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Abstract

For a family of linear operators A�~k� : U ! U over C that smoothly depend on

parameters ~k � �k1; . . . ; kk�, V.I. Arnold obtained the simplest normal form of their

matrices relative to a smoothly depending on ~k change of a basis in U. We solve the

same problem for a family of linear operators A�~k� : U ! U over R, for a family of pairs

of linear mappings A�~k� : U ! V ; B�~k� : U ! V over C and R, and for a family of pairs

of counter linear mappings A�~k� : U ! V ; B�~k� : V ! U over C and R. Ó 1999

Elsevier Science Inc. All rights reserved.

1. Introduction

All matrices and representations are considered over a ®eld F 2 fC;Rg. We
base on ideas and methods from Arnold's paper [1], extending them on quiver
representations.
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Systems of linear mappings are conveniently studied if we consider them as
representations of a quiver. A quiver is a directed graph, its representation A
over F is given by assigning to each vertex i a ®nite-dimensional vector space Ai

over F and to each arrow a : i! j a linear mapping Aa : Ai ! Aj. For example,
the problems of classifying representations of the quivers

are the problems of classifying, respectively, linear operators A : U ! U (its
solution is the Jordan normal form), pairs of linear mappings A : U ! V ; B :
U ! V (the matrix pencil problem, solved by Kronecker), and pairs of counter
linear mappings A : U ! V ; B : V ! U (the contragredient matrix pencil
problem, solved in [2] and studied in detail in [3]).

Studying families of quiver representations smoothly depending on pa-
rameters, we can independently reduce each representation to canonical form,
but then we lose the smoothness (and even the continuity) relative to the pa-
rameters. It leads to the problem of reducing to normal form by a smoothly
depending on parameters change of bases not only the matrices of a given
representation, but of an arbitrary family of representations close to it. This
normal form is obtained from the normal form of matrices of the given rep-
resentation by adding to some of their entries holomorphic functions of the
parameters that are zero for the zero value of parameters. The number of these
entries must be minimal to obtain the simplest normal form.

This problem for representations of the quiver over C was solved by
Arnold [1] (see also [4, Section 30]). We solve it for holomorphically depending
on parameters representations of the quiver over R and representations of
the quivers and both over C and over R. In the obtained simplest
normal forms, all the summands to entries are independent parameters. A
normal form with the minimal number of independent parameters, but not of
the summands to entries, was obtained in [5] (see also [4, Section 30E]) for
representations of the quiver over R and in [6] (partial cases were considered
in [7,8]) for representations of the quiver over C.

2. Deformations of quiver representations

Let Q be a quiver with vertices 1; . . . ; t. Its matrix representation A of di-
mension ~n � �n1; . . . ; nt� 2 f0; 1; 2; . . .gt

over F is given by assigning a matrix
Aa 2 Fnj�ni to each arrow a : i! j. Denote by R�~n; F� the vector space of all
matrix representations of dimension ~n over F. An isomorphism S : A! B of
A;B 2 R�~n; F� is given by a sequence S � �S1; . . . ; St� of non-singular matrices
Si 2 Gl�ni; F� such that Ba � SjAaSÿ1

i for each arrow a : i! j.
By an F-deformation of A 2 R�~n; F� is meant a parametric matrix repre-

sentation A�k1; . . . ; kk� (or for short A�~k�, where ~k � �k1; . . . ; kk�), whose
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entries are convergent in a neighborhood of ~0 power series of variables (they
are called parameters) k1; . . . ; kk over F such that A�~0� � A.

Two deformations A�~k� and B�~k� of A 2 R�~n; F� are called equivalent if
there exists a deformation I�~k� (its entries are convergent in a neighborhood of
~0 power series and I�~0� � I) of the identity isomorphism I � �In1

; . . . ; Int� :
A! A such that

Ba�~k� � Ij�~k�Aa�~k�Iÿ1
i �~k�; a : i! j;

in a neighborhood of ~0.
A deformation A�k1; . . . ; kk� of A is called versal if every deformation

B�l1; . . . ; ll� of A is equivalent to a deformation A�u1�~l�; . . . ;uk�~l��, where
ui�~l� are convergent in a neighborhood of ~0 power series such that ui�~0� �~0.
A versal deformation A�k1; . . . ; kk� of A is called miniversal if there is no versal
deformation having less than k parameters.

For a matrix representation A 2 R�~n; F� and a sequence C � �C1; . . . ;Ct�,
Ci 2 Fni�ni , we de®ne the matrix representation �C;A� 2 R�~n; F� as follows:

�C;A�a � CjAa ÿ AaCi; a : i! j:

A miniversal deformation A�k1; . . . ; kk� of A will be called simplest if it is
obtained from A by adding to certain k of its entries, respectively, k1 to the
®rst, k2 to the second ; . . . ; and kk to the kth. The next theorem is a simple
conclusion of a well-known fact.

Theorem 2.1. Let A�~k� � A�B�~k�,~k � �k1; . . . ; kk�, be an F-deformation of a
matrix representation A 2 R�~n; F�, F 2 fC;Rg, where k entries of B�~k� are the
independent parameters k1; . . . ; kk and the other entries are zeros. Then A�~k� is a
simplest miniversal deformation of A if and only if

R�~n; F� � PA �TA;

where PA is the k-dimensional vector space of all B�~a�, ~a 2 Fk, and TA is the
vector space of all �C;A�, C 2 Fn1�n1 � � � � � Fnt�nt .

Proof. Two subspaces of a vector space V are transversal if their sum is equal to
V. The class of all isomorphic to A 2 R�~n; F� matrix representations may be
considered as the orbit AG of A under the following action of the group G �
GL�n1; F� � � � � �GL�nt; F� on the space R�~n; F�:

AS
k � SjAkSÿ1

i ; k : i! j;

for all A 2 R�~n; F�, S � �S1; . . . ; St� 2 G, and arrows k. A deformation A�~k� of
a matrix representation A 2 R�~n; F� is called a transversal to the orbit AG at the
point A if the space R�~n; F� is the sum of the space A�F

k (that is, of the image of
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the linearization A� of A�~k� near A; the linearization means that only ®rst
derivatives matter) and of the tangent space to the orbit AG at the point A. The
following, for example, ([9, Section 1.6] and [1]): a transversal (of the minimal
dimension) to the orbit is a (mini)versal deformation.

It proves the theorem since PA is the space A�F
k and TA is the tangent

space to the orbit AG at the point A; the last follows from

AI�eC
k � �I � eCj�Ak�I � eCi�ÿ1 � �I � eCj�Ak�I ÿ eCi � e2Ci ÿ � � ��
� Ak � e�CjAk ÿ AkCi� � e2 � � �

for all C � �C1; . . . ;Ct�, Ci 2 Fni�ni , small e, and arrows k : i! j. �

Corollary 2.1. There exists a simplest miniversal F-deformation for every matrix
representation over F 2 fC;Rg.

Proof. Let A 2 R�~n; F�, let T1; . . . ; Tr be a basis of the space TA, and let
E1; . . . ;El be the basis of R�~n; F� consisting of all matrix representations of
dimension ~n such that each of theirs has one entry equaling 1 and the others
equaling 0. Removing from the sequence T1; . . . ; Tr;E1; . . . ;El every represen-
tation that is a linear combination of the preceding representations, we obtain
a new basis T1; . . . ; Tr of the space R�~n; F�. By Theorem 2.1, the deformation

A�k1; . . . ; kk� � A� k1Ei1 � � � � � kkEik

is a simplest miniversal deformation of A since Ei1 ; . . . ;Eik is a basis of PA and
R�~n; F� � PA �TA. �

By a set of canonical representations of a quiver Q, we mean an arbitrary set
of ``nice'' matrix representations such that every class of isomorphic repre-
sentations contains exactly one representation from it. Clearly, it su�ces to
study deformations of the canonical representations.

Arnold [1] obtained a simplest miniversal deformation of the Jordan ma-
trices (i.e., canonical representations of the quiver ). In the rest of the paper,
we obtain the simplest miniversal deformations of canonical representations of
the quiver over R and of the quivers and both over C and over R.

Remark 2.1. Arnold [1] proposed an easy method to obtain a miniversal (but
not a simplest miniversal) deformation of a matrix under similarity by solving a
certain system of linear equations. The method is of considerable current use
(see [6±8,10]). Although we do not use it in the next sections, now we show how
to extend this method to quiver representations.

The space R�~n; F� may be considered as a Euclidean space with scalar
product
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hA;Bi �
X
a2Q1

tr�AaB�a�;

where Q1 is the set of arrows of Q and B�a is the adjoint of Ba.
Let A 2 R�~n; F� and let T1; . . . ; Tk be a basis of the orthogonal complement

T?
A to the tangent space TA. The deformation

A�k1; . . . ; kk� � A� k1T1 � � � � � kkTk �1�
is a miniversal deformation (since it is a transversal of the minimal dimension
to the orbit of A) called an orthogonal miniversal deformation.

For every arrow a : i! j, we denote b�a� :� i and e�a� :� j.
By the proof of Theorem 2.1, B 2T?

