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The onset of Alzheimer's disease (AD) is associatedwith subtle pathological changes including increased intracel-
lular expression of amyloid-β (Aβ). A structure affected particularly early in the course of AD is the entorhinal
cortex, where neuronal death in layer II is observed already at initial stages. Neurons in EC-layer II, particularly
those that express the protein Reelin, give rise to projections to the hippocampal dentate gyrus and this projec-
tion shows severe loss of synaptic contacts during early-stage AD. Given this anatomical specificity, we sought to
determinewhether increased intracellular expression of Aβ is selectively associatedwith Reelin-immunoreactive
neurons in layer II of the entorhinal cortex. Herewe report that in a transgenic ratmodel, whichmimics the onset
and distribution of extracellular amyloid deposits seen in human AD subjects, expression of intracellular Aβ in
entorhinal layer II selectively occurs in Reelin-immunoreactive neurons during the early, pre-plaque stage. This
Reelin-Aβ association is also present in human subjects with AD-related pathological changes, even in early dis-
ease stages. Thesefindings strongly indicate that Reelin-immunoreactive neurons in entorhinal layer II play a cru-
cial role during the initial stages of AD, andmay therefore lead to refined hypotheses concerning the origin of this
devastating condition.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Alzheimer's disease (AD) causes progressive cognitive impairment
with loss of explicit memory, as measured with cued recall, as one of
the most characteristic early features (Dubois et al., 2014). The AD-
brain contains characteristic pathological changes which include abun-
dant extra-cellular amyloid deposits, called plaques, amultitude of neu-
rofibrillary tangles and massive neuronal loss (Duyckaerts et al., 2009).
Importantly, the pathology is not indiscriminately present throughout
the brain, such that associational cortical areas, in particular in the tem-
poral lobes are particularly affected (Braak and Braak, 1991; Hyman and
Trojanowski, 1997). This points to regional differences in vulnerability
to underlying disease-mechanisms.

A potential key player in AD is amyloid-β (Aβ). This small aggrega-
tion-prone peptide, ranging in size from37 to 43 amino acids, originates
from sequential cleavage of the amyloid precursor protein (APP) by β-
and γ-secretase. In its fibrillar, insoluble form, Aβ is a major constituent
of the extracellular plaques associated with later disease stages (Thal et
al., 2000). Inside neurons, the amount of soluble Aβ is already increased
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at early, prodromal stages of the disease (D'Andrea et al., 2001;
Fernandez-Vizarra et al., 2004; Gouras et al., 2000, 2010; Pensalfini et
al., 2014). The correlation between the amount of amyloid deposits
with cognitive decline appearsweak (Arriagada et al., 1992). In contrast,
the expression of soluble intracellular Aβ (iAβ) in the cortex correlates
well with dementia status (McLean et al., 1999; Naslund et al., 2000).
The latter finding is corroborated by reports that in transgenic animal
models memory deficits are present when iAβ but no extracellular Aβ
is detectable (Billings et al., 2005; Iulita et al., 2014; Knobloch et al.,
2007; Leon et al., 2010). Also, clearance of iAβ reversesmemory impair-
ments (Billings et al., 2005), and increased amounts of iAβ correlate
well with neuronal loss (Casas et al., 2004; Cohen et al., 2013; Umeda
et al., 2011). A direct link to impaired neuronal functioning has also
been found, as soluble Aβ disrupts synaptic plasticity and inhibits
long-term potentiation both in vitro (Lambert et al., 1998) and in vivo
(Walsh et al., 2002). Finally, in a 3D cell-culture system harboring neu-
rons transfected with familial AD mutations, Aβ-accumulation revers-
ibly induces hyperphosphorylation and aggregation of tau (Choi et al.,
2014). Taken together, soluble iAβ thus seems to be a key player in
the initiation of the disease-cascade which eventually culminates in
the characteristic pathological and cognitive changes seen in AD.

The seminal histopathological study on AD by Braak and Braak
(1991) revealed that initial changes related to formation of neurofibril-
lary tangles occur in layer II of lateral parts of the entorhinal cortex (EC)
at the border with the perirhinal cortex. It has since been established
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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that EC is also subject to extracellular amyloid depositions from an early
stage of the disease (Thal et al., 2000). Further, massive neuronal loss in
EC-layer II characterizes early AD (Gomez-Isla et al., 1996), a feature
also evident in at least a subset of subjects with mild cognitive impair-
ment (Kordower et al., 2001), of which themajority are likely to convert
to AD (Espinosa et al., 2013; Grundman et al., 2004). Clearly, these find-
ings implicate EC, and particularly the neurons in layer II, in the onset of
AD.

Neurons in EC-layer II give rise to the main projection to the hippo-
campal dentate gyrus (DG) and this projection shows severe loss of syn-
aptic contacts during early-stage AD (Scheff et al., 2006).Manyprincipal
neurons in EC-layer II in mammals express Reelin (Chin et al., 2007;
Herring et al., 2012; Kitamura et al., 2014; Martinez-Cerdeno et al.,
2003; Perez-Garcia et al., 2001; Pesold et al., 1998; Ramos-Moreno et
al., 2006). Such a Reelin-expressing population in superficial layers is
atypical for cortex, where Reelin is expressed primarily in a subset of
principal cells of layer V (Pesold et al., 1998; Ramos-Moreno et al.,
2006). In rodents, Reelin-expressing neurons in EC-layer II, as
established by their Reelin-immunoreactivity (Reelin-IR), form the
sole origin of the excitatory projection to DG (Berndtsson, 2013;
Gianatti, 2015; Kitamura et al., 2014; Varga et al., 2010), which is of in-
terest since Reelin is a modulatory protein involved in synaptic plastic-
ity (Qiu et al., 2006; Rogers et al., 2011; Weeber et al., 2002).

We thus chose to focus on EC and hypothesized that the population
of Reelin-IR neurons in layer II is particularly vulnerable to accumula-
tion of iAβ. We utilized the McGill-R-Thy1-APP rat model for AD,
which faithfullymimics the onset and distribution of extracellular amy-
loid deposits seen in human AD subjects, and has an extended phase of
iAβ-accumulation (Iulita et al., 2014; Leon et al., 2010). Our data show
that Reelin-IR neurons in EC-layer II selectively stain positive for iAβ
during the early, pre-plaque stage. Furthermore, we show that this
Reelin-Aβ association is present in human subjects having AD-related
pathology, not only in the late stages but also in early stages, suggesting
that Reelin-IR neurons in EC-layer II play a crucial role during the initial
events leading to AD.
2. Materials and methods

2.1. Experimental design

In this paper we aimed to test whether accumulation of iAβ in EC-
layer II specifically occurs in Reelin-IR neurons. For the experimental
part of this study we used the McGill-R-Thy1-APP homozygous trans-
genic rat model (Heggland et al., 2015; Leon et al., 2010). Animals
carry a transgene containing human APP751with the Swedish double-
and Indiana mutations expressed under the murine Thy1.2 promoter.
All rats were bred at the Kavli Institute for Systems Neuroscience, at
theNorwegianUniversity of Science and Technology. Experimental pro-
tocolswere approved by theNorwegian Animal Research Authority and
are in accordance with the European Convention for the Protection of
Vertebrate Animals used for Experimental and Other Scientific Pur-
poses. We used 20 animals divided into four age-groups (n = 5/
group), postnatal day 15 (5 males), 1 month (3 males and 2 females),
3 months (3 males and 2 females), and 6 months (3 males and 2 fe-
males). To corroborate the findings in the rat model, we used sections
through EC from AD-subjects with pathologically verified Braak stages
I (female, 83 years old), III (female, 75 years old) and V (male,
66 years old) (Braak and Braak, 1991). These sections were provided
by Professor Ricardo Insausti (University of Castilla-La Mancha, Spain)
and originally consisted of three sections from each of three subjects,
approximately equally distributed along the anteroposterior extent of
EC. After optimization of the staining-protocols we were left with two
sections from Braak stage I, and one section from each of stages III and
V, on which the double-IHC experiments were carried out. In the case
of the two sections for Braak stage I, these were from an anterior and
a posterior level, while in the case of Braak stages III and V, the sections
were taken at a middle or posterior level, respectively.

2.2. Genotyping

The animals were genotyped for the expression of the transgene by
quantitative PCR (qPCR), as previously described (Heggland et al.,
2015). We used genomic DNA isolated from ear tissue with a High
Pure PCR Template Preparation Kit (Roche Diagnostics, Basel, Switzer-
land). RT2 qPCR Primer Assays from Qiagen (Venlo, Netherlands) were
used to detect the transgene (human AβPP) and a normalization gene
(GAPDH or beta-actin) with FastStart Universal SYBR Green Master
(Roche Diagnostics) on an Applied Biosystems StepOnePlus real-time
PCR system (Life Technologies Ltd., Thermo Fisher Scientific, Waltham,
MA, USA). From the qPCR, ΔΔCT values were calculated with a known
homozygous sample as reference (Livak and Schmittgen, 2001).

2.3. Tissue processing and IHC

Animals were anesthetized using isoflurane gas (Abbott Lab., Cat#
05260-05) followed by intraperitoneal injection of pentobarbital (Nor-
wegian Pharmacy Association, Cat# 306498). Subsequently,
transcardial perfusion was carried out with a Ringer's Solution
(145 mM NaCl, VWR Int. LLC, Cat# 27800.291; 3.35 mM KCl, Millipore,
Cat# 1.04936.1000; 2.38 mM NaHCO3, Millipore, Cat# 1.06329.1000)
at pH 6,9, followed by circulation of 4% freshly depolymerized parafor-
maldehyde-solution (Millipore, Cat# 1.04005.1000) in phosphate buff-
er (PB: purified de-ionized water with di-sodium hydrogen phosphate
dihydrate, Millipore, Cat# 1.37036.500, mixed with sodium di-hydro-
gen phosphate monohydrate, Millipore, Cat# 1.06346.1000, at
125 mM, pH 7.6; note that this applies to all uses of PB) for 2–3 min.
The brains were removed and post fixed in the same fixative overnight,
then placed in 2% DMSO solution (dimethyl sulfoxide, VWR Int. LLC,
Cat# 23486.297, in PB and 20% glycerine, VWR, Cat# 24387.292) in a re-
frigerator until sectioning. Brainswere sectioned at 40 μm in the coronal
plane with a freezing microtome (Microm HM430, Thermo Fisher Sci-
entific, Waltham, MA, USA). For each animal, we collected six series of
equally spaced sections. One series was used (i.e. 40 μm sections with
a 200 μm spacing), and immunohistochemistry was done on free-float-
ing sections. Heat InducedAntigen Retrievalwas carried out on all tissue
at 60 °C for 3 h in PB.

2.4. Rat tissue

For fluorescent immunolabeling of rat-tissue, blocking with 5% goat
serum (Abcam, Cat# AB7481) in PB was carried out for 2 h. For
immunoenzyme staining of rat tissue, incubationwith ready-to-use hy-
drogen peroxide (Thermo Scientific, Cat# TA-012-HP) was carried out
for 10min followed by incubationwith Ultra V Block (Thermo Scientific,
Cat# TA-012-UB) for 10 min and finally incubation with 5% goat serum
in PB for 1 h. Subsequently, co-incubationwith primary antibodies in PB
(for immunofluorescence) or Tris buffered saline (for immunoenzyme-
staining: TBS; purified de-ionized water with 50 mM Tris, Millipore,
Cat# 1.08382; 150mMNaCL, VWR Int. LLC; pH adjusted to 8.0 using hy-
drochloric acid,Millipore, Cat# 1.00317), both solutions containing 0.5%
Triton X-100 (Millipore, Cat# 1.08603.1000) and 5% goat serum, was
carried out in the following order: Rabbit anti-Reelin (1:50 for fluores-
cence/1:600 for immunoenzyme-staining, Biorbyt, Cat# Orb11331,
RRID AB_10750301) with Mouse anti-Aβ McSA1 (1:1000, Medimabs,
Inc., Cat# MM0015-P, RRID: AB_1807985); Rabbit anti-Reelin (1:50,
Biorbyