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1. INTRODUCTION

Let a, b, c � �, r , r � � . We consider the equation1 2 �

x t � ax t � bx t � r � cx t � r � 0. 1Ž . Ž . Ž . Ž . Ž .˙ 1 2

Ž � 	. Ž .Several authors see, e.g., 2�6 have investigated Eq. 1 . Of special
interest is the region of stability, i.e., conditions on the parameters

Ž .a, b, c, r , r or some of them , which ensure asymptotic stability. Schoen1 2
� 	and Geering 6 gave necessary and sufficient conditions in the case of

1 � � � 	fixed r � r , and under the assumption c � ��r . Mahaffy et al. 31 2 22

described the region of stability for fixed delays r , r and variable a, b, c.1 2
They show how the region of stability evolves in the bc-plane changing the

� 	parameter a. Hale and Huang 2 gave a geometric description of the
stable region in the r r -plane for fixed a, b, c. They do this under the1 2
assumption that this region is connected. This seems reasonable, but to
our knowledge has as yet not been proven.

We are interested in proving that both the region of stability and
Ž .instability of 1 are connected. There are no general results known to us

� 	concerning these issues. The only partial result is a counterexample in 3
which shows that for fixed r , r , a and variable b, c the region of stability1 2
is not connected.

We shall show that both regions mentioned above are connected in the
space of all parameters as well as for fixed delays. Also we prove that the
region of instability in the r r -plane, i.e., for fixed a, b, c, is connected.1 2
Unfortunately, as yet we have not been able to prove the assumption of
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� 	Hale and Huang 2 , i.e., that the stable region in the plane of delays for
fixed parameters a, b, c is connected.

Actually our results are a little stronger than what we mentioned above.
They imply that there are no ‘‘islands’’ of instability in the stable regions
we consider, nor are there ‘‘islands’’ of stability in the region of instability,
for variable a, b, c.

The techniques used to get these results are quite different for the two
Ž .fundamental cases of a, b, c variable and r , r fixed or variable , and1 2

Ž .a, b, c fixed and r , r variable . In the former case we use various paths1 2
in the space of parameters a, b, c. In particular one which changes the real
part of all roots of the characteristic equation in a controlled way. In the
latter case we make a detailed investigation of the behaviour of purely
imaginary roots of the characteristic equations as the delays r , r vary.1 2

We now introduce some notations we shall be using throughout this
paper.

Ž .The characteristic equation of 1 is

� � � � � ; a, b , c, r , r � � � a � be�r1 � � ce�r 2 �.Ž . Ž .1 2

Ž . Ž .We also write � �; a, b, c , � �; r , r if we want to emphasize the1 2
dependence on certain parameters.

Ž .We are interested in the region of asymptotic stability

S � a, b , c, r , r � �3 � �2 : x t � 0 is asym. stable sol. of 1Ž . Ž . Ž .� 41 2 �

� a, b , c, r , r � �3 � �2 : Re � � 0 � � � ; a, b , c, r , r � 0 .Ž . Ž .� 41 2 � 1 2

If we are interested in the region of stability only with respect to the
coefficients a, b, c fixing r , r , we write1 2

S � r , r � S 
 �3 � r , r ,� 4 � 4Ž . Ž .Ž .abc 1 2 1 2

analogously for fixed a, b, c and varying r , r : S � S � �2 .1 2 r , r r �1 23 2 Ž .Let U � � � � denote the region where x t � 0 is unstable. Simi-�
larly to what we did for the stable region, let U � �3 resp. U � U �abc r r , r1 2

�2 denote the unstable regions we get fixing r , r resp. a, b, c and� 1 2
varying the remaining parameters.

Ž . Ž . Ž .If we say Eq. 1 is un- stable, we always mean x t � 0 is an asymptoti-
Ž .cally stable resp. unstable solution of 1 .

Ž .If we have only one delay for example, if r � 0, or r � r , or c � 02 1 2
Ž � 	.the exact region of stability is known e.g., 1 . In this case the region of

Ž .stability is connected: in the space of all parameters say a, b, r , as well as
Ž � Ž . � .for fixed a, b and variable r then S � 0, r a, b is an interval , or forr 0

fixed r and variable a, b. The same holds for the region of instability.
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2. FIXED DELAYS r , r1 2

Ž .We start with a well known condition when 1 is stable resp. unstable
Ž � 	.independently of the delay see, e.g., 3 .

Ž . � � � �LEMMA 1. If a � b � c � 0, then 1 is unstable. If a � b � c , then
Ž .1 is stable.

In the space of the coefficients a, b, c it is not difficult to show
connectedness for both the stable region as well as the unstable region:

PROPOSITION 1. S and U are connected and unbounded. Moreo�erabc abc
we ha�e

3 3� � S � U , � � U � S .abc abc abc abc

Proof. If r � 0, or r � 0, or r � r , then we have only one delay and1 2 1 2
Ž � 	.the conclusion holds see 1 , as has already been mentioned. So assume

for the rest of the proof r , r � 0, r � r .1 2 1 2
Ž .We shall now define a curve � t in the space of parameters a, b, c

which corresponds to a shift t of the real part of all roots of the
Ž . 3characteristic equation � �; a, b, c : For fixed a , b , c let �: � � � ,0 0 0

Ž . Ž Ž . Ž . Ž .. Ž Ž . Ž ..� t � � t , � t , � t � a � t, b exp r t , c exp r t . Then1 2 3 0 0 1 0 2

� x � iy ; a , b , c � � x � t � iy ; � t .Ž . Ž .Ž .0 0 0

Ž . Ž	 	.If we assume for a moment that a , b , c � S , then � � �, 0 �0 0 0 abc
Ž . Ž . Ž . Ž .S , and � t � �, � t , � t � 0 as t � ��. This shows a , b , c toabc 1 2 3 0 0 0

� � � �be connected in S with the region a � b � c which in turn isabc
connected and unbounded.

To show U to be connected we let one or two parameters depend onabc
Ž .the remaining in such a way that the biggest root of � �; a, b, c remains

fixed.
Ž . Ž .Assume a , b , c � U . If we change a , b , c slightly we can0 0 0 abc 0 0 0

without loss of generality assume that there is a � � x � iy � �,0 0 0
Ž .x � 0, and � � ; a , b , c � 0. There are two cases to handle.0 0 0 0 0

Ž . Ž .Case y � 0. We have 0 � x � a � b exp �r x � c exp �r x .0 0 0 0 1 0 0 2 0
Set

a b , c � �x � be�r1 x 0 � ce�r 2 x 0 .Ž . 0

Ž Ž . . Ž .Then � � ; a b, c , b, c � 0 and a , b , c can be connected within U0 0 0 0 abc
Ž . Ž .with �x , 0, 0 and thus with �1, 0, 0 .0

Case y � 0. Now we have0

0 � y � be�r1 x 0 sin r y � ce�r 2 x 0 sin r y ,Ž . Ž .0 1 0 2 0

Ž .implying without loss of generality sin r y � 0.1 0
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Set

y � ce�r 2 x 0 sin r yŽ .0 2 0r x1 0b c � eŽ .
sin r yŽ .1 0

a c � �x � b c e�r 1 x 0 cos r y � ce�r 2 x 0 cos r y .Ž . Ž . Ž . Ž .0 1 0 2 0

Ž Ž . Ž . . Ž .Then � � ; a c , b c , c � 0. Hence a , b , c is connected to0 0 0 0

cos r y y e r1 x 0Ž .1 0 0
a , b , 0 � �x � y , , 0 .Ž .1 1 0 0ž /sin r y sin r yŽ . Ž .1 0 1 0

Ž .c � 0 implies we have only one delay, so a , b , 0 in turn is connected to1 1
Ž . Ž � 	.�1, 0, 0 see 1 .

Ž . Ž . Ž .In both cases a , b , c is connected to �1, 0, 0 , and thus to �a, 0, 0 ,0 0 0
Ž .a � 0 see Lemma 1 . So U is connected and unbounded.abc

Ž .If now a , b , c � �S 
 �U , then there is a y � 0, such that0 0 0 abc abc 0
Ž . Ž .� iy � 0, and � � has no roots with positive real part. Using the curve0
Ž . Ž .� t defined above we see a , b , c � �S 
 �U , which implies0 0 0 abc abc
3 3� � S � U , � � U � S .abc abc abc abc

As a corollary we get the connectedness in the space of all parameters:

Ž 3 2 .COROLLARY 1. S and U are connected and unbounded, and � � � �
3 2Ž .� S � U, � � � � U � S.�

Proof. Proposition 1 and Lemma 1.

3. FIXED PARAMETERS a, b, c

In this section a, b, c are fixed real numbers. As already has been
mentioned, in the case of only one delay both S and U are connected, sor r
we will always assume b � 0 � c.

Ž .We shall show that U is connected and unbounded see Proposition 2 .r
Since the proof is very technical, and there are often various cases to be

looked at, we start by giving a rough sketch of the proof to come, for the
two most important cases. At the same time we introduce some notations
we shall use throughout this section.
Ž . Ž .r , r � U if the characteristic function � �; r , r has a root � with1 2 r 1 2

Ž . Ž .Re � � 0. So as usual we look at those r , r for which � ,; r , r has a1 2 1 2
purely imaginary root iy, y � 0.