A if and only if hB; �C;A�i � 0 for all
C 2 Fn1�n1 � � � � � Fnt�nt . Then

hB; �C;A�i �P
a2Q1

tr�Ba�Ce�a�Aa ÿ AaCb�a����

� P
a2Q1

tr�BaA�aC�e�a� ÿ BaC�b�a�A
�
a� �

Pt

i�1

tr�SiC�i � � 0;

where

Si :�
X

e�a��i

BaA�a ÿ
X

b�a��i

A�aBa:

Taking Ci � Si for all vertices i � 1; . . . ; t, we obtain Si � 0.
Therefore, every orthogonal miniversal deformation of A has the form (1),

where T1; . . . ; Tk is a fundamental system of solutions of the system of homo-
geneous matrix equationsX

e�a��i

XaA�a �
X

b�a��i

A�aXa; i � 1; . . . ; t;

with unknowns T � fXa j a 2 Q1g.

3. Deformations of matrices

In this section, we obtain a simplest miniversal R-deformation of a real
matrix under similarity.

Let us denote

JC
r �k� � Jr�k� :�

k 1

k . .
.

. .
.

1

k

266664
377775; Jr :� Jr�0�; �2�
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and, for k � a� bi 2 C �b P 0�, denote JR
r �k� :� Jr�k� if b � 0 and

JR
r �k� :�

Tab I2

Tab
. .

.

. .
.

I2

Tab

2666664

3777775 if b > 0; where Tab :� a b

ÿb a

� �
�3�

(the size of Jr�k�; JC
r �k� and JR

r �k� is r � r).
Clearly, every square matrix over F 2 fC;Rg is similar to a matrix of the

form

�i U
F�ki�; ki 6� kj; if i 6� j; �4�

uniquely determined up to permutations of summands, where

UF�ki� :� diag�JF
si1
�ki�; JF

si2
�ki�; . . .�; si1 P si2 P � � � �5�

Let

H � �Hij� �6�
be a parametric block matrix with pi � qj blocks Hij of the form

Hij �
�
..
.

0

�

264
375 if pi6 qj; Hij �

0

� � � � �
� �

if pi > qj; �7�

where the stars denote independent parameters.
Arnold [1] (see also [4, Section 30]) proved that one of the simplest mini-

versal C-deformations of the matrix (4) for F � C is �i�UC�ki� �Hi�, where
Hi is of the form (6). Galin [5] (see also [4, Section 30E]) showed that one of
the miniversal R-deformations of the matrix (4) for F � R is �i�UR�ki� �Hki�,
where Hk (k 2 R� is of the form (6) and Hk (k 62 R� is obtained from a matrix
of the form (6) by the replacement of its entries a� bi with 2� 2 blocks Tab (see
(3)). For example, a real 4� 4 matrix with two Jordan 2� 2 blocks with ei-
genvalues x� iy �y 6� 0� has a miniversal R-deformation

x y 1 0

ÿy x 0 1

0 0 x y

0 0 ÿy x

26664
37775�

a1 b1 0 0

ÿb1 a1 0 0

a2 b2 0 0

ÿb2 a2 0 0

26664
37775 �8�

with the parameters a1; b1; a2; b2. We prove that a simplest miniversal R-de-
formation of this matrix may be obtained by the replacement of the second
column �b1; a1; b2; a2�T in (8) with �0; 0; 0; 0�T.
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Theorem 3.1 (Arnold [1] for F � C). One of the simplest miniversal F-defor-
mations of the canonical matrix (4) under similarity over F 2 fC;Rg is
�i�UF�ki� �Hi�, where Hi is of the form (6).

Proof. Let A be the matrix (4). By Theorem 2.1, we must prove that for every
M 2 Fm�m there exists S 2 Fm�m such that

M � SAÿ AS � N ; �9�
where N is obtained from �iHi by replacing its stars with elements of F and is
uniquely determined by M. The matrix A is block-diagonal with diagonal
blocks of the form JF

r �k�. We apply the same partition into blocks to M and N
and rewrite the equality (9) for blocks:

Mij � SijAj ÿ AiSij � Nij:

The theorem follows from the next lemma. �

Lemma 3.1. For given JF
p �k�, JF

q �l�, and for every matrix M 2 Fp�q there exists a
matrix S 2 Fp�q such that M � SJF

q �l� ÿ JF
p �k�S � 0 if k 6� l, and M � SJF

q �l� ÿ
JF

p �k�S � H if k � l, where H is of the form (7) with elements from F instead of
the stars; moreover, H is uniquely determined by M.

Proof. If k 6� l, then SJF
q �l� and JF

p �k�S have no common eigenvalue, the
matrix S exists (cf. ([11, Section 8]).

Let k � l and let F � C or k 2 R. Put C :� SJF
q �k� ÿ JF

p �k�S � SJq ÿ JpS. As
is easily seen, C is an arbitrary matrix �cij� (for a suitable S) satisfying the
condition: if its diagonal Ct � fcij j iÿ j � tg contains both an entry from the
®rst column and an entry from the last row, then the sum of entries of this
diagonal is equal to zero. It proves the lemma in this case.

