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orangutans almost certainly differs and
needs to be tested directly. Daily
energy expenditure was assessed
in captives from the disappearance
of a dose of doubly labeled water
in which the hydrogen and oxygen
were replaced with a traceable
stable isotope. Testing required
orangutans to drink a dose of
doubly labeled water and provide
urine samples, daily, for two weeks.
Whether this is feasible in the wild
is questionable. On another tack,
the seasonal differences in daily
energy expenditure that Pontzer et al.
[2] found may have important
implications for wild orangutan daily
energy expenditure. Bornean
orangutans survive during prolonged
food lows by metabolizing their own
body fat and resting a lot, so their
energy use should be at its lowest at
this time. Who knows, during these
periods, they might surpass the sloth
in slowness.
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Palaeoecology: Different Dinosaur
Ecologies in Deep Time?
Do dinosaurs from the Moroccan Kem Kem formation provide evidence for
an ecosystem dramatically different from anything seen today? More likely the
common palaeontological problem of time-averaging has had a part to play.
Gareth J. Dyke

The geological principle of
uniformitarianism posits that ‘the
present is the key to the past’. But how
similar really were ancient ecosystems,
as recorded in the fossil record,
to the ones we see today? Most
palaeontologists would argue that
there are unlikely to have been
assemblages of animals and plants
in the past that we cannot understand
with reference to modern-day
ecosystems. Perhaps, however,
as palaeoecologists we have no
chance: if a fossil assemblage reflects
an ecological situation completely alien
to the modern world, then how would
we hope to recognise it?

Just picking up fossils off the
ground and counting them cannot
give us a clear answer about an
ancient ecosystem because of the
effects of ‘time-averaging’. This
critical palaeontological concept
addresses the mixing of fossils of
different ages together into single
rock layers. In other words, the
organisms whose remains are found
together did not necessarily live
together. In a recent paper,
Toma�sových and Kidwell [1]
demonstrate that time-averaging
effects can dramatically alter
interpretations of ancient ecosystems
based just on fossil collections.
Assume, for example, that based

on counts of fossil species at a given
site the appearance anddisappearance
of species seems slow or gradual and
different to a modern ecosystem in
a similar environment. Yet, the huge
timescales involved — centential,
millenial or longer — may have created
an illusion of stasis. Toma�sových and
Kidwell’s simulations [1] show that
time-averaging tends to decrease the
numbers of species collected by
palaeontologists that were actually
dominant in an ecosystem while
increasing the count of rarer ones.
This finding has direct implications,
particularly for vertebrate
palaeontology; it has, for instance,
become fashionable to speculate about
the shape of dinosaur-dominated
ecosystems. Several reports [2,3],
based on 95 million-year-old (mya)
fossils from a famous series of sites
in Morocco, claim evidence for an
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Figure 1. A Kem Kem dinosaur.

The large meat-eating theropod dinosaur Spinosaurus is well-known, largely on the basis of its
teeth and a few vertebrae, from the Kem Kem of Morocco. The curved, unserrated teeth of
Spinosaurus are very often found for sale in local markets and fossil shops. In this artistic
rendering the dinosaur is shown fishing. Artwork by Todd Marshall.

Current Biology Vol 20 No 22
R984
extremely unusual ancient ecosystem:
one top-heavywith dinosaur predators.

This novel ecosystem was found
in a Moroccan sequence of rocks,
in the Saharan southeast of the country.
These fossil deposits, called the ‘Kem
Kem’, have been known to
palaeontologists for almost a century
[4]. The Kem Kem is early Late
Cretaceous inage (Cenomanian:around
95 mya), comprises both continental
anddeltaic rocks, and has so far yielded
more than 80 named taxa of fossil
vertebrates [5]. What is particularly
unusual about the fossils from the Kem
Kem is that the vast majority collected
are the remains of large predatory
dinosaurs, some the size of
Tyrannosaurus rex. In fact, more than
70 percent of described fossils from the
Kem Kem sequence are the bones and
teeth of predators — almost the exact
reverse of what one would expect in
a modern ecosystem. On the African
savannah, for instance, predators make
up a much smaller component of the
overall biomass: only up to around
30 percent in exceptional cases.

Even more unusual about the fossil
fauna of the Moroccan KemKem is that
prey species, especially plant-eating
dinosaurs like huge four-legged
sauropods and the bipedal duck-billed
ornithopods, seem to be almost
completely absent. Just very rare
bones of one or two species of
sauropod have been described,
and only the footprints of duck-billed
dinosaurs have ever been reported.
Where were all the prey animals to
sustain the large number of giant
predatory dinosaurs? This unusual
pattern has led some to believe the
Kem Kem fauna to be unlike anything
seen today: an example of a
predator-dominated ecosystem [2,3].
However, more likely, time-averaging
has had a part to play [1].
As ever in palaeontology, just

because a fossil has not been found
in a particular rock sequence does not
mean it was not there. Although picked
over for decades, and with increasing
regularity in recent years, most fossils
from the Kem Kem are fragmentary
and not collected from their original
positions in the rocks. The bulk of
the fossils that come from this region
are foundon the surfacebyprospecting
palaeontologists or mined and
collected by local villagers who know
they have a market value. A recent
study of fossils from this region of
Morocco [6] has suggested that
because local villagers and fossil
collectors know that theropod
dinosaur teeth, especially those of
the large predatory dinosaurs
Cacharodontosaurus and Spinosaurus
(Figure 1), can command a higher price
they are more often available for sale
in local fossil shops. This bias has
filtered down into museum collections:
Moroccan samples are also dominated
by the remains of predatory dinosaurs,
while the more boring, less saleable
bones that could be attributed to
plant-eating ornithopods are rarely
encountered [6]. In the Sahara, where
harsh weather conditions make short
work of softer bones, the hard enamel
of more resistant dinosaur teeth, shed
regularly through life, are much
more often collected by eager
palaeontologists, but the sites have
rarely been surveyed carefully
by professional palaeontologists.
Do the dinosaurs of the Kem Kem tell

us about a system that was really
ecologically unique? Sporadic fossil
collecting from rocks more than 150
metres thick and continuous in the
Sahara over hundreds of kilometres
creates a problem of time-averaging.
Added to this is the fact that most of
the taxa described from this part
of Morocco were bought and then only
later given to museum collections,
rather than being properly collected
with location data in the field. All this
adds up to a very tricky situation for
building hypotheses about
palaeoecology. Perhaps after all, the
‘present is the key to the past’; better
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to assume that the ecology of the Kem
Kem was more similar to a modern
ecosystem (we just have not found
enough prey species yet for the large
dinosaurs, whose numbers we might
be overestimating anyway) than try
to re-write the ecological rule book
based on really quite inadequate fossil
evidence.
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Social Evolution: War of the Worms
The discovery of a non-reproductive soldier caste in a clonally reproducing
trematode greatly extends the taxonomic distribution of eusociality and
reaffirms the importance of relatedness in the evolution of reproductive
altruism.
Current Biology
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There is great variability in degrees
of sociality within the animal kingdom.
The most elaborate forms are found
in species such as ants and termites,
where division of labour is associated
with a caste system in which queens
monopolize reproduction and workers
do all the other colony tasks, such
as brood care and foraging. In recent
years, the presence of specialized
reproductive and non-reproductive
castes has been uncovered in
several other arthropods, including
gall-forming aphids [1], thrips [2] and
snapping shrimps [3]. A new study [4]
now greatly extends the taxonomic
range of these eusocial systems by
describing the occurrence of
specialised reproductive and soldier
morphs in the parasitic trematodes
or fluke worms.

Trematodes have a complicated
lifecycle involving several distinct
stages and several hosts (Figure 1).
Himasthla sp. B infects the California
horn snail, Cerithidea californica, as its
second intermediate. Once in the host,
the parasite exhibits repeated clonal
reproduction of rediae, which then
produce more of themselves or give
rise to dispersive offspring (cercariae).
All these individuals are clones of the
diploid larvae that infected the host.
While studying trematodes in marine
snails, Hechinger et al. [4] observed
that rediae occurred in two distinct
morphological forms (Figure 2). The
larger, or primary, morph is that of the
reproductive rediae already described
in the literature. The other, secondary,
morph is much smaller and more
mobile, with relatively larger
mouthparts. Importantly, the two
morphs differ greatly in their
reproductive abilities. While 96% of the
reproductive rediae contain embryos
and/or dispersive cercariae, none
of the smaller morphs show any sign
of reproduction. Moreover, detailed
censuses showed that the smaller
morph is unable to undergo a transition
to the much larger reproductive morph,
thus indicating that it is fully sterile.
There are also important behavioural

differences between the two forms.
The larger, primary morphs are almost
all located in the visceral mass of the
host,mainly in the region of the gonads.
The smaller form is distributed more
widely throughout the host, but
primarily within the mantle, which is the
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