=0 fk(x)yk =
∑s

k=0

(∑tk

l=0 bk,lx
l
)
yk, and m satisfy the as-

sumption. Let r(x) =
∑d

i=p aix
i, where ad 6= 0 and d > m, then for every k,

deg(fk(x) · (r(x))k) = deg(fk(x)) + deg((r(x))k) = tk + dk.

By our choice of d and m, sd + ts > kd + tk for 0 ≤ k < s. Thus,

deg(F (x, r(x)) = deg(fs(x) · (r(x))s) = sd + ts.

It is easy to see that with z an indeterminate degx(F (x, zxd)) = sd + ts. Thus, r(x)
cannot be an approximate solution.

Clearly, if m ≥ tk for 0 ≤ k < s, then (s−k)m ≥ (tk− ts); hence, sm+ ts ≥ km+ tk. 2

This proposition gives us the upper bound on the degree of each approximate solution.
Thus, if F (x, g(x)) ∈ Q, then deg(g(x)) ≤ m. The next theorem gives us the upper bound
on the number of approximate solutions at each order.

Theorem 2.7. Let F (x, y) be a polynomial with its degree in y equal to n, then at each
order there are at most n distinct approximate solutions.

Proof. We prove this theorem by induction on the degree of y in F (x, y). Let degy

(F (x, y)) = 1 and F (x, y) = f1(x)y + f0(x) where f1(x) and f0(x) are in Q[x]. If
deg(f1(x)) > deg(f0(x)), then F (x, y) has no approximate solutions since

degx(F (x, zxs)) = deg(F (x, axs)) = deg(f1(x)) + s

for any a ∈ Q, a 6= 0, and any s ≥ 0. Now, assume that deg(f1(x)) ≤ deg(f0(x)). By
the division algorithm, f0(x) = q(x)f1(x) + r(x) where q(x) =

∑n
i=0 aix

i, an 6= 0, and
deg(r(x)) < deg(f1(x)). Then,

deg(F (x,−anxn)) < deg(f0(x)) = degx(F (x, zxn)).

Hence, anxn is an approximate solution of order n, and the only approximate solution
of order n. Also, qj(x) =

∑n
i=j aix

i is the only approximate solution of order j for each
j, n ≥ j ≥ 0. This proves the case degy(F (x, y)) = 1.

Assume that our hypothesis is true for any polynomial with its degree in y equal to
n. Now, let F (x, y) be a polynomial with its degree of y equal to n + 1. Let S be an
arbitrary set of approximate solutions of F (x, y) and all are of order s. We need to show
that the number of elements of S is at most n + 1. Let G(x) be an approximate solution
of F (x, y) in S for which the degree of F (x,G(x)) is minimal, i.e. if H(x) ∈ S, then
deg(F (x,G(x))) ≤ deg(F (x,H(x))). Assume that deg(F (x, G(x))) = t. By the factor
theorem,

F (x, y) = (y −G(x))F1(x, y)− F (x,G(x))
for an F1(x, y) in Q[x, y] and degy(F1(x, y)) = n. We want to show that every approxi-
mate solution H(x) in S, except G(x), is an approximate solution of F1(x, y) of the order
s too.

Let H(x) = H1(x) + bsx
s where H1(x) =

∑m
i=s+1 bix

i, s < m, and bs ∈ Q. Since G(x)
and H(x) are different and both of order s, deg(H(x)−G(x)) ≥ s. Thus,

deg(H(x)−G(x)) = degx(H1(x) + zxs −G(x)).

Since G(x) is chosen such that deg(F (x, G(x))) = t is minimal, deg(F (x,H(x))) ≥ t.
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Hence,

t ≤ deg(F (x, H(x))) < degx(F (x,H1(x) + zxs)).

This implies that

degx(F (x, H1(x) + zxs)) = degx(F1(x,H1(x) + zxs)) + degx(H1(x) + zxs −G(x)),

and

t− degx(H1(x) + zxs −G(x)) < degx(F1(x,H1(x) + zxs)).

Now, we have two possible cases.

Case 1: deg((H(x)−G(x)) + deg(F1(x, H(x))) < t. Then

deg(F1(x,H(x))) < t− deg(H(x)−G(x)) = t− degx(H1(x) + zxs −G(x))
< degx(F1(x, H1(x) + zxs)).

Thus, H(x) is an approximate solution of F1(x, y).