Ž . Ž .We introduce new variables s , s and 	 , 
 which we shall use in the1 2
proofs to come.

As others before, define

s � r y , j � 1, 2. 2Ž .j j
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Ž .Then � iy; r , r � 0 is equivalent to1 2

0 � a � b cos s � c cos s 3Ž .1 2

0 � y � b sin s � c sin s . 4Ž .1 2

Ž . Ž . Ž .The solution s , s , y of Eqs. 3 , 4 is locally a real analytic curve, but it1 2
Ž .is not always true that s � s s or vice versa. If we rotate the s s -plane1 1 2 1 2

� Ž .by introducing new variables 	 , 
4

1 1 1 1
	 � s � s � r � r y , 
 � s � s � r � r yŽ . Ž . Ž . Ž .1 2 1 2 1 2 1 22 2 2 2

	 � 
 
 � 	
� r � , r � , 5Ž .1 2y y

Ž . Ž . Ž .then the solution to 3 , 4 expressed in terms of 	 and 
 has locally the
Ž . Ž Ž . Ž .. Ž . Ž .form 	 , 
 , y � 	 , 
 	 , y 	 ; i.e., the solution r , r , y of � iy; r , r1 2 1 2

Ž . Ž .Ž . Ž Ž . Ž . Ž .. Ž� 0 is a curve r , r , y � r , r , y 	 � r 	 , r 	 , y 	 see1 2 1 2 1 2
. Ž .Ž .Lemma 2 . We shall call it, or just the part r , r 	 , the solution curve.1 2

Ž .Abusing notation, we shall use the same name y, r , r , etc. regardless1 2
Ž . Ž . Ž .of the variables it depends on. For example, y � y s , s � y 	 , using 41 2

and expressing y as a function of s , s , or 	 , respectively.1 2
Ž .Moreover, on the left-hand side as 	 increases of such a solution

curve the corresponding root � of � satisfies Re � � 0; on the right-hand
Ž .side it is Re � � 0 for details see Lemma 2 . This means that locally the

Ž .points r , r on the left-hand side of a solution curve always belong to U .1 2 r
We shall frequently use this fact. In particular we shall use without

Ž .further comment that if a continuous curve � t consists piecewise of
Ž .Ž .solution curves r , r 	 which cross at the ‘‘glueing points’’ of �, then1 2

Ž .Ž .going parallel to these r , r 	 just within the respective left-hand sides,1 2
˜one gets a curve � arbitrarily near to � which lies entirely in U .r

Here, as in the rest of this article, when we say two curves cross each
other, we mean that they intersect non-tangentially. When we say two
solution curves can be connected within U , we mean there is a continuousr

� 	 2 Ž . Ž .curve � : � , 
 � � , such that � � , � 
 lie on both solution curves,�
Ž	 �.respectively, and � � , 
 � U .r

We need to know more in detail what the solution curves look like. To
Ž . Ž .that end we use the variables s , s and Eqs. 3 , 4 . Obviously any1 2

Ž .translates of a solution s , s by multiples of 2� in any direction are also1 2
Ž . Ž . Ž .a solution of 3 , 4 . So we only have to solve them for s , s in a suitable1 2

chosen square of length 2� .
Ž . Ž .Ž .Typically the solutions of 3 form a curve s , s t . Depending on the1 2

parameters a, b, c, this curve can essentially have one of two forms: it can
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Ž . Ž . Ž .Ž .FIG. 1. Example for case i of Lemma 3. The drawn dotted curve is s , s 	 with1 2
Ž . Ž Ž . .y 	 � 0 y 	 � 0 . Here a � b � 1, c � 1.3, n � n � 1.b c

Ž .be a closed simple curve see Fig. 1 for a typical example , or it has the
Ž . Ž Ž . .form s � s s , s � � resp. s s , see Fig. 3 for an example . Actually2 2 1 1 1 2

Ž .in the latter case there are always two such curves, namely s s and2 1
Ž . Ž . Ž .2� � s s , but defining y � y s by 4 , for one of these we have2 1 1

Ž . Ž . Ž .y s � 0 while for the other y s � 0 see Lemma 3 , which we disregard1 1
because only a positive y gives positive r , r .1 2

Ž .Ž .Similarly in the former case of a closed curve s , s t , for half of the1 2
Ž .curve the corresponding y t is positive, while for the other half it is

Žnegative. Again only the former part is of interest to us see Lemma 3 for a
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detailed list of possible cases, and some further information about the
Ž .Ž .. Ž Ž . Ž . Ž .. Ž . Ž .curves s , s t . Having a solution s t , s t , y t of Eqs. 3 , 4 ,1 2 1 2

Ž . Ž . Ž . Ž Ž . Ž . Ž ..r t � s t �y t , j � 1, 2, satisfies � iy t ; r t , r t � 0. That is, out ofj j 1 2
Ž Ž . Ž .. Ž .Ž .a curve s t , s t we get a solution curve r , r t by pointwise scaling1 2 1 2

1by .Ž .y t
Ž .Ž . Ž .Ž .The behaviour of r , r t is quite different for both cases of s , s t1 2 1 2

being either one-half of a closed curve or a function of s . We shall look at1
them separately, starting with the latter case which is the easier one.

Ž . Ž . Ž . Ž . Ž .If s � s s , y � y s is a solution of 3 , 4 with y s � 0 for all2 2 1 1 1
Ž .s � �, then r � s �y s � �, as s � �. We already mentioned that1 1 1 1 1

Ž .Ž .locally the left-hand side of any solution curve r , r t belongs to U , so1 2 r
Ž Ž . Ž ..U is unbounded. It is also connected, since for decreasing s , r s , r sr 1 1 1 2 1
Ž .eventually crosses the r -axis. But the set of r such that 0, r � U is2 2 2 r

connected, because there is only one delay.
Ž . Ž .Ž .If s , s � s , s 	 , 	 � I, is one-half of a closed simple curve, then1 2 1 2

Ž .at the endpoints of I we have y 	 � 0. This means the corresponding
Ž .Ž .solution curves r , r 	 tend to infinity, as 	 approaches an endpoint of1 2

I. The left-hand side of the solution curve belongs to U , which therefore isr
unbounded.

The more difficult part is to prove that U is connected.r
Every point in U is obviously connected to a point on the boundary ofr

Ž .U , that is, an r , r on one solution curve. Since the left-hand side ofr 1 2
these solution curves belong to U , it is sufficient to show that all solutionr
curves are connected; i.e., between any two given solution curves there is a
continuous path � connecting them, which consists piecewise of solution
curves, and at those points of � where two pieces join, the corresponding
solution curves cross each other.

This is done in Lemma 5, where we construct such continuous curves �.
1Ž .Each � intersects each straight line t � t cos �, sin � , 0 � � � � fixed,2

and the minimum of � can be chosen arbitrarily big. As already men-
Ž .Ž .tioned, the solution curves r , r 	 , 	 � I, tend to infinity as 	 ap-1 2

proaches an endpoint of I, so any two given solution curves intersect a
Ž .suitably chosen curve � see Lemma 6 .

This was roughly the proof we will present in this section.
Ž . 2As has already been said, we start by proving the set of r , r � �1 2 �

Ž .for which � �; r , r � 0 has a purely imaginary root, is locally a curve1 2
Ž .Ž . Ž .r , r 	 , and the left-hand side of it as 	 increases belongs to U .1 2 r

Ž .LEMMA 2. Assume a � b � c � 0 and � iy ; � , � � 0, y � 0,0 1 2 0
1 Ž .� , � � 0. Then there is an open inter�al I containing 	 � � � � y ,1 2 0 1 2 02

3 Ž .an open neighborhood V � � of � , � , y , and real analytic maps� 1 2 0
y, r , r : I � V, such that1 2

r 	 , r 	 , y 	 � � , � , yŽ . Ž . Ž . Ž .Ž .1 0 2 0 0 1 2 0
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Ž .and for r , r , y � V1 2

� iy ; r , r � 0 � �	 � I :Ž .1 2

r , r , y � r , r , y 	 � r 	 , r 	 , y 	 .Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 2 1 2 1 2

1 Ž Ž . Ž .. Ž .Moreo�er, we ha�e 	 � r 	 � r 	 y 	 .1 22
2 Ž .There is a neighborhood V � � of � , � , such that the cur�er � 1 2

Ž .Ž . Ž Ž . Ž ..r , r 	 � r 	 , r 	 di�ides V into two parts: the left-hand side resp.1 2 1 2 r
Ž . Ž .right-hand side as 	 increases. For r , r in the left-hand side � �; r , r1 2 1 2

Ž . Ž .has a root � � � r , r with Re � � 0; for r , r in the right-hand side we1 2 1 2
Ž . Ž .ha�e Re � � 0, if � �; r , r � 0 and Im �, r , r � V.1 2 1 2

Ž . Ž .Proof. We use the variables s , s and 	 , 
 introduced in 2 and 5 .1 2
Ž . Ž . Ž . Ž .Implicitly via � iy; r , r � 0 we define first 
 	 and y 	 , then r 	 ,1 2 j

Ž .j � 1, 2, in a neighborhood V of � , � , y . To prove the statements1 2 0
regarding V , we do the same, only allowing arbitrary complex rootsr

Ž . Ž .� � x � iy, thus getting y 	 , x , r 	 , x . Then we show that the partialj
Ž Ž . Ž ..derivative with respect to x points to the left of the curve r 	 , 0 , r 	 , 0 ,1 2

from which the conclusions follow easily.
Ž . Ž .First, note that y � 0 and � , � � 0, 0 , since a � b � c � 0.0 1 2

Ž . Ž . Ž .� iy; r , r � 0 is equivalent to g y, 	 , 
 � g y, 	 , 
 � 0, where1 2 1 2
g , g are defined by1 2

g y , 	 , 
 � a � b cos 	 � 
 � c cos 
 � 	 � Re � iy ; r , rŽ . Ž . Ž . Ž .1 1 2
6Ž .

g y , 	 , 
 � y � b sin 	 � 
 � c sin 
 � 	 � Im � iy ; r , r .Ž . Ž . Ž . Ž .2 1 2

Ž . Ž .The given solution � , � , y corresponds to 	 , 
 , y , where 	1 2 0 0 0 0 0
1 1Ž . Ž .� � � � y , 
 � � � � y . At this point we have1 2 0 0 1 2 02 2

� g � g1 1

� y �

det � y � 0,0� g � g2 2� 0

� y �


hence using the implicit-function theorem, there is an interval I and maps
y, 
 : I � � , such that 	 � I, and� 0


 	 , y 	 � 
 , y , g y 	 , 	 , 
 	 � 0, 	 � I , j � 1, 2.Ž . Ž . Ž . Ž . Ž .Ž .Ž .0 0 0 0 j

Returning to the r r -plane by setting1 2

	 � 
 	 
 	 � 	Ž . Ž .
r 	 � , r 	 �Ž . Ž .1 2y 	 y 	Ž . Ž .

Ž .Ž . Ž Ž . Ž . Ž .. Ž Ž . Ž .the map r , r , y 	 � r 	 , r 	 , y 	 satisfies � iy 	 ; r 	 ,1 2 1 2 1
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Ž .. 3 Ž .r 	 � 0, and for V � � a neighborhood of � , � , y small enough,2 � 1 2 0
Ž .Ž . Ž .r , r , y 	 , 	 � I eventually making I smaller , are the only roots of �1 2
in V.

Ž .Ž .Now we show that r , r 	 � const, which we shall need later on.1 2
Ž . Ž .Assume for a moment the opposite, i.e., r 	 � � , r 	 � � .1 1 2 2

We cannot have � � � , since then1 2

0 � � iy 	 ; � , �Ž .Ž .1 2

� a � b � c cos � y 	 � i y 	 � b � c sin � y 	Ž . Ž . Ž . Ž . Ž .Ž .1 1

Ž . Ž . Ž .would imply y 	 � const, and thus � iy; r , r � 0 for all r , r , y �1 2 1 2
�Ž .4V � � , � , y , which clearly is false.1 2 0

So assume � � � .1 2
Ž . Ž . Ž .r 	 and r 	 being constant, 5 implies 
 is a fixed multiple of 	 ,1 2

Ž Ž . Ž ..and g y 	 , 	 , 
 	 can be written explicitly as a function in 	 . This we1
shall use to get a contradiction.

Ž . Ž .Set � � � � � � � � � � 0. Then 
 � �	 , and1 2 1 2

d
0 � g y 	 , 	 , 
 	Ž . Ž .Ž .1d	

� �b 1 � � sin 1 � � 	 � c � � 1 sin � � 1 	 .Ž . Ž . Ž . Ž .Ž . Ž .
Differentiating this expression twice with respect to 	 and solving with

ŽŽ . . Ž .respect to sin � � 1 	 , we find either � � �1, which yields sin �2	
Ž .2 Ž .2� 0, or 1 � � � � � 1 � 0, which in turn gives � � 0. Both cases

Ž .Ž .cannot be, so indeed r , r 	 � const.1 2
Taking V to be the projection of V onto the last two coordinates,r

Ž .Ž .eventually making V smaller, we can assume r , r 	 , 	 � I, to divide V1 2 r
into two parts, the left-hand side respectively the right-hand side as 	
increases.

Ž .To be able to prove the statements about the roots of � .; r , r for1 2
Ž .r , r in either one of these parts of V , we have to look at how the root1 2 r

Ž . Ž . Ž Ž . Ž ..� � iy of � .; r , r evolves as r , r moves off the curve r 	 , r 	 .1 2 1 2 1 2
More specifically we need to know how the real part x of � changes. So
we make the same change of variables as before, only incorporating the

Ž . Ž .real part x of �: r , r , x, y becomes 	 , 
 , x, y .1 2
Ž . Ž . Ž . ŽDefine g x, y, 	 , 
 � Re � x � iy; r , r , g x, y, 	 , 
 � Im � x �1 1 2 2

.iy; r , r , i.e.,1 2

x xŽ . Ž .� 	�
 � 
�	y yg x , y , 	 , 
 � x � a � be cos 	 � 
 � ce cos 
 � 	Ž . Ž . Ž .1

x xŽ . Ž .� 	�
 � 
�	y yg x , y , 	 , 
 � y � be sin 	 � 
 � ce sin 
 � 	 .Ž . Ž . Ž .2

Ž .Then, with the same reasoning as above, we get maps y, r , r : I � U 0 �1 2
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Ž . Ž .Ž . Ž .Ž .� , U 0 � � an open interval, such that r , r , y 	 , 0 � r , r , y 	� 1 2 1 2
Ž Ž . Ž . Ž ..as defined above, and � x � iy 	 , x , r 	 , x , r 	 , x � 0.1 2

We claim that the scalar product between the normal of the curve
Ž .Ž .r , r 	 pointing into the left-hand side of V , and the partial derivative1 2 r
Ž .� r , r �� x is positive for at least one point on the dividing curve1 2

Ž .Ž . Ž Ž . Ž ..r , r 	 � r 	 , 0 , r 	 , 0 .1 2 1 2
Ž .This means there is at least one point r , r in the left-hand side of V ,˜ ˜1 2 r

Ž . Ž .for which the root � of � .; r , r with r , r , Im � � V satisfies Re � �˜ ˜ ˜ ˜1 2 1 2
Ž .0. Since we know by construction that for r , r , y � V not on the1 2

Ž .Ž . Ž .dividing curve r , r 	 , there is no root � � iy of � .; r , r , the1 2 1 2
conclusion follows for the left-hand side, and analogously also for the
other one.

To prove the claim, we need the partial derivatives of r , r .1 2
Ž Ž . Ž ..Differentiating g x, y 	 , x , 	 , 
 	 , x , j � 1, 2, with respect to 	 andj

x and solving with respect to the various partial derivatives, a tedious but
straightforward calculation yields

� y 2bc
	 , 0 � � sin 2	Ž . Ž .0 0�	 y0

�
 1
	 , 0 � �b sin � y � c sin � yŽ . Ž . Ž .Ž .0 1 0 2 0�	 y0

� y �1
2 2	 , 0 � a � � b � � c � � � � bc cos 2	Ž . Ž . Ž .Ž .0 1 2 1 2 0� x y0

7Ž .

�
 1
	 , 0 � 1 � � b cos � y � � c cos � y .Ž . Ž . Ž .Ž .0 1 1 0 2 2 0� x y0

Ž .Using these equations in the definitions of r 	 , j � 1, 2, and keeping inj
Ž . Ž .mind g 0, y , 	 , 
 � g 0, y , 	 , 
 � 0, a simple calculation shows1 0 0 0 2 0 0 0

� r 2c1
	 , 0 � sin � y � � b sin � � � yŽ . Ž .Ž .0 2 0 1 1 2 02�	 y0

� r 2b2
	 , 0 � �sin � y � � c sin � � � yŽ . Ž .Ž .0 1 0 2 1 2 02�	 y0

� r 11
	 , 0 � 1 � � b cos � y � � c cos � yŽ . Ž0 1 1 0 2 2 02� x y0

�� a � � b2 � � c2 � � � � bc cos � � � yŽ . Ž .Ž . .1 1 2 1 2 1 2 0
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� r 12
	 , 0 � 1 � � b cos � y � � c cos � yŽ . Ž0 1 1 0 2 2 02� x y0

�� a � � b2 � � c2 � � � � bc cos � � � y .Ž . Ž .Ž . .2 1 2 1 2 1 2 0

Ž .Keeping in mind � iy ; � , � � 0, another tedious but straightforward0 1 2
calculation shows

� r 	 , 0Ž .1 0

� r 	 , 0 � r 	 , 0Ž . Ž . � x2 0 1 0� ,
� r 	 , 0Ž .ž / 2 0�	 �	 � 0

� x

2 22 � g 0, y , 	 , 
 � g 0, y , 	 , 
Ž . Ž .1 0 0 0 2 0 0 0� � � 0. 8Ž .3 ž / ž /ž /� x � xy0

In other words, the scalar product between the normal to the curve
Ž .Ž . Ž .r , r 	 , 0 pointing to the left-hand side of V and � r , r at the point1 2 r x 1 2
Ž . Ž .r , r � � , � is never negative.1 2 1 2

Ž .We have only to show that in 8 we have a strict � for at least one
Ž .Ž .point r , r 	 on the dividing curve.1 2

Assume this to be false. Then for all 	 � I we have

� g � g1 2
0, y 	 , 	 , 
 	 � 0, y 	 , 	 , 
 	 � 0.Ž . Ž . Ž . Ž .Ž . Ž .

� x � x

But by definition of g , g , this means1 2

��
iy 	 ; r 	 , r 	 � � � iy 	 � 0.Ž . Ž . Ž . Ž .Ž .Ž .1 2��

Ž . Ž .Ž .So we have for r , r , y � r , r , y 	1 2 1 2

0 � y � b sin r y � c sin r y Im � � 0Ž .1 2

0 � r b sin r y � r c sin r y Im � � � 0Ž .1 1 2 2

0 � 1 � r b cos r y � r c cos r y Re � � � 0 .Ž .1 1 2 2

Setting s � r y and s � r y, we get the following equivalent set of1 1 2 2
equations:

y � b sin s � c sin s �1 2

0 � s b sin s � s c sin s1 1 2 2 9Ž .
0 � b sin s � s cos s � c sin s � s cos s .Ž . Ž .1 1 1 2 2 2
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Ž .s and s are functions of 	 . Differentiating the last equation in 9 , we1 2
have

0 � b sin s � s cos s s� � c sin s � s cos s s�Ž . Ž .1 1 1 1 2 2 2 2
10Ž .� �0 � bs sin s s � cs sin s s .1 1 1 2 2 2

Ž . Ž .Using the second equation of 9 and the last of 10 , we get 0 �
Ž � � .cs sin s s � s . sin s � 0 implies sin s � 0, and thus y � 0, which we2 2 2 1 2 1

know not to be. So s� � s� follows. If s� � s� � 0, then y� � 0 too, hence1 2 1 2
� Ž . � Ž .r � s �y � � 0 � r , but we know already r , r � const. So we arrive at1 1 2 1 2

0 � b sin s � s cos s � c sin s � s cos s ,Ž . Ž .1 1 1 2 2 2

Ž .and with the last equation of 9 , 0 � 2b sin s � 2c sin s , hence y � 0, a1 2
contradiction.

This proves the claim and completes the proof of the lemma.
Given the problem of joining two given points in U , with Lemma 2 it isr

sufficient to find a connecting curve � which consists partially of parts of
Ž .Ž .solution curves r , r 	 . This is so because where such a � coincides1 2

with a solution curve, one can shift it a little bit onto the left-hand side of
the solution curve, and the resulting � lies indeed totally within U .˜ r

This is even possible if � is locally one solution curve glued to a second
Ž .one, if both cross � intersect non-tangentially at this point, as we have

already mentioned at the beginning of this section.
Ž . Ž . Ž .The set of s , s which solves Eqs. 3 and 4 for a suitable y � 0 is a1 2

Ž .Ž .curve s , s t , t � I. The following lemma lists all possible cases with1 2
Ž .Ž .respect to the behaviour of this curve s , s t .1 2

Ž . Ž .Ž .Roughly speaking, in its case i , s , s t is one-half of a closed simple1 2
Ž .curve, where the corresponding y t becomes 0 at the endpoints. See also

Ž .Ž .Fig. 1 for a typical example of s , s t . Figure 2 depicts corresponding1 2
Ž .Ž . Ž . Ž .curves r , r t ; the notation is as defined in 17 . In case ii one variable1 2

Ž . Ž .is a function of the other one, e.g., s � s s , y � y s , and both2 2 1 1
functions are 2�-periodic. A typical example is shown in Fig. 3, and in Fig.

Ž .Ž . Ž .4 one finds corresponding curves r , r t . Case iii is an intermediate1 2
Ž . Ž . Ž .one. One can still write, e.g., s s , but where in ii always y s � 0, now2 1 1

Ž . Ž .y s � 0 occurs. Examples of s s and the corresponding curve1 2 1
Ž Ž . Ž .. Ž .r s , r s are shown in Figs. 5 and 6. Case iv is the very special case1 1 2 1

Ž .where the solutions of 3 form squares in the s s -plane, and on two sides1 2
of a square the corresponding y is equal to 0.

In Lemma 3 we shall speak of the first, . . . , fourth quadrant with respect
to a center point p. With this we mean the first, . . . , fourth quadrant
Ž . Ž .counting as usual of the local Cartesian coordinate system with origin
in p.

LEMMA 3. Assume a � b � c � 0.
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Ž . Ž .Ž . Ž .FIG. 2. Various solution curves R 	 , for s , s 	 as in Fig. 1. Here n , n �n , n 1 2 1 21 2
Ž . Ž . Ž . Ž .1, 0 , 0, 0 , 0, 1 . The thick line is an example of how � t of Lemma 5 could look like. U isr
above it.

Ž . Ž .Depending on the parameters a, b, c, the solutions s , s , y to Eqs. 31 2
Ž .and 4 , with y � 0, have the following form:

Ž . 	 � � 	 � � � � � � � 4 Ž .i b � c � a � b � c . Let n , n � 0, 1 be defined by 12b c
below.

� 	 	ŽThere exist an interval I � � , 
 , functions y: I � � , s : I � n �� 1 b
. Ž . � 	Ž . Ž . �1 � , n � 1 � , s : I � n � 1 � , n � 1 � , such that every solutionb 2 c c
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Ž . Ž .FIG. 3. Example for case ii of Lemma 3. The curve is s s , where a � b � 1, c � 2.3,2 1
n � 1.c

Ž .s , s , y can be written1 2

s , s , y � s 	 � 2n � , s 	 � 2n � , y 	 ,Ž . Ž . Ž . Ž .Ž .1 2 1 1 2 2

	 �a	 � � , 
 and n , n � �.1 2
Ž . Ž . Ž . 	 � Ž Ž . Ž ..Moreover, y � � y 
 � 0, y 	 � 0 for 	 � � , 
 . s 	 , s 	1 2

starts in the second and ends in the fourth quadrant with respect to the
Ž . Ž . Ž Ž . Ž ..center n � , n � , but n � , n � � s 	 , s 	 , for all 	 � I.b c b c 1 2

Ž Ž . Ž ..s I , s I intersects each local axis s � n � and s � n � once.1 2 1 b 2 c
Ž .Note that here 	 is that variable defined in 5 .
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1Ž Ž . Ž .. Ž Ž . . Ž .FIG. 4. Various solution curves r s , r s � s , s s � 2n � , where s s is asŽ .1 2 1 2 1 2 2 1y s

in fig. 3. Here n � 0, 1.2

Ž . � � 	 � � 	 � � � � � �ii a � b � c . If a � c � b , then there are 2�-periodic func-
Ž .tions s , y: � � �, such that every solution s , s , y can be written2 1 2

s , s , y � s , s s � 2n � , y s ,Ž . Ž . Ž .Ž .1 2 1 2 1 2 1

Ž . Ž .an n � �. y s � 0, and s s � �� , for all s � �.2 1 2 1 1
� � � � � �An analogous statement holds for the case a � b � c exchanging s1

and s .2

Ž . � � 	 � � 	 � 4 Ž .iii 0 � a � b � c . Let n , n � 0, 1 be defined as in Eq. 12b c
below.
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Ž . Ž .Ž .FIG. 5. Example for case iii of Lemma 3. The curve is s , s s , where a � �1, b � 1,1 2
c � 2, n � n � 0.b c

� � � � � � �Ž . Ž . 	If a � c � b , let I � n � 1 � , n � 1 � . There are functions y:b b
�Ž . Ž . 	I � � , s : I � n � 1 � , n � 1 � , such that every solution� 2 c c

Ž .s , s , y can be written1 2

s , s , y � s � 2n � , s s � 2n � , y s ,Ž . Ž . Ž .Ž .1 2 1 2 2

	Ž . Ž . �an s � n � 1 � , n � 1 � , n , n � �.b b 1 2
ŽŽ . . ŽŽ . . ŽŽ . . ŽŽMoreover, y n � 1 � � y n � 1 � � 0, s n � 1 � � s n �b b 2 b 2 b

. . 	Ž . Ž . � Ž .1 � � n � , and for s � n � 1 � , n � 1 � we have y s � 0 andc b b
Ž . 	Ž . Ž . � � 4s s � n � 1 � , n � 1 � � n � .2 c c c
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Ž . Ž .Ž .FIG. 6. Various solution curves R s for s , s s as in Fig. 5. The dotted lines aren , n 1 21 2
Ž . Ž . Ž . Ž .the asymptotics for these solution curves. Here n , n � 0, 0 , 1, 0 , 2, 0 .1 2

� � � � � �An analogous statement holds for the case a � b � c exchanging s1
and s .2

Ž . Ž .n0iv a � 0, b � �1 c. Let n � sign b.b
� Ž . 	There are functions s , s , y: n � , n � 1 � � �, such that every1 2 b b

Ž .solution s , s , y can be written1 2

s , s , y � s � 2n � , �s � n � 1 � 2n � , y s ,Ž . Ž . Ž .Ž .1 2 1 0 2

	 Ž . � Ž . ŽŽ . .an s � n � , n � 1 � , n , n � �. y n � � y n � 1 � � 0.b b 1 2 b b
� � � � � � Ž . Ž .For a � b � c there is no solution of 3 and 4 with positive y.
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Ž . Ž .Note that if in case iv we define n � sign c, then as in case i , we canc
Ž . Ž . Ž Ž . Ž ..also say in cases iii and iv that s 	 , s 	 starts in the second and1 2

Ž .ends in the fourth quadrant with respect to the center n � , n � , withoutb c
Ž .passing through n � , n � .b c

Ž . Ž . Ž . Ž . Ž .Defining r t � s t �y t , j � 1, 2, using the functions s t , y t givenj j j
in Lemma 3, we have a parametrization of a solution curve which is

Ž Ž . .different from that in Lemma 2 with the exception of case i above .
However, both parametrizations have the same orientation. Hence we can

Ž .speak of the left- right- hand side of a solution curve, given either by
Lemma 2, or defined via Lemma 3.

Ž . Ž .Proof. After a short calculation, Eqs. 3 , 4 yield

y2 � b2 � c2 � a2 � 2bc cos s � s � b2 � c2 � a2 � 2bc cos 2	 .Ž . Ž .1 2

11Ž .

Ž . Ž . Ž . ŽIt is obvious that s , s , y solves Eqs. 3 and 4 iff s � 2n � , s �1 2 1 1 2
.2n � , y solves these equations, for all n , n � �.2 1 2

� � � � � � Ž . Ž .If a � b � c , then there are no solutions to Eqs. 3 and 4 with
y � 0. The remaining cases can be divided as in the conclusion of the
lemma.

	 � � 	 � � � � � �Case i. b � c � a � b � c .
Define

0 if ab � 0 0 if ac � 0n � n � 12Ž .b c½ ½1 if ab � 0 1 if ac � 0.

Ž .For the whole proof of case i we shall always assume

s , s � n � 1 � , n � 1 � � n � 1 � , n � 1 � .Ž . Ž . Ž . Ž . Ž .1 2 b b c c

The conclusions of the lemma will be shown by combining the two
Ž . Ž .representations we have for solutions s , s , y of 3 , 4 , namely s , s , and1 2 1 2

Ž .	 , 
 as defined in 5 , and the explicit formulas

a � b cos s a b a b1 � 	cos s � � � � � , � � 
 � , 
 , 13Ž .2 1 1c c c c c

y � b sin s � c sin s 14Ž .1 2

we get from these equations.
Ž . Ž .First we show that the solutions s , s of Eq. 3 form a closed simple1 2

curve in the interior of the above mentioned square.
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Ž . Ž .Equation 3 is equivalent to 13 . A straightforward calculation shows
� � �1 � 
 � 1, if ac � 0, and �1 � � � 1 � 
 , if ac � 0.1 1 1 1

	Ž . Ž . �Note that this proves s � n � 1 � , n � 1 � , and analogously s2 c c 1
	Ž . Ž . �� n � 1 � , n � 1 � .b b

˜Ž . Ž .So for suitably chosen n � 1 � � a � b � n � 1 � , we get a func-˜b b
˜Ž . � 	 Ž . Ž . Ž .tion s s , s � a, b , defined by 13 , such that s , s solves 3 iff˜2 1 1 1 2

˜Ž . Ž . Ž . Ž .modulo multiples of 2� s � �s s , and s a � s b � n � . That is,˜2 2 1 2 2 c
Ž .the set of solutions of 3 is a closed simple curve S.

Ž .Note that S intersects the axis s � n � resp. s � n � exactly twice,1 b 2 c
Ž . Ž .once with s � n � s � n � , and once with s � n � s � n � , and2 c 1 b 2 c 1 b

Ž Ž ..for exactly one of these intersections y � 0 is true see 4 .
We are interested only in those parts of S for which the corresponding

Ž .y in 14 is positive.
Ž . Ž .As in the proof of Lemma 2, whenever y � y s , s � 0, y as in 14 , we1 2

Ž .can locally define 
 and y as a function of 	 , thus expressing s and s1 2
Ž . Ž .as functions of 	 too: s � s 	 , y � y 	 , j � 1, 2.j j

Ž Ž j.Ž . Ž j.Ž .So S can be covered by curves s 	 , s 	 , 	 � I , j � J, leaving1 2 j
Ž j.Ž .only those s , s for which y � 0. The corresponding y 	 for each of1 2

Ž j.Ž . Ž j.Ž . Ž j.Ž .these curves satisfies either y 	 � 0 or y 	 � 0, and y 	 � 0,
as 	 approaches an endpoint of I .j

We shall prove

Ž . Ž j.�Ž . Ž Ž . Ž ..1 y 	 � 0, if the corresponding s 	 , s 	 lies in the sec-1 2
ond or fourth quadrant.

Ž . Ž . Ž .2 y s , s � 0, if s , s lies in the first or third quadrant.1 2 1 2

Ž . Ž . Ž . Ž .3 If y s , s � 0, for s , s in the first resp. third quadrant,1 2 1 2
Ž . Ž . Ž .then y s , s � 0, for s , s in the third resp. first quadrant.1 2 1 2

Ž . Ž . Ž .The claims 1 and 2 , S crossing each local axis twice, and that the
� Ž .	
-plane is the s s -plane rotated by plus a contraction , prove that1 2 4

Ž Ž j.Ž . Ž j.Ž ..each curve s 	 , s 	 , 	 � I , starts in the second quadrant and1 2 j
� 4ends in the fourth. That is, there are only two such curves: J � 1, 2 . By

Ž . Ž .claim 3 exactly one of these gives positive y 	 .
Before proving the claims, let us show how the remaining conclusion

follows.
Ž . Ž . Ž .If s � � n� , an n � �, then y � � 0 implies s � � m� , m � �.1 2

Ž .But then Eq. 3 shows 0 � a � b � c, for suitably chosen signs, which
Ž Ž . Ž .. Ž .cannot be. Thus s 	 , s 	 does not pass through the center n , n � .1 2 b c

Ž . Ž . Ž .There remains only to prove the claims 1 , 2 , and 3 .
Ž j. Ž j.Ž . Ž j. Ž j.Ž .Let s � s 	 , y � y 	 , 	 � I , i � 1, 2, j � J, be given.i i j
Ž . Ž j.�Ž . Ž Ž j. Ž j.. Ž j. Ž j.By Eq. 11 , y 	 � 0 only if sin s � s � 0, i.e., s � s � n� ,1 2 2 1

Ž Ž j. Ž j..an n � �. For s , s in the second or fourth quadrant, this means1 2
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Ž j. Ž j. Ž . Ž .s � s � n � n � 1 � . Inserting this into 3 , we get2 1 c b

n �n �1 Ž j. Ž j.c b � � � �0 � a � b � �1 c cos s � a � b � c cos s ,Ž . Ž .Ž . 1 1

� � 	 � � 	which can only happen for a � b � c �. This proves the first claim.
Ž .Now for s , s in the first or third quadrant1 2

� � � �b sin s � c sin s � �sign a b � c ,Ž .1 2

where the sign in the right-hand side depends on the quadrant, and is
Ž . Ž .different for both. y � 0 follows, and claims 2 and 3 have been proven.

� � � � � � � � � � � � � �Case ii. a � b � c . We assume a � c � b , the other case being
symmetrical.

Ž .For any solution of � iy � 0 we have

� � � �a � b cos r y a � b1 � � 1,
� �c c

so for s � �, we can define s and s by1 �2 �2

�a � b cos s1
s s , n � 2n� � arccosŽ .� 2 1 c

	 � � 4� 2n � 1 � , 2n � 1 � � 2n� 15Ž . Ž . Ž .

Ž . Ž . Ž .for n � �, and Eqs. 3 , 4 are equivalent to s � s s , n , and y � y2 � 2 1 �
or y � y defined by�

y s � b sin s � c sin s s , n .Ž . Ž .� 1 1 � 2 1

Ž . Ž . Ž .Note that y s is indeed independent of n, and s ., n and y . are� 1 � 2 �

Ž .2� periodic functions. Given the conditions on a, b, c in this case, Eq. 11
Ž . Ž .shows y s � 0 for all s � �. Choose the sign in 15 , so that y� 1 1

Ž . Ž .becomes positive. Fix n and call the resulting functions s s and y s .2 1 1
They satisfy the conclusions.

� � 	 � � 	Case iii. 0 � a � b � c . We assume without loss of generality
� � � � � �a � c � b .

Ž . Ž .As in Case 2, we can define s s , n , y s , the only difference being� 2 1 � 1
ŽŽ . . ŽŽ . . Ž .that now s n � 1 � � �� , and y n � 1 � � 0, n as in 12 .� 2 b � b b

Ž . Ž .Letting n as in 12 , choosing sign and n � � in 15 suitably, and callingc
Ž . Ž .the resulting functions s s resp. y s , we get2 1 1

s n � 1 � � n � , y n � 1 � � 0Ž . Ž .Ž . Ž .2 b c b
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	Ž . Ž . �and for s � n � 1 � , n � 1 �1 b b

	 � � 4s s � n � 1 � , n � 1 � � n � , y s � 0.Ž . Ž . Ž . Ž .2 1 c c c 1

Ž .n0 Ž . Ž .Case iv. a � 0, b � �1 c. Equations 3 and 4 become
n00 � cos s � �1 cos sŽ .1 2

n0y � b sin s � �1 sin s .Ž .Ž .1 2

Ž .Thus 3 is equivalent to
m

s � �1 s � n � 1 � 2n � ,Ž . Ž .2 1 0

� 4 Ž .an m � 0, 1 , n � �, and 4 gives
m

y � b 1 � �1 sin s .Ž .Ž . 1

Only m � 1 gives positive y. The conclusions follows immediately.

� 	For s , s , y: I � � , 
 � � as in Lemma 3, and n , n � �, define the1 2 1 2
translated curve � : I � �2 byn , n1 2

� 	 � s 	 � 2n � , s 	 � 2n � , 16Ž . Ž . Ž . Ž .Ž .n , n 1 1 2 21 2

	 � 2and the corresponding solution curve R : � , 
 � � byn , n1 2

s 	 � 2n � s 	 � 2n �Ž . Ž .1 1 2 2Žn . Žn .1 2R 	 � r 	 , r 	 � , .Ž . Ž . Ž .Ž .n , n 1 21 2 ž /y 	 y 	Ž . Ž .
17Ž .

Ž . 2 2 � 4LEMMA 4. Let p � p , p � � 
� , n , n � � � 0 , and �1 2 � 0 1
�	 �� 0, . Then there are n , m � �, n � n or m � n , and the half-line2 2 2 1 2 12

Ž . Ž . �Ž . 2 �Ž .g t � t cos � , sin � , t � 0, intersects the disc x , x � � : x , x �� 1 2 1 2
1ŽŽ . Ž . . � 4p � 2n � , p � 2m � � .1 2 2 2 n0

Proof. Is it sufficient to show that for arbitrary � , p , p , n , n as1 2 0 1
above, there are a t � 0, n, m � �, n � n , or m � n , and1 1

12 2t� � p � n � t � p � m � . 18Ž . Ž . Ž .1 2 2n0

Ž .Let N � �, such that Np , Np � �, and set t � p � m. Then 181 2 2
follows from

p � n Np � Nn 11 1
� � � � � � .

p � m Np � Nm N p � m nŽ .2 2 2 0
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ŽThis inequality has infinitely many solutions see, e.g., Hurwitz Theorem
� 	.7, p. 133 , which proves the lemma.

	 � � 	 � � � � � �LEMMA 5. Let a � b � c � 0, b � c � a � b � c , and k � 0.0
1Ž . Ž . 	 �Let g t denote the half-line t � t cos �, sin � , t � 0, � � 0, � . Then� 2

˜ ˜ 2Ž . 	 � Ž .there is a continuous cur�e � t : I � � , 
 � � , such that � t intersects˜ �
1	 �g , for all � � 0, � .� 2

Ž . Ž Ž . Ž ..Moreo�er, locally either � t is part of a solution cur�e r 	 , r 	 from1 2
Lemma 2, or two solution cur�es which cross each other.

2 Ž .Proof. If we say in this proof a point p � � lies on the left right of�
2 Ž .the straight line g , we mean p lies in that component of � �g �� � � �

Ž . ŽŽ . .which contains 0, 1 1, 0 resp. .
Ž .The curve � t of the conclusion will be constructed by glueing together

Ž . Ž .parts of solution curves R 	 see Fig. 2 for a simple example . Theren , n1 2
Ž .are some restrictions as to which n , n can be used for this, so we define1 2

an admissible set of indices

N � n , n � �2 : � 	 � �2 ,Ž . Ž .� 1 2 n , n �1 2

� �� 	 � k max y s : s � I , 	 � IŽ . Ž .Ž . 4n , n 01 2

Ž . Ž . 2which assures R 	 �and hence � t too�to lie in � and we haven , n �1 2
� Ž . �absolute values R 	 � k .n , n 01 2

Ž .The fundamental idea is to define � t by setting it equal to the ‘‘first’’
Ž . Ž .intersection of g with a solution curve R 	 , n , n � N.Ž1�2.��t n , n 1 21 2

Unfortunately it does not work that simply, the main problem being that
tangential intersections between different solution curves might occur.

The way to avoid this difficulty is to restrict ourselves to intersections
Ž . Ž .between solution curves R 	 , n , n � N, with straight lines g , forn , n 1 2 �1 2

Ž .which R 	 starts left of and ends right of g . With this restriction,n , n �1 2
Ž .loosely stated, � t consists of those parts of solution curves, which are

‘‘first intersections’’ for the appropriate g plus the adjoining parts of�

every such solution curve until its crossing with the next one.
The proof is organized in a series of claims. But before we state these,

we give two definitions we shall need further on.
Ž . 	 Ž . Ž .�For given n , n � N define the interval � n , n , � n , n of1 2 1 1 2 2 1 2

Ž . Ž Ž ..angles �, for which � 	 or R 	 starts left of and ends right ofn , n n , n1 2 1 2
Ž . Ž . Ž Ž ..g , by letting � n , n , j � 1, 2, be such that � � � 
 lies on� j 1 2 n , n n , n1 2 1 2

Ž .g g , respectively.� Žn , n . � Žn , n .2 1 2 1 1 2

Note that by Lemma 3 and the choice of N we have indeed 0 �
1Ž . Ž .� n , n � � n , n � � .1 1 2 2 1 2 2

1	 � Ž . Ž .Ž .For each � � 0, � define the index n , n � n , n � � N of1 2 1 22
Ž . Ž .the ‘‘first intersection’’ of an R 	 with g , as the unique n , nn , n � 1 21 2
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satisfying

Ž . Ž . Ž .i � n , n � � � � n , n .1 1 2 2 1 2

Ž . Ž . Ž .ii If for each n , n � N we define t � t n , n , j � 1, . . . , p �˜ ˜ ˜ ˜1 2 j j 1 2
Ž .p n , n , by˜ ˜1 2

	 �R � , 
 
 g � � g t , . . . , g t ,Ž . Ž .Ž . � 4Ž .n , n � � � 1 � p˜ ˜1 2

then

� � � �min g t n , n : j � 1, . . . , p n , n � inf g t n , n :Ž . Ž . ˜ ˜Ž .Ž . Ž .Ž . ž� j 1 2 1 2 � j 1 2

n , n � N , � n , n � � � � n , n , j � 1, . . . , p n , n .Ž . Ž .˜ ˜ ˜ ˜Ž . Ž . /1 2 1 1 2 2 1 2 1 2

Ž . Ž . Ž . Ž .Ž .If more than one n , n satisfies i and ii , let n , n � be the1 2 1 2
Ž 2 .minimal one of these using any order on � .

Ž .By the following claim 1 , there is always an intersection between a
Ž .Ž .given line g and a solution curve, so n , n � is well defined.� 1 2

1	 � �Ž .Claim 1. For each � � 0, � there is an infinite set N � n , n �� 1 22
Ž . Ž .4 Ž .N: � n , n � � � � n , n , such that for all n , n � N , g inter-1 1 2 2 1 2 1 2 � �

Ž .sects � 	 .n , n1 2

1	 �Claim 2. For all � � 0, � there exists an � � 0, such that0 2

� n , n � : � � � � � � � � 1,� 4Ž . Ž .1 2 0 0

� n , n � : � � � � � � � � 1.� 4Ž . Ž .1 2 0 0

1� 	Claim 3. For each � � 0 the interval � , � � � can be covered by2
� 	 Ž .finitely many intervals a , b , a � b , i � 1, . . . , p � p � , such thati i i i

	 � 	 � Ž .Ž . Ž Ž i. Ž i.. 	 �a , b 
 a , b � �, and n , n � � n , n , for all � � a , b , for alli i j j 1 2 1 2 i i
possible i � j.

Ž .Before we prove these claims, let us construct � t using them.
Ž .We construct first a � t , � � 0 small, which only intersects g for� �

Ž .certain �, then extend it by letting � � 0 to get � t .
� 	Let � � 0 be small. By Claim 3 there are a , b , i � 1, . . . , p, such thati i

p
1 	 � 	 �J � � , � � � , a , b 
 a , b � �, i � j, i , j � 1, . . . , p ,� i i i j j2

i�1

Ž .Ž . Ž Ž i. Ž i.. 	 �and n , n � � n , n , for � � a , b .1 2 1 2 i i
Without loss of generality assume b � a , i � 1, . . . , p � 1. By con-i i�1

Ž Ž .Ž .. Ž . Ž .Ž i. Ž i.struction definition of n , n � , R 	 is asymptotic as 	 � 
 to1 2 n , n1 2
Ž . Ž .Ž i�1. Ž i�1.a line g , where � � b , and R 	 asymptotic as 	 � � to a line� i n , n1 2

g , where � � a � b . This means these two solution curves cross each� i�1 i
other. Denote this intersection by RŽ i. � �2 .�
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Ž . Ž .Ž i. Ž i.Now let � t just consist of those parts of the curves R 	 , whichn , n1 2

lie between two consecutive intersection points RŽ i. and RŽ i�1., i �
1, . . . , p � 2.

Ž . � Ž . �The resulting � t is continuous, � t � k , and it intersects g at� � 0 �

� Ž Ž2. Ž2.. Ž Ž p�1. Ž p�1..	least for � � � n , n , � n , n .1 1 2 2 1 1
1	 �Letting � � 0, and starting with a countable covering of 0, � from2

1� 	 Ž .which we choose the finite ones for � , � � � , we get an extension � t2
Ž .of the above constructed � t which satisfies the conclusions of the�

lemma.
There remain the proofs of the three claims.

Proof of Claim 1. This claim follows from the particular structure of
Ž .Ž .the curve s , s 	 from Lemma 3, which allows us to reduce the1 2

problem to that of intersections of straight lines with a certain disk, and
Lemma 4 which proves there are infinitely many solutions to the latter
problem.

Ž . Ž .First we show that there is an n � n � � �, such that if n , n � N,0 0 1 2
1ŽŽ . . Žand g intersects the disk B n � 2n , n � 2n � ; with center n �� b 1 c 2 bn0

1. Ž .2n , n � 2n � and radius , then g intersects � 	 too.1 c 2 � n , nn0 1 2
Ž . Ž . Ž . ŽBy Lemma 3 i , iii , and iv resp. the comment after the lemma, and

. Ž .Ž .the notation thereof s , s 	 , 	 � I, starts in the second and ends in1 2
Ž .the fourth quadrant, but it does not pass through its center n , n � .b c

Ž . Ž . Ž .So for a small enough s , s , the straight line t � s , s � n , n �ˆ ˆ ˆ ˆ1 2 1 2 b c
Ž . Ž .Ž .� t cos �, sin � intersects s , s 	 . In other words, there is an n � �,1 2 0

ŽŽ . .such that all straight lines intersecting the disk B n , n � ; 1�n andb c 0
Ž .Ž . Ž .being parallel to g intersect s , s 	 too. � 	 is just the translated� 1 2 n , n1 2 1Ž .Ž . ŽŽ . .s , s 	 , so if g intersects B n � 2n , n � 2n � : it intersects1 2 � b 1 c 2 n0

Ž .� 	 too.n , n1 2
Ž .Ž .Since s , s 	 starts in the second and ends in the fourth quadrant,1 2

Ž .� 	 starts left and ends right of g .n , n �1 2

Now an easy application of Lemma 4 proves Claim 1.

Proof of Claim 2. We only prove the first statement, the second follows
by symmetry.

Assume the first statement does not hold. Then there is a sequence
� �� such that for all j � �j 0 0

� n , n � : j � j � 2. 19Ž . Ž . Ž .� 41 2 j 0

ŽŽ .Ž .. ŽŽ .Ž ..By definition, for j big enough, � n , n � � � � � n , n � ,1 1 2 0 j 2 1 2 0
hence

� �min g t n , n � : l � 1, . . . , p n , n �Ž . Ž . Ž . Ž .Ž . Ž .½ 5Žj l 1 2 j 1 2 j
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� �� min g t n , n � : l � 1, . . . , p n , n � .Ž . Ž . Ž . Ž .� 4Ž . Ž .Ž0 l 1 2 0 1 2 0

Ž .Since only finitely many R 	 intersect any given finite disk, for everyn , n1 2
Ž .j � � the set in 19 is finite. This in turn implies there are at least two0

Ž . Ž .distinct n , n � N, such that the corresponding solution curves R 	1 2 n , n1 2

intersect each other infinitely often within a finite region, which cannot be,
because there are analytic curves.

1	 �Proof of Claim 3. By Claim 2, for every � � 0, � there is a neigh-0 2
1Ž . 	 �borhood U � � 0, � such that0 2

� n , n � : � � U � � 3.� 4Ž . Ž . Ž .1 2 0

1� 	 Ž .� , � � � can be covered by finitely many of these. But since each U �02
Žitself can be divided into at most two intervals plus eventually the point

� 4. Ž .Ž .� , on each of which n , n � is constant, the claim follows easily.0 1 2
This closes the proof of Lemma 5.

	 � � 	 � � � � � �LEMMA 6. Let a � b � c � 0, b � c � a � b � c , s , s , y: I �1 2
� 	 Ž .� , 
 � � be the functions from Lemma 3, and, for k � 0, � t the cur�e0

Ž . Ž . Ž . Ž .from Lemma 5. Let � 	 and R 	 be defined by 16 and 17 .n , n n , n1 2 1 2
Ž Ž0. Ž0.. Ž . 2 	 �Ž0. Ž0.Let n , n be gi�en such that � I 
 � � �. Then for 	 � � , 
1 2 n , n �1 2

R Ž0. Ž0. 	 � r ŽnŽ0.
1 . 	 , r ŽnŽ0.

2 . 	Ž . Ž . Ž .Ž .n , n 1 21 2

s 	 � 2nŽ0.� s 	 � 2nŽ0.�Ž . Ž .1 1 2 2� , ,ž /y 	 y 	Ž . Ž .

˜Ž . Ž . Ž .crosses � t , or it can be connected by a cur�e � t � U to � t , for a k bigr 0
enough.

Ž . 2 Ž . 2 Ž .Ž0. Ž0. Ž0. Ž0. Ž0. Ž0.Proof. If � � � � or � 
 � � , then R 	n , n � n , n � n , n1 2 1 2 1 2

Ž Ž Ž0. Ž0..asymptotically approaches a straight line g namely � � � n , n , an� j 1 2
1� 4 .j � 1, 2 , as defined in the proof of Lemma 5 , where 0 � � � � . Hence2

Ž . Ž � Ž . � 	 �.Ž0. Ž0.it crosses � t , if k � inf R 	 : 	 � � , 
 .0 n , n1 2
Ž .Ž0. Ž0.There remains the case that � 	 starts and ends on an axis, orn , n1 2

crosses it, that is,

� Ž0. Ž0. � , � Ž0. Ž0. 
 � �2 . 20Ž . Ž . Ž .n , n n , n �1 2 1 2

˜Define � � � � 
 � 
 by˜

˜ 2	 �Ž0. Ž0.� � , 
 � � ,˜Ž .n , n �1 2

˜	 � Ž Ž .and � , 
 is maximal. Note that by Lemma 3, � 	 can intersect each˜ n , n1 2
.axis at most once.
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˜Ž . Ž� 	.Ž0. Ž0.Lemma 3 and 20 imply that either � � , 
 intersects both the˜n , n1 2

r - and r -axis, in which case by Lemma 2 it goes from the latter to the1 2
former or it intersects one of them twice.

We shall first treat the former case of intersection of both axes outside
the origin.

˜Ž	 �. Ž .Ž0. Ž0.� � , 
 intersects g , in say g t . By Lemma 2, g˜n , n � �4 � �4 0 � �41 2
Ž . Ž .Ž0. Ž0.crosses R 	 from the right to the left, i.e., g t � U for t � tn , n � �4 r 01 2

Ž .small enough. But for t � t , g t eventually has to cross a solution0 � �4
Ž . Ž Ž .curve R 	 for example, part of � t from Lemma 5 for k bign , n 01 2

. Ž Ž1. Ž1.. Ž .Ž1. Ž1.enough . So there are n , n � N, such that g crosses R 	 ,1 2 � �4 n , n1 2
Ž . Ž	 	.in say g t , and g t , t � U .� �4 1 � �4 0 1 r

Ž . Ž . � 4Ž1. Ž1.Now � 	 does not satisfy 20 , because for at least one j � 1, 2 ,n , n1 2Ž1. Ž0. Ž .n � n , hence the corresponding solution curve crosses � t , for k bigj j 0
enough.

Ž .Ž0. Ž0.We have just shown R 	 is connected in U to a solution curven , n r1 2
Ž .which in turn intersects � t , but with Lemma 2 this suffices to prove the

˜Ž .existence of � t as required.
˜Ž� 	.Ž0. Ž0.There remains only the case of � � , 
 intersecting one axis˜n , n1 2

twice. Without loss of generality assume it to be the r -axis, the other case1
being symmetrical.

This is a very special case, which by Lemma 3 can only happen if
˜� � � � � �0 � a � c � b , n � 0, and � � � , 
 � 
.˜c

If n � 0, then � � �� , 
 � � , ab, ac � 0, and b and c have theb
Ž . 	 � 	 � Ž .same sign. Also, s s � 0, � , s � � � , � , and 0 � y 0 implies c � 0.2

All together, for n � 0 we have nŽ0. � 1, nŽ0. � 0, andb 1 2

a � b � c, 0 � b � c.

If n � 1, then � � 0, 
 � 2� , ac � 0 � ab, and b and c have differentb
Ž . 	 � 	 � Ž .sign. s s � 0, � , s � 0, 2� , and y � � 0 implies again c � 0. That is,2

for n � 1 we have nŽ0. � 0, nŽ0. � 0, andb 1 2

a � �b � c, 0 � �b � c.

Ž . Ž .Ž0. Ž0.The proof that in this case R s can also be connected to � tn , n1 2

proceeds through three claims:

Ž . Ž . Ž .1 For n � 1, R s can be connected to R s .1 n , 0 1, 01

Ž . Ž . Ž .2 R s can be connected to R s .1, 0 0, 0

Ž . Ž . Ž .3 R s can be connected to � t , for k big enough.0, 0 0
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Crucial for proving these claims is

1� , s� � ,
� �'c � b c

Ž0. �r s � 21Ž . Ž .2 1
, s� 
 .� � �'c � b c

Ž .We show 21 only for n � 0 and s� � � �� , the other cases can beb
proved in much the same way.

Ž .With Eq. 3

�a � b cos s c � b 1 � cos sŽ .
s s � arccos � arccos ,Ž .2 c c

� 	s � �� , � . 22Ž .