Let k � l, F � R and k � a� bi, b > 0. Then p � 2m and q � 2n for certain
m and n. We must prove that every 2m� 2n matrix M can be reduced to a
uniquely determined matrix H of the form (7) (with real numbers instead of the
stars) by transformations

M 7!M � SJR
2n�k� ÿ JR

2m�k�S; S 2 F2m�2n: �10�
Let us partition M and S into 2� 2 blocks Mij and Sij, where 16 i6m and
16 j6 n. For every 2� 2 matrix P � �pij�, de®ne (see (3))

P 0 :� PT01 ÿ T01P � ÿp12 ÿ p21 p11 ÿ p22

p11 ÿ p22 p12 � p21

� �
:

By (3), the transformation (10) has the form M 7!M � S�Tab � � � � � Tab� ÿ
�Tab � � � � � Tab�S � SJ 2

2n ÿ J 2
2mS � M � b�S�T01 � � � � � T01� ÿ �T01 � � � � � T01�

S� � SJ 2
2n ÿ J 2

2mS, that is
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�11�

Let ®rst m6 n. If m > 1, we make Mmn � 0 selecting S0mn and Sm;nÿ1. To
preserve it, we must further take the transformations (11) with S satisfying
bS 0mn � Sm;nÿ1 � 0; that is,

S0mn � ÿbÿ1Sm;nÿ1 and Sm;nÿ1 �
ÿa b

b a

� �
with arbitrary a and b.

Selecting

S 0m;nÿ1 �
ÿ2b ÿ2a

ÿ2a 2b

� �
and Sm;nÿ2, we make Mm;nÿ1 � 0. To preserve it, we must take
bS0m;nÿ1 � Sm;nÿ2 � 0; that is, S0m;nÿ1 � ÿbÿ1Sm;nÿ2 and

Sm;nÿ2 �
ÿa b

b a

� �
with arbitrary a and b; and so on until obtain Mm2 � � � � � Mmn � 0. To pre-
serve theirs, we must take

Sm1 �
ÿa b

b a

� �
with arbitrary a and b and suitable

SMm1�b
ÿ2b ÿ2a

ÿ2a 2b

� �
;

we make

Mm1 �
c 0

d 0

� �
;

where c and d are uniquely determined.
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We have reduced the last strip of M to the form

�Mm1 � � �Mmn� �
c 0 � � � 0

d 0 � � � 0

� �
: �12�

To preserve it, we must take Sm1 � � � � � Sm;nÿ1 � S0mn � 0 since the number
of zeros in Mm1; . . . ;Mmn is equal to the number of parameters in
Sm1; . . . ; Sm;nÿ1; S0mn.

The next to last strip of M transforms as follows:

�Mmÿ1;1 � � �Mmÿ1;n� 7!�Mmÿ1;1 � � �Mmÿ1;n� �b�S0mÿ1;1 � � � S0mÿ1;n�
��0Smÿ1;1 � � � Smÿ1;nÿ1�ÿ�0 � � � 0Smn�.

In the same way, we reduce it to the form

�Mmÿ1;1 � � �Mmÿ1;n� �
s 0 � � � 0

m 0 � � � 0

� �
taking, say, Smn � 0. We must prove that s and m are uniquely determined for
all Smn such that S0mn � 0. It may be proved as for the c and d from (12) since the
next to last horizontal strip of M, without the last block, is transformed as the
last strip: �Mmÿ1;1 � � �Mmÿ1;nÿ1� 7!�Mmÿ1;1 � � �Mmÿ1;nÿ1� � b�S0mÿ1;1 � � � S0mÿ1;nÿ1� �
�0Smÿ1;1 � � � Smÿ1;nÿ2� (recall that m6 n, so this equality is not empty for m > 1).

We repeat this procedure until reduce M to the form (7).
If m > n, we reduce M to the form (7) starting with the ®rst vertical

strip. �

4. Deformations of matrix pencils

The canonical form problem for pairs of matrices A;B 2 Fm�n under trans-
formations of simultaneous equivalence

�A;B� 7!�SARÿ1; SBRÿ1�; S 2 GL�m; F�; R 2 GL�n; F�
(that is, for representations of the quiver ) was solved by Kronecker: each
pair is uniquely, up to permutation of summands, reduced to a direct sum of
pairs of the form (see (2) and (3))

�I ; J F
r �k��; �Jr; I�; �Fr;Kr�; �F T

r ;K
T
r �; �13�

where k � a� bi 2 C �b P 0 if F � R) and

Fr �

1 0

0 . .
.

. .
.

1

0 0

266664
377775; Kr �

0 0

1 . .
.

. .
.

0

0 1

266664
377775 �14�

are matrices of size r � �r ÿ 1�; r � �r ÿ 1�, r P 1.
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A miniversal, but not a simplest miniversal, deformation of the canonical
pairs of matrices under simultaneous similarity was obtained in [6], partial
cases were considered in [7,8].

Denote by 0" (0#; 0 ; 0!) a matrix, in which all entries are zero except for
the entries of the ®rst row (the last row, the ®rst column, the last column) that
are independent parameters; and denote by Z the p � q matrix, in which the
®rst maxfqÿ p; 0g entries of the ®rst row are independent parameters and the
other entries are zeros:

�15�

Theorem 4.1. Let

�A;B� � �l
i�1
�Fpi ;Kpi� � �I ;C� � �D; I� � �

r

i�1
�F T

qi
;KT

qi
� �16�

be a canonical pair of matrices under simultaneous equivalence over F 2 fC;Rg,
where C is of the form (4), D � UF�0� (see (5)), and 2 p16 � � � 6 pl;
q1 P � � � P qr. Then one of the simplest miniversal F-deformations of �A;B� has
the form �A;B��

2 We use a special ordering of summands in the decomposition (16) to obtain A and B in the

upper block triangular form except for blocks in ~C and ~D.
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where ~C and ~D are simplest miniversal F-deformations of C and D under simi-
larity (for instance, given by Theorem 2.1).

Let us denote by S� (S�; Sg; Sf) the matrix that is obtained from a matrix
S by removing of its ®rst column (last column, ®rst row, last row), and denote
by S (S, SO, SM) the matrix that is obtained from a matrix S by connecting of
the zero column to the right (zero column to the left, zero row at the bottom,
zero row at the top).

The following equalities hold for every p � q matrix S:

SFq � S� SKq � S� SF T
q�1 � S SKT

q�1 � S SJq � S�

Fp�1S � SO Kp�1S � SM F T
p S � Sf KT

p S � Sg JpS � SgO

Proof of Theorem 4.1. By Theorem 2.1, we must prove that for every M ;N 2
Fm�n there exist S 2 Fm�m and R 2 Fn�n such that

�M ;N� � �SAÿ AR; SBÿ BR� � �P ;Q�; �17�

where �P ;Q� is obtained from �A;B� ÿ �A;B� by replacing the stars with el-
ements of F and is uniquely determined by �M ;N�. The matrices A and B have
the block-diagonal form: A � A1 � A2 � � � �, B � B1 � B2 � � � �, where Pi �
�Ai; Bi� are direct summands of the form (13). We apply the same partition into
blocks to M and N and rewrite the equality (17) for blocks:

�Mij;Nij� � �SijAj ÿ AiRij; SijBj ÿ BiRij� � �Pij;Qij�:

Therefore, for every pair of summands Pi � �Ai; Bi� and Pj � �Aj; Bj�, i6 j,
we must prove that

(a) the pair �Mij;Nij� can be reduced to the pair �Pij;Qij� by transformations
�Mij;Nij�7!�Mij;Nij� � �MMij;MNij�, where

MMij :� SAj ÿ AiR; MNij :� SBj ÿ BiR

with arbitrary R and S; moreover, �Pij;Qij� is uniquely determined (more ex-
actly, its entries on the places of stars are uniquely determined) by �Mij;Nij�;
and, if i < j,

(b) the pair �Mji;Nji� can be reduced to the pair �Pji;Qji� by transformations
�Mji;Nji�7!�Mji;Nji� � �MMji;MNji�, where

MMji :� SAi ÿ AjR; MNji :� SBi ÿ BjR

with arbitrary R and S; moreover, �Pji;Qji� is uniquely determined by �Mji;Nji�.
Case 1: Pi � �Fp;Kp� and Pj � �Fq;Kq�, p6 q.
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(a) We have MMij � SFq ÿ FpR � S� ÿ RO. Adding MMij, we make Mij � 0;
to preserve it, we must further take S and R for which MMij � 0, i.e. S � �RO ..

.�,
where the points denote an arbitrary column. Further, MNij � SKq ÿ KpR
� S� ÿ RM � �RO ..

.�� ÿ RM � �XO ..
.� ÿ �...X �M, where X :� R�. Clearly, MNij is an

arbitrary matrix �dab� that satis®es the condition: if its diagonal Dt � fdab j aÿ
b � tg contains an entry from the ®rst row and does not contain an entry from
the last column, then the sum of entries of this diagonal is equal to zero.
Adding MNij, we make Nij � Z, where Z is of the form (15) but with elements of
F instead of the stars. If i � j, then p � q, Nii � Z has size p � �p ÿ 1�, so Nii �
0 (see (15)).

(b) We have MMji � SFp ÿ FqR and MNji � SKp ÿ KqR; so we analogously
make Mji � 0 and Nji � Z. But since Z has size q� �p ÿ 1� and p6 q, Nji � Z �
0 (see (15)).

Case 2: Pi � �Fp;Kp� and Pj � �I ; JF
q �k��.

(a) We have MMij � S ÿ FpR � S ÿ RO. Make Mij � 0; to preserve it, we
must further take S � RO. Then MNij � SJF

q �k� ÿ KpR � �RJ F
q �k��O ÿ RM. Using

the last row of R, we make the last row of Nij equaling zero, then the next to the
last row equaling zero, and so on until reduce Nij to the form 0" (with elements
of F instead of the stars).

(b) We have MMji � SFp ÿ R � S� ÿ R. Make MMji � 0, then R � S�;
MNji � SKp ÿ JF

q �k�R � S� ÿ �JF
q �k�S��. We make Nji � 0 starting with the last

row (with the last horizontal strip if F � R and k 62 R).
Case 3: Pi � �Fp;Kp� and Pj � �Jq; I�.
(a) We have MNij � S ÿ KpR, make Nij � 0, then S � KpR � RM;

MMij � SJq ÿ FpR � �RJq�M ÿ RO. Reduce Mij to the form 0# starting with the
®rst row.

(b) We have MNji � SKp ÿ R, make MNji � 0, then R � SKp � S�;
MMji � SFp ÿ JqR � S� ÿ �JqS��. We make Mji � 0 starting with the last row.

Case 4: Pi � �Fp;Kp� and Pj � �F T
q ;K

T
q �.

(a) We have MMij � SF T
q ÿ FpR � S ÿ RO. Reduce Mij to the form 0!, then

�S ÿ RO�� � S ÿ R�O � 0, S � R�O . Put X :� R�, then S � XO and R � �X ..
.�,

where the points denote an arbitrary row. Further, MNij � SKT
q ÿ KpR

� S ÿ RM � �XO� ÿ �X ..
.�M. Clearly, MNij is an arbitrary matrix �dab� that satis®es

the condition: if its secondary diagonal Dt � fdab j a� b � tg contains an entry
from the ®rst row, then the sum of entries of this diagonal is equal to zero.
Adding MNij, we reduce Nij to the form 0".

(b) We have MMji � SFp ÿ F T
q R � S� ÿ Rf. Make Mji � 0, then S � �Rf ..

.�.
Further, MNji � SKp ÿ KT

q R � S� ÿ Rg � �Rf ..
.�� ÿ Rg, make Nji � 0 starting

with the last column.
Case 5: Pi � �I ; JF

p �k�� and Pj � �I ; JF
q �l��.

(a) We have MMij � S ÿ R. Make Mij � 0, then S � R; MNij �
SJF

q �l� ÿ JF
p �k�R. Using Lemma 3.1, we make Nij � 0 if k 6� l and Nij � H if

k � l.
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(b) We have MMji � S ÿ R and MNji � SJF
p �k� ÿ JF

q �l�R. As in Case 5(a),
make Mji � 0, Nji � 0 if k 6� l and Nji � H if k � l.

Case 6: Pi � �I ; JF
p �k�� and Pj � �Jq; I�.

(a) We have MMij � SJq ÿ R � S� ÿ R. Make Mij � 0, then R � S�;
MNij � S ÿ JF

p �k�R � S ÿ �JF
p �k�S��. We make Nij � 0 starting with the ®rst

column.
(b) We have MMji � S ÿ JqR, make Mji � 0, then S � RgO; MNji �

SJF
p �k� ÿ R � �RJF

p �k��gO ÿ R. We make Nji � 0 starting with the last row.
Case 7: Pi � �I ; JF

p �k�� and Pj � �F T
q ;K

T
q �.

(a) We have MMij � SF T
q ÿ R. Make Mij � 0, then R � S;

MNij � SKT
q ÿ JF

p �k�R � S ÿ �JF
p �k�S�. We reduce Nij to the form 0 starting

with the last row (with the last horizontal strip if F � R and k 62 R).
(b) We have MMji � S ÿ F T

q R, make Mji � 0, then S � Rf,
MNji � SJF

p �k� ÿ KT
q R � �RJF

p �k��f ÿ Rg. We make Nji � 0 starting with the
®rst column (with the ®rst vertical strip if F � R and k 62 R).

Case 8: Pi � �Jp; I� and Pj � �Jq; I�. Interchanging the matrices in each pair,
we reduce this case to Case 5.

Case 9: Pi � �Jp; I� and Pj � �F T
q ;K

T
q �.