Case 2: deg((H(x)−G(x)) + deg(F1(x,H(x))) ≥ t. Then

deg(F (x, H(x)) = deg(H(x)−G(x)) + deg(F1(x, H(x)))
< degx(F (x, H1(x) + zxs))

= degx(H1(x) + zxs −G(x)) + degx(F1(x, H1(x) + zxs)).

Then, deg(F1(x, H(x))) < degx(F1(x, H1(x)+zxs)) and H(x) is an approximate solution
of F1(x, y) too.

By the induction hypothesis, F1(x, y) has at most n different approximate solutions of
order s. Therefore, the number of elements of S is at most n + 1. 2

3. Algorithm

In this section we shall present a polynomial time algorithm called FACTOR which
finds the unique polynomial g(x̄) for the first case, or all gi(x̄) for the second case of
Theorem 2.5. Hence, given a polynomial F (x̄, y) over Q, FACTOR finds all possible
polynomials g(x̄) such that F (x̄, g(x̄)) ∈ Q, even if the constant term of F (x̄, y) is not
known. This is so formulated since the constant term is allowed here to vary. This happens
while studying the decision problem of determining whether

∃z∀x1 · · · ∀xn∃y f(x1, . . . , xn, y) = z

is true over Z for an arbitrary polynomial f(x1, . . . , xn, y) over Q (Tung, unpublished).
In our algorithm, a polynomial g(x) =

∑n
i=0 aix

i is represented by a sequence of
numbers 〈an, an−1, . . . , a0〉. This implies we input or output a polynomial in dense form.
If a polynomial is not input in dense form, there is no polynomial time algorithm to
factor an arbitrarily given polynomial. Elements of sets in this algorithm are listed in
stack structure (Aho et al., 1974). Thus, elements in a set will be chosen on a first-in,
last-out basis.

To simplify the proof, we demonstrate the case of a polynomial with two variables first.

FACTOR

Input: Polynomial F (x, y) ∈ Q[x, y].
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Output: g(x) =
∑

i>0 αix
i if F (x, y) =

∑s
k=0 βk(y − g(x))k where βk ∈ Q, otherwise,

all gi(x) ∈ Q[x], 0 ≤ i ≤ n, such that F (x, gi(x)) ∈ Q.
Method: Step 1. Let F (x, y) =

∑s
k=0 fk(x)yk =

∑s
k=0

(∑tk

l=0 bk,lx
l
)
yk. Find a positive

integer m such that sm + ts ≥ km + tk for 0 ≤ k < s. From Proposition 2.6, we may
simply let m be the maximum of tk for 0 ≤ k < s. Also, create two empty stacks S and T .

Step 2. Substitute y of F (x, y) with zxm where z is an indeterminant, and obtain that
F (x, zxm) = F̄ (z, x). Let the polynomial fm(z) be the leading term of F̄ (z, x) with re-
spect to x, i.e. the coefficient term of the highest power of x in F̄ (z, x). Solve the equation
fm(z) = 0 over Q by factoring fm(z) over Q with the algorithm (Lenstra et al., 1982).
Let S be the set of all distinct solutions of fm(z) = 0. Each element of S is viewed as a
one element sequence.

Step 3. Take the first sequence L = 〈αm, . . . , αl〉 in S, and eliminate it from S. Then,
substitute y of F (x, y) with

(∑m
i=l αix

i
)
+zxl−1 where z is an indeterminant, and obtain

that

F

(
x,

(
m∑
i=l

αix
i

)
+ zxl−1

)
= F̄l−1(z, x).

Let fl−1(z) be the leading term of F̄l−1(z, x) with respect to x. Solve the equation
fl−1(z) = 0 in Q and let {β1, . . . , βr} be the set of all distinct solutions. For every k,
1 ≤ k ≤ r, check whether F (x,

(∑m
i=l αix

i
)

+ βkxl−1) is a constant or not. If it is equal
to a constant, put 〈αm, . . . , αl, βk〉 in T and go to step 4. Otherwise, put 〈αm, . . . , αl, βk〉
in S. However, if l = 1 and F (x,

(∑m
i=1 αix

i
)

+ βk) is not a constant, then omit this
sequence. If fl−1(z) = 0 is not solvable in Q, then simply eliminate the sequence L from
S. After we finish this step with L, go back to Step 3 again until S is empty and output T .

Step 4. Let G(x) be the corresponding polynomial in T , factor F (x, y) − F (x,G(x))
over Q with the algorithm in Lenstra (1987). Note that F (x, G(x)) is identically equal
to a constant. If F (x, y)−F (x,G(x)) has factors of the form y−Gk(x), 1 ≤ k ≤ r, then
include all such Gk(x) in T too. If there are two polynomials g(x) and h(x) in T such
that g(x)− h(x) is not a constant, then output T and stop. Otherwise, go to Step 5.

Step 5. Choose a sequence L = 〈αm, . . . , α0〉 in T . (Here, α0 may equal 0.) Substitute
y of F (x, y) with

(∑m
i=1 αix

i
)

+ z where z is an indeterminant, and obtain that

F

(
X,

(
m∑

i=1

αix
i

)
+ Z

)
= F̄0(z, x).

If F̄0(z, x) ∈ Q[z], let T = {〈αm, . . . , α1〉} be the output and F (x, y) =
∑n

j=0 cj(y−g(x))j

where g(x) =
∑m

i=1 αix
i and cj ∈ Q. Suppose that F̄0(z, x) is not in Q[z]. Let f0(z)

be the leading term of F̄0(z, x) with respect to x. Solve the equation f0(z) = 0 in Q
and let {β1, . . . , βr} be the set of all distinct solutions. For every k, 1 ≤ k ≤ r, check
whether F (x,

(∑m
i=1 αix

i
)

+ βk) is a constant or not. If it is equal to a constant, put
〈αm, . . . , α1, βk〉 in T . Otherwise, simply omit the sequence 〈αm, . . . , α1, βk〉. Finally,
output T and stop.

Theorem 3.1. Algorithm FACTOR is correct and in polynomial time.
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Proof. We first show that this algorithm is correct.

Step 1. If F (x, g(x)) ≡ c, then g(x) is an approximate solution. By Proposition 2.6,
deg(g(x)) ≤ m.

Step 2. Substitute y of F (x, y) with G(x) =
∑m

i=0 cix
i where ci are indeterminants.

By our choice of m,

degx

(
F

(
x,

m∑
i=0

cix
i

))
= degx

(
s∑

k=0

(
fk(x)

(
m∑

i=0

cix
i

)k))

= degx

(
s∑

k=0

(fk(x)(cmxm)k)

)
= degx(F (x, zxm))
= sm + ts.

We write that

F

(
x,

m∑
i=0

cix
i

)
= Ḡ(cm, . . . , c0, x) =

t∑
j=0

gj(cm, . . . , c0)xj

for some t. Thus, degx(Ḡ(cm, . . . , c0, x)) = degx(F̄ (z, x)) = t. Let polynomial gt

(cm, . . . , c0) be the leading term of Ḡ(cm, . . . , c0, x) with respect to x, which has only
one variable cm; hence, fm(z) ≡ gt(z).

For any polynomial h(x) =
∑m

r=0 brx
r over Q, deg(F (x, h(x))) < t if and only if

gt(bm) = 0. Thus, we can obtain all the possible values of am such that F
(
x,
∑m

i=0 aix
i
)
∈

Q by solving fm(z) = 0 over Q. Since deg(fm(z)) =s=degy(F (x, y)), the number of dis-
tinct solutions of fm(z) = 0 is less than or equal to degy(F (x, y)).

Step 3. It is easy to see that if g(x) is in T , then F (x, g(x)) ∈ Q. We want to prove
that if there exist polynomials g(x) ∈ Q[x] such that F (x, g(x)) ∈ Q, then with Step 3 of
FACTOR we shall find one such polynomial. To avoid the complication of the indices, we
demonstrate the case where there are only two distinct polynomials U(x) =

∑m
i=0 uix

i

and V (x) =
∑m

i=0 vix
i over Q such that F (x,U(x)) ≡ d1 ∈ Q and F (x, V (x)) ≡ d2 ∈ Q,

respectively. This should suffice to convince the reader that the general case also holds
true.

There are two possible cases, either d1 = d2 or d1 6= d2. We demonstrate the case
d1 = d2 first. If d1 = d2, then

F (x, y) = (y − U(x))(y − V (x))H(x, y) + d1

for a polynomial H(x, y) =
∑s−2

k=0 hk(x)yk over Q and

F

(
x,

m∑
i=0

cix
i

)
=

(
m∑

i=0

(ci − ui)xi

)(
m∑

i=0

(ci − vi)xi

)
H

(
x,

m∑
i=0

cix
i

)
+ d1.