For s� � � we get

b �sin s
�s s �Ž .2 2 '1 � cos s'2bc � b 1 � cos sŽ .

b b'� 1 � cos s � ,(2 c'2bc � b 1 � cos sŽ .
� 'y� s � b cos s � s s c cos s s � �b � bc ,Ž . Ž . Ž .2 2

and thus

s s s� s 1Ž . Ž .2 2Ž0.lim r � lim � lim � .2 'y s y� ss��� s��� s���Ž . Ž . c � bc

For later use, note that if n � 1 and s� � � 0,b

� �b
�s s � ,Ž . (2 c

'� � � �y� s � � b � b c ,Ž . 23Ž .
s 1

Ž0.r s � � .Ž .1 'y s � � � �Ž . b c � b

Ž . Ž .Relation 21 implies that R s , n � 1, approaches asymptotically then , 0 11' 'Ž � � . Ž � � .straight lines r � 1� c � b c and r � 1� c � b c , respectively.2 2
Ž . 2 ŽThus R s cuts � into two unbounded connected components plusn , 0 �1
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. Ž .maybe a finite number of bounded ones , say C n containing the origin,0 1 'Ž . Ž .Ž Ž � � .and C n containing the unbounded part of r � 1�2 1� c � b c �1 1 2'Ž � � ..1� c � b c .
Ž . Ž .Note that C n lies on the left-hand side of R s .1 1 n , 01

Ž . � 	Proof of Claim 1 . We define equivalence classes n � � by setting
n � m, if there are finitely many n � nŽ0., nŽ1., . . . , nŽ p. � m, such that

Ž . Ž .Ž i. Ž i�1.R s and R s cross each other, i � 0, . . . , p � 1.n , 0 n , 0
� 	If n, m belong to the same class n , then they can be connected in U ,r

� 	 � 	so all we have to show is that 1 and n , n � 1, can be connected.1 1
Order the equivalence classes by the minimal members, i.e., by setting

� 	 � 	 � 	 � 	n � m , if there is an m � m such that m � n, for all n � n . Since˜ ˜ ˜ ˜
Ž . Ž .for n � m, R s has a bigger minimum than R s , and both solutionn, 0 m , 0

� 	 � 	curves approach asymptotically the same straight lines, n � m implies
Ž . Ž . � 	 � 	R s � C m , for all n � n , m � m . In this sense the equivalence˜ ˜ ˜n, 0 1˜

classes are nested within each other in increasing order, and one can
� 	 Ž .connect n with the next one by a curve which lies in C n , and at most1

Ž . � 	 � 	intersects R s for n � n 
 m . That is, two consecutive classes can˜n, 0˜
� 	be connected in U . There are only finitely many classes between 1 andr

� 	 Ž . Ž .n , thus they�and R s and R s too�can indeed be joined.1 1, 0 n , 01

Ž . Ž . Ž .Proof of Claim 2 . Either R s and R s cross each other, or the1, 0 0, 0
Ž Ž0.Ž . Ž0.Ž . Ž0.Ž .former lies on the left of the latter since r � � r 
 � 0, r s �2 2 1

Ž1.Ž .. Ž .r s , and going in a straight line from 0 to the minimum of R s ,1 1, 0
	 � Ž . Ž .s � � , 
 , one crosses R s once from the right to the left , without0, 0

Ž . Žhaving intersections with curves R s , n � 0 because no g intersects0, n 2 �2
Ž . Ž .. Ž .both � s and � s , nor with R s , n � 1, n � 0, or n � 1,0, n 1, 0 n , n 1 2 12 1 2

Ž .n � 0 because they have a bigger minimum . That is, via this straight line2
Ž . Ž .one can joint R s with R s .1, 0 0, 0

Ž . Ž .Proof of Claim 3 . If n � 0, then � s crosses the s -axis, that is, itb 0, 0 2
intersects both axes. We already treated this case.

Ž . Ž .Assume now n � 1. By 23 and 21 ,b

1 1
R s � , ,Ž .0, 0 ž /' '� � � � � �b c � b c � b c

which lies on the line

1 � r b � r c � 0.1 2

Ž .For r , r on this line,1 2

� 0; r , r � � � 0; r , r � 0,Ž . Ž .1 2 1 2

Ž .and r , r � U follows.1 2 r
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Ž .For r , r with1 2

1 � r b � r c � 0,1 2

Ž .� .; r , r has a root in 0 with negative derivative, since � tends to infinity1 2
as x � �, there has to be a real root x � 0. So

r , r � �2 : 1 � r b � r c � 0 � U .Ž .� 41 2 � 1 2 r

Ž . Ž .Now R s ends in the set above, which in turn intersects � t , for k �0, 0 0
big enough.

Ž .This proves Claim 3 , and completes the proof of the lemma.
Now comes the main proposition of this section, namely that the region

of instability is connected and unbounded in the case of fixed parameters
and variable delays:

PROPOSITION 2. U � �2 is connected and unbounded.r �

Proposition 2 implies in particular that there are no ‘‘islands’’ of
instability within the stable region. With Corollary 1, there are not even
‘‘islands’’ of stability, but not asymptotic stability, within this region. This
follows also from the description of the stability region given by Hale and

� 	Huang in 2 , if one knows the stability region to be connected. This seems
to be true, but it has�to our knowledge�as yet not been proven.

Proof. If b � 0 or c � 0, then we have only one delay, and the con-
Ž � 	. 2 Ž .clusion holds see, e.g., 1 . If a � b � c � 0, then � � U Lemma 1 .� r

For the rest of this proof we assume b � 0 � c and a � b � c � 0.
We distinguish four cases:

� � � � � � Ž .Case 1. a � b � c . In this case � � has no purely imaginary roots,
and either �2 � S or �2 � U .� r � r

� � � � � � � � Ž .Case 2. a � b � c . We have a � 0. Re � x � iy � 0 implies
r y, r y � � �, which in turn gives y � 0. In other words, 0 is the only1 2
possible purely imaginary root of � .

If a � b � c � 0, then as in Case 1 either �2 � S or �2 � U .� r � r
Ž .If a � b � c � 0, then � 0; r , r � 0 for all r , r � 0, and 0 is the1 2 1 2

Ž . Ž .only root on the imaginary axis. If � � 0 � 1 � r b � r c � 0, then � .1 2
Ž . Ž .has a second non-negative real root, and r , r � U .1 2 r
Ž . Ž .If � � 0 � 0 and � x � iy � 0 for an x � 0, x � iy � 0, then0 0 0 0 0

� � � � � � Ž .x � 0 and y � b � c . � �; r , r is an analytic function; in this case0 0 1 2
Ž . � � � � � � �4it has at least two roots in S � x � iy: x � 0, y � b � c . For t1

Ž . Ž .going from 1 to 0, � � �; tr , tr � 0, hence for tr , tr there is no purely1 2 1 2
imaginary root, and for all these t, the two roots have to remain in S . But1
Ž .� .; 0, 0 has only 0 as a simple root here. Hence there cannot have been a
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Ž .root x � iy , x � 0, and � � 0; r , r � 0. So0 0 0 1 2

U � r , r � �2 : 1 � r b � r c � 0Ž .� 4r 1 2 � 1 2

is connected and either empty or unbounded.

� � 	 � � 	 � � � � � �Case 3. a � b � c . We shall only prove the case a � c � b , the
other one being similar.

Ž .With Lemma 3 the set of r , r , such that � .; r , r has purely imagi-1 2 1 2
Ž . Ž .Ž . � � 2nary roots is a countable union of curves r , r 	 : � , � � � ,1 2 �

Ž . Ž .r � � 0, r 	 periodic.1 2
Ž .Each point of U is connected within U to such a curve, and withr r

Ž .Lemma 2 to a point 0, r on the r -axis. For r � 0 we are in the2, 0 2 1
Ž .one-dimensional case, and the set of r , such that Eq. 1 with r � 0 is2 1

unstable and is an unbounded interval. This proves U to be connected andr
unbounded.

	 � � 	 � � � � � � Ž . Ž .Case 4. b � c � a � b � c . Let � , � , � , � � U be given˜ ˜1 2 1 2 r
and assume U � �2 .r �

Ž .If a � b � c � 0, then � , � is connected with the left-hand side of a1 2
Ž .Ž . 	 � 2 Ž . Ž Ž . . Ž .curve r , r 	 : � , 
 � � , where r 	 � s 	 � 2n � �y 	 , j �1 2 � j j j

� 	1, 2, and n , n � �, s , s , y: � , 
 � � as in Lemma 3.1 2 1 2
Ž .By Lemma 6 two such curves can be connected via � t of Lemma 5.

Ž . Ž .But then Lemma 2 shows � , � and � , � to be connected in U .˜ ˜1 2 1 2 r
�Ž .If a � b � c � 0, then 0 is a root of � , and U contains S � r , r �r 2 1 2

2 4 Ž .� : 1 � r b � r c � 0 see Case 2 .� 1 2
Ž . Ž .Ž .� , � can be connected to a solution curve r , r 	 or to S . Since1 2 1 2 2

Ž .S intersects � t , for k � 0 big enough, the conclusion follows as in the2 0
case a � b � c � 0.
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