(a) We have MNij � SKT
q ÿ R. Make Nij � 0, then R � S;

MMij � SF T
q ÿ JpR � S ÿ �JpS�. We reduce Mij to the form 0! starting with the

®rst column.
(b) We have MNji � S ÿ KT

q R, make Nji � 0, then S � Rg,
MMji � SJp ÿ F T

q R � �RJp�g ÿ Rf. We make Mji � 0 starting with the ®rst
column.

Case 10: Pi � �F T
p ;K

T
p � and Pj � �F T

q ;K
T
q �; p P q.)

(a) We have MMij � SF T
q ÿ F T

p R and MNij � SKT
q ÿ KT

p R, so �MMij�T �
�ÿRT�Fp ÿ Fq�ÿST� and �MNij�T � �ÿRT�Kp ÿ Kq�ÿST�. Reasoning as in Case
1(a), we make MT

ij � 0 and N T
ij � Z, that is Mij � 0 and Nij � ZT (Nij � 0 if

i � j).
(b) We have MMji � SF T

p ÿ F T
q R and MNji � SKT

p ÿ KT
q R, so we analogously

make Mji � 0 and Nji � ZT. Since the size of ZT is �qÿ 1� � p and p P q, by (15)
we have ZT � 0. �

5. Deformations of contragredient matrix pencils

The canonical form problem for pairs of matrices A 2 Fm�n; B 2 Fn�m under
transformations of contragredient equivalence

�A;B� 7!�SARÿ1;RBSÿ1�; S 2 GL�m; F�; R 2 GL�n; F�;

(i.e., for representations of the quiver ) was solved in [2,3]: each pair is
uniquely, up to permutation of cells JF

r �k� in �iU
F�ki�, reduced to a direct sum
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�
j
�I ;C� � �t1

j�1
�Ir1j ; Jr1j� � �

t2

j�1
�Jr2j ; Ir2j� � �

t3

j�1
�Fr3j ;Gr3j� � �

t4

j�1
�Gr4j ; Fr4j� �18�

(we use the notation (14) and put Gr :� KT
r ), where C is of the form (4) and

ri1 P ri2 P � � � P riti .

Theorem 5.1. One of the simplest miniversal F-deformations of the canonical pair
(18) under contragredient equivalence over F 2 fC;Rg is the direct sum of �I ; ~C�
( ~C is a simplest miniversal F-deformation of C under similarity, see Theorem 2.1)
and

where

Pl �

Frl1
� H H � � � H

Frl2
� H . .

. ..
.

. .
.

H
0 Frltl

� H

2666664

3777775;

Ql �

Grl1
0

H Grl2

..

. . .
. . .

.

H � � � H Grltl

266664
377775

�l � 3; 4�, H and H are matrices of the form (6) and (7), the stars denote in-
dependent parameters.

Proof. Let �A;B� be the canonical pair of matrices (18). By Theorem 2.1, we
must prove that for every M 2 Fm�n; N 2 Fn�m there exist S 2 Fm�m and R 2
Fn�n such that

�M ;N� � �SAÿ AR; RBÿ BS� � �P ;Q�;
or, in the block form,

�Mij;Nij� � �SijAj ÿ AiRij; RijBj ÿ BiSij� � �Pij;Qij�;
where �P ;Q� is obtained from �A;B� ÿ �A;B� by replacing stars with complex
numbers and is uniquely determined by �M ;N�.

Therefore, for every pair of summands Pi � �Ai; Bi� and Pj � �Aj; Bj�, i6 j,
from the decomposition (18), we must prove that
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(a) the pair �Mij;Nij� can be reduced to the pair �Pij;Qij� by transformations
�Mij;Nij�7!�Mij;Nij� � �MMij;MNij�, where

MMij � SAj ÿ AiR; MNij � RBj ÿ BiS

with arbitrary R and S; moreover, �Pij;Qij� is uniquely determined (more ex-
actly, its entries on the places of stars are uniquely determined) by �Mij;Nij�;
and, if i < j,

(b) the pair �Mji;Nji� can be reduced to the pair �Pji;Qji� by transformations
�Mji;Nji�7!�Mji;Nji� � �MMji;MNji�, where

MMji � SAi ÿ AjR; MNji � RBi ÿ BjS

with arbitrary R and S; moreover, �Pji;Qji� is uniquely determined by �Mji;Nji�.
Case 1: Pi � �I ; JF

p �k�� and Pj � �I ; JF
q �l��.

(a) We have MMij � S ÿ R. Make Mij � 0, then S � R; MNij � RJF
q �l�ÿ

JF
p �k�S. Using Lemma 3.1, we make Nij � 0 if k 6� l, and Nij � H (see (7)) if

k � l.
(b) We have MMji � S ÿ R and MNji � RJF

p �k� ÿ JF
q �l�S. As in Case 1(a),

make Mji � 0, then Nji � 0 if k 6� l and Nji � H if k � l.
Case 2: Pi � �I ; JF

p �k�� and Pj � �Jq; I�.
(a) We have MMij � SJq ÿ R. Make Mij � 0, then R � SJq,

MNij � Rÿ JF
p �k�S � SJq ÿ JF

p �k�S. Using Lemma 3.1, we make Nij � 0 if k 6� 0
and Nij � H if k � 0.

(b) We have MMji � S ÿ JqR. Make Mji � 0, then S � JqR,
MNji � RJF

p �k� ÿ S � RJF
p �k� ÿ JqR. We make Nji � 0 if k 6� 0 and Nji � H if

k � 0.
Case 3: Pi � �I ; JF

p �k�� and Pj � �Fq;Gq�.
(a) We have MMij � SFq ÿ R � S� ÿ R. Make Mij � 0, then R � S�,

MNij � RGq ÿ JF
p �k�S � S� ÿ JF

p �k�S � SJq ÿ JF
p �k�S. Using Lemma 3.1, we

make Nij � 0 if k 6� 0 and Nij � H if k � 0.
(b) We have MMji � S ÿ FqR � S ÿ RO. Make Mji � 0, then S � RO,

MNji � RJF
p �k� ÿ GqS � RJF

p �k� ÿ RgO � RJF
p �k� ÿ Jqÿ1R. We make Nji � 0 if k 6�

0 and Nji � H if k � 0.
Case 4: Pi � �I ; JF

p �k�� and Pj � �Gq; Fq�.
(a) We have MMij � SGq ÿ R. Make Mij � 0, then R � S,

MNij � RFq ÿ JF
p �k�S � S� ÿ JF

p �k�S � SJqÿ1 ÿ JF
p �k�S. Using Lemma 3.1, we

make Nij � 0 if k 6� 0 and Nij � H if k � 0.
(b) We have MMji � S ÿ GqR � S ÿ Rg. Make Mji � 0, then S � Rg,

MNji � RJF
p �k� ÿ FqS � RJF

p �k� ÿ RgO � RJF
p �k� ÿ JqR. We make Nji � 0 if k 6� 0

and Nji � H if k � 0.
Case 5: Pi � �Jp; I� and Pj � �Jq; I�. Interchanging the matrices in each pair,

we reduce this case to Case 1.
Case 6: Pi � �Jp; I� and Pj � �Fq;Gq�. Interchanging the matrices in each

pair, we reduce this case to Case 4.
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Case 7: Pi � �Jp; I� and Pj � �Gq; Fq�. Interchanging the matrices in each
pair, we reduce this case to Case 3.

Case 8: Pi � �Fp;Gp� and Pj � �Fq;Gq�; i6 j (and hence p P q).
(a) We have MNij � RGq ÿ GpS � Rÿ Sg. Make Nij � 0, then R � Sg. Fur-

ther, MMij � SFq ÿ FpR � S� ÿ RO, so �MMij�g � �Sg�� ÿ RgO � R� ÿ RgO �
RJqÿ1 ÿ Jpÿ1R and the ®rst row of MMij is arbitrary (due to the ®rst row of S).
We make the ®rst row of Mij equaling zero. Following the proof of Lemma 3.1
and taking into account that p � q, we make all entries of the �p ÿ 1� � �qÿ 1�
matrix Mg

ij equaling zero except for the last row and obtain Mij � H .
(b) We have i < j, MMji � SFp ÿ FqR � S� ÿ RO. Make Mji � 0, then

S� � RO. Further, MNji � RGp ÿ GqS � Rÿ Sg; �MNji�� � R� ÿ RgO � RJpÿ1 ÿ
Jqÿ1R and the last column of MNji is arbitrary (due to the last column of S). We
make the last column of MNji equaling zero. By Lemma 3.1 and the inequality
p P q, we make all entries of the �qÿ 1� � �p ÿ 1� matrix N�ji equaling zero
except for the ®rst column and obtain Nji � H .

Case 9: Pi � �Fp;Gp� and Pj � �Gq; Fq�.
(a) We have MNij � RFq ÿ GpS � R� ÿ Sg. Make Nij � 0, then R� � Sg, i.e.

R � Xg and S � X� for an arbitrary X. Further, MMij � SGq ÿ FpR
� S ÿ RO � X� ÿ XgO , we make Mij � H .

(b) We have MMji � SFp ÿ GqR and MNji � RGp ÿ FqS. So we analogously
make Mji � 0 and Nji � H .

Case 10: Pi � �Gp; Fp� and Pj � �Gq; Fq�; i6 j. Interchanging the matrices
in each pair, we reduce this case to Case 8. �
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