Note that

degx

(
H

(
x,

m∑
i=0

cix
i

))
= degx

(
s−2∑
k=0

(
hk(x)

(
m∑

i=0

cix
i

)k))
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= degx

(
s−2∑
k=0

(hk(x)(cmxm)k)

)
= degx(H(x, zxm)).

The leading term gt(cm) = fm(cm) of F
(
x,
∑m

i=0 cix
i
)

is (cm − um)(cm − vm)Fm(cm)
where Fm(cm) is the leading term of H

(
x,
∑m

i=0 cix
i
)
. Therefore, um and vm will be the

solutions of equation fm(z) = 0 as discussed in the proof of above step. If um 6= vm and
Fm(um) 6= 0, then let

F (x, umxm + zxm−1) = F̄m−1(z, x).

Let fm−1(z) be the leading term of F̄m−1(z, x) with respect to x, then

fm−1(z) = (z − um−1)(um − vm)(Fm(um)).

Also,

gt−1(um, cm−1, . . . , c0) = (cm−1 − um−1)(um − vm)(Fm(um)).

Hence, fm−1(z) = gt−1(z). We may obtain the value of um−1 by factoring the polynomial
fm−1(z). Then, with the procedure of FACTOR we may obtain the values of the remain-
ing ui for 0 ≤ i ≤ m−2. This is also the case for the values of vi, 0 ≤ i < m, if Fm(vm) 6= 0.

Suppose that um 6= vm but Fm(um) = 0, then gt−1(um, cm−1, . . . , c0) ≡ 0. It may
happen that gt−k(um, cm−1, . . . , c0) ≡ 0 for 1 ≤ k ≤ r and r > 1. However, as soon as
we reach the term that gt−k−1(um, cm−1, . . . , c0) 6≡ 0 then

gt−k−1(um, cm−1, . . . , c0) = (cm−1 − um−1)(um − vm)H(um, cm−1, . . . , c0)

where H(um, cm−1, . . . , c0) 6≡ 0. Similarly,

degx

(
H

(
x, umxm +

m−1∑
i=0

cix
i

))
= degx

(
s−2∑
k=0

(
hk(x)

(
umxm +

m−1∑
i=0

cix
i

)k))

= degx

(
s−2∑
k=0

(hk(x)(umxm + cm−1x
m−1)k)

)
= degx(H(x, umxm + zxm−1)).

Hence, fm−1(z) = gt−k−1(z). We may obtain the value um−1 by solving the equation
fm−1(z) = 0. Note that in this case fm−1(z) = 0 may have more than one solution,
because H(um, β, . . . , c0) might be identically equal to 0 for some β ∈ Q. Then, sequence
〈αm, β〉 will be checked to see whether it should be put in T or in S, or simply omitted
according to Step 3 of FACTOR.

Now, assume that um = vm, then gt−1(um, cm−1, . . . , c0) ≡ 0. Like the case above
where Fm(um) = 0, the leading term which is not identically equal to zero will be in the
form

(cm−1 − um−1)(cm−1 − vm−1)H(um, cm−1, . . . , c0),

which is equal to fm−1(cm−1). Thus, um−1 and vm−1 will be obtained by solving the
equation fm−1(z) = 0. Similarly, we may have solutions other than um−1 and vm−1, and
we proceed as described in Step 3 of FACTOR. With the same reasoning, we may obtain
the remaining values of ui and vi by FACTOR.

We now prove the case where d1 6= d2. By Proposition 2.1 (or Theorem 2.3 for the
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more general cases),

F (x, y) = (y − U(x)) · [(y − U(x)− d)G(x, y) + (d1 − d2)/d] + d1

for a G(x, y) ∈ Q[x, y] and a d ∈ Q. The proof of this case is similar to the proof of the
previous case where um = vm. Let U(x) =

∑m
i=0 uix

i, then

F

(
x,

m∑
i=0

cix
i

)
=

(
m∑

i=0

(ci−ui)xi

)[(
m∑

i=0

(ci−ui)xi−d

)
G

(
x,

m∑
i=0

cix
i

)
+(d1−d2)/d

]
+d1.

The value of um is obtained by solving fm(z) = 0. Next, assume that sequence 〈um, . . . , ul〉
is obtained. Let H(x) =

∑m
i=0 aix

i where ai = ui for i ≥ l and ai = ci for i < l. Then the
leading term of F (x, H(x)) is equal to fj−k(cl−1) which must have a factor cl−1 − ul−1.
Thus, we shall obtain the value of ul−1 by solving fj−k(z) = 0 over Q. Therefore, we
may obtain the approximate solution of F (x, y) successively with the algorithm FAC-
TOR. Hence, if there exists an a polynomial g(x) such that F (x, g(x)) ∈ Q, we shall get
one such polynomial at the end of Step 3.

Once we get a polynomial G(x) such that F (x,G(x)) ∈ Q, i.e. G(x) ∈ T , then two pos-
sible cases of F (x, y) described in Theorem 2.5 are handled by Steps 4 and 5, respectively.

At first sight, one may feel that we may repeat Step 3 until all the sequences L in S
has reached to l = 0. Then each sequence L in S corresponds to a solution. Thus, we may
omit Steps 4 and 5. However, in this way we shall miss some solutions. For example, let

F (x, y) = (y − x2)(y − x2 − x)(x2 + y2) + 3.

Step 3 will give us the sequence L = 〈1, 0, 0〉 (corresponding to x2), but we shall not be
able to get the sequence L = 〈1, 1, 0〉 (corresponding to x2 + x).

Case 1. There are two polynomials g(x) and h(x) over Q such that F (x, g(x)) ∈ Q,
F (x, h(x)) ∈ Q, and g(x)− h(x) is not in Q. This is handled with Step 4.

By Lemma 2.2, F (x, gi(x)) ∈ Q for every i, 1 ≤ i ≤ m, if and only if F (x, y) =[∏m
i=1(y − gi(x))

]
·G(x, y) + c for a c ∈ Q and a G(x, y) ∈ Q[x, y]. Thus, G(x) = gi(x)

for some i, and F (x,G(x)) = c. Hence, we shall get all gi(x), 1 ≤ i ≤ m, such that
F (x, gi(x)) = c by finding the factors of F (x, y) − F (x,G(x)) which are in the form
y − gi(x).

Case 2. For any two polynomials g(x) and h(x) over Q, if F (x, g(x)) ∈ Q and F (x, h(x))
∈ Q, then g(x)− h(x) is in Q. This is handled with Step 5.

Assume that F (x, y) is in this case. Now, there may be more than one sequence in T
obtained by Step 4. Choose a sequence L = 〈αm, . . . , α0〉 in T . (Here, α0 may equal 0.)
Let G(x) =

∑m
i=1 αix

i. Note that for any polynomial h(x) ∈ Q[x], if F (x, h(x)) ∈ Q,
then h(x) = G(x) + c for a c ∈ Q. Substitute y of F (x, y) with

(∑m
i=1 αix

i
)

+ z where z
is an indeterminant, and obtain that

F

(
x,

(
m∑

i=1

αix
i

)
+ z

)
= F̄0(z, x).

If F̄0(z, x) ≡ F̄0(z) ∈ Q[z], then F (x,G(x) + a)) = F̄0(a) ∈ Q for any a ∈ Q. Thus,
F (x, y) =

∑n
j=0 cj(y−G(x))j where cj ∈ Q by Theorem 2.5 (or Lemma 2.4). Therefore,

let T = {〈αm, . . . , α1〉} be the output. Now, assume that F̄0(z, x) is not in Q[z]. Note
that for any polynomial h(x) ∈ Q[x], if F (x, h(x)) ∈ Q, then h(x) = G(x) + c for a
c ∈ Q. Hence, if F (x, h(x)) ∈ Q, then h(x) = G(x) + βk for a k, 1 ≤ k ≤ r. Therefore,
F (x, h(x)) ∈ Q if and only if h(x) ∈ T . This finishes our proof of correctness.
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Polynomials over Q can be factored in polynomial time (Lenstra et al., 1982; Lenstra,
1984; Kaltofen, 1985). It is easy to see that each step can be carried out in polynomial
time. In the process of FACTOR, there may exist zero sequences in S, that is sequences
in the form 〈0, . . . , 0〉 for i consecutive zeros where 1 ≤ i ≤ m+1. There are at most m+1
such sequences. Except the zero sequences, all the polynomials in S during the process of
FACTOR are approximate solutions of F (x, y). The order of each approximate solution
is less than or equal to m ≤ degx(F (x, y)) by Proposition 2.6. Also, at each order there
are at most s = degy(F (x, y)) distinct approximate solutions by Theorem 2.7. Thus, the
total number of elements having appeared in S, including those eliminated, is less than
or equal to (s + 1)(m + 1). This means that Step 3 runs at most (s + 1)(m + 1) times. It
follows that FACTOR is in polynomial time. 2

If F (x, y) = f1(x)y − f0(x), i.e. degy(F (x, y)) = 1, then the coefficients αm, . . . , α0

found successively by Step 3 in the algorithm FACTOR are just the coefficients found
successively with the usual division algorithm of f0(x) by f1(x). If the output of the
algorithm FACTOR is

∑m
i=0 αix

i, then it means that

f0(x) = f1(x) ·

(
m∑

i=0

αix
i

)
+ c

where c ∈ Q. We may say that the algorithm FACTOR is an extension of the division
algorithm.

Next, we extend the algorithm FACTOR to polynomials with more than two variables.
We need to introduce a modified Kronecker substitution.

Definition. (Schinzel, 1982) If F (x1, x2, . . . , xn) is a polynomial over Q, and d >

degxi
(F (x̄)) for each i, then Sd : F −→ F (x, xd, xd2

, . . . , xdn−1
) is called a Kronecker

substitution. Similarly, if F (x1, x2, . . . , xn, y) is a polynomial over Q, and d > degxi

(F (x̄, y)) for each i, then Td : F −→ F (x, xd, xd2
, . . . , xdn−1

, y) is called a modified
Kronecker substitution.

It is easy to see that Td(y− h(x̄)) = y−Sd(h(x̄)). It is known that if d > degxi
(F (x̄) ·

G(x̄)) for each i, then Sd(F ·G) = Sd(F ) ·Sd(G). We also have that if d > degxi
(F (x̄, y) ·

G(x̄, y)) for each i, then Td(F ·G) = Td(F ) · Td(G).

Lemma 3.2. (Schinzel, 1982) If F0[x] ∈ Q[x] satisfies deg(F0) ≤ dn−1, then there
exists a unique F ∈ Q[x1, . . . , xn] with degxi

F (x̄) < d such that Sd(F ) = F0.

We may call the procedure of finding F from F0 such that Sd(F ) = F0 an inverse
Kronecker substitution, and write that S−1

d (F0) = F . We can define the inverse modified
Kronecker substitution T−1

d similarly. Since polynomials are input in dense form and n is
fixed, the Kronecker substitution and modified Kronecker substitution are in polynomial
time. Also, the input length of H(x, y) = Td(F (x̄, y)) is polynomially bounded by the
input length of the original F (x̄, y). From the proof of above lemma in Schinzel (1982)
we can see that inverse Kronecker substitution can be performed in polynomial time too.
We then have the following lemma.
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Lemma 3.3. The Kronecker substitution Sd, inverse Kronecker substitution S−1
d , modi-

fied Kronecker substitution Td, and inverse modified Kronecker substitution T−1
d are all

in polynomial time.

Now, we are ready to prove our final theorem.

Theorem 3.4. There is a polynomial time algorithm which, given f(x̄, y) =
∑s

k=0 fk(x̄)
yk ∈ Q[x̄, y], determines whether or not there is a unique g(x̄) ∈ Q[x̄], with its constant
term equal to 0, such that f(x̄, y) =

∑s
i=0 ci(y − g(x̄))i for some ci ∈ Q. If this is the

case, then the polynomial g(x̄) can be found in polynomial time. If it is not the case, then
in polynomial time the algorithm finds all polynomials {g1(x̄), . . . , gt(x̄)}, t ≤ s, such that
gi(x̄) ∈ Q[x̄] and f(x̄, gi(x̄)) ∈ Q for 1 ≤ i ≤ t.

Proof. Let f(x̄, y) =
∑s

k=0 fk(x1, . . . , xn)yk, and d be the maximum of degxj
(fk(x̄, y))+

1 for 1 ≤ j ≤ n and 0 ≤ k ≤ s. We apply modified Kronecker substitution Td on f(x̄, y)
and let F (x, y) = Td(f(x̄, y)). We apply FACTOR on F (x, y) and let T be the output of
FACTOR. For each g(x) in T , deg(g(x)) ≤ dn by Proposition 2.6. Hence, S−1

d (g(x)) is
well defined. Let T ′ = {S−1

d (g(x)) : g(x) ∈ T} be the output.
Since FACTOR is in polynomial time, with Lemma 3.3, this algorithm is in polynomial

time. Now, we prove this algorithm is correct. We first prove that if G(x̄) ∈ T ′, then
f(x̄, G(x̄)) is in Q. Let G(x̄) = S−1

d (g(x)) for a g(x) in T . If g(x) ∈ T , then F (x, y)− c =
(y − g(x)) · h(x, y) for some c ∈ Q and some h(x, y) ∈ Q[x, y]. Then

f(x̄, y)− c = T−1
d (F (x, y))− c

= T−1
d (F (x, y)− c)

= T−1
d ((y − g(x)) · h(x, y))

= T−1
d (y − g(x)) · T−1

d (h(x, y))
= (y − S−1

d (g(x))) ·H(x̄, y)

for some H(x̄, y) over Q. Hence, f(x̄, S−1
d (g(x))) = f(x̄, G(x̄)) = c ∈ Q.

Conversely, we need to prove that if f(x̄, G(x̄)) is in Q, then G(x̄) ∈ T ′. Assume that
f(x̄, G(x̄)) = c for a c in Q. Then f(x̄, y)− c = (y −G(x̄)) ·H(x̄, y) for some H(x̄, y) in
Q[x̄, y]. Let Sd(G(x̄)) = g(x) and Td(H(x̄, y)) = h(x, y). Then,

F (x, y)− c = Td(f(x̄, y))− c

= Td(f(x̄, y)− c)
= Td((y −G(x̄)) ·H(x̄, y))
= Td((y −G(x̄)) · Td(H(x̄, y))
= (y − Sd(G(x̄))) · Td(H(x̄, y))
= (y − g(x)) · h(x, y).

Hence, F (x, g(x)) = c and g(x) is in T . This implies that G(x̄) = S−1
d (g(x)) is in T ′. 2

Finally, we use an example to illustrate the algorithm FACTOR.

Example. Let f(x, y) = 4y2 − 4x3y − 4x2y + 8xy + 6y + x6 + 2x5 − 3x4 − 7x3 + 7x + k
where k is an unknown constant. Then m = 3; substitute y = zx3 in f(x, y) and let
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f(x, zx3) = F3(z, x). Let f3(z) be the leading term of F3(z, x). Then, f3(z) = 4z2−4z+1.
Solving f3(z) = 0, we obtain that z = 1/2 with multiplicity 2.

Substitute y = x3/2 + zx2 in f(x, y) and let f(x, x3 + zx2) = F2(z, x). Let f2(z) be
the leading term of F2(z, x). Then f2(z) = 4z2 − 4z + 1. Solving 4z2 − 4z + 1 = 0, we
obtain that z = 1/2 with multiplicity 2.

Substitute y = (x3 + x2)/2 + z in f(x, y) and let f(x, (x3 + x2)/2 + z) = F1(z, x). Let
f1(z) be the leading term of F1(z, x). Then f1(z) = 4z2 +8z+3. Solving 4z2 +8z+3 = 0,
we obtain that z = −3/2,−1/2.

Substitute y = (x3+x2−3x)/2+z in f(x, y) and let f(x, (x3+x2−3x)/2+z) = F0(z, x).
Let f0(z) be the leading term of F0(z, x). Then f0(z) = −4z−2, we obtain that z = −1/2.

Substitute y = (x3+x2−x)/2+z in f(x, y) and let f(x, (x3+x2−x)/2+z) = G0(z, x).
Let g0(z) be the leading term of G0(z, x). Then f0(z) = 4z + 4, we obtain that z = −1.
Therefore,

f(x, y) = 4y2 − 4x3y − 4x2y + 8xy + 6y + x6 + 2x5 − 3x4 − 7x3 + 7x + k

= 4(y − (x3 − x2 + 3x + 1)/2)(y − (x3 − x2 + x + 2)/2)− 2 + k

= (2y − x3 − x2 + 3x + 1)(2y − x3 − x2 + x + 2)− 2 + k.

Now, if x is an odd integer, x3+x2−3x−1 is even, then y = (x3+x2−3x−1)/2 is in Z and
f(x, y) = k−2. If x is an even integer, x3 +x2−x−2 is even, then y = (x3 +x2−x−2)/2
is in Z and f(x, y) = k − 2. Thus, ∃z∀x∃yf(x, y) = z is true in Z by taking z = k − 2.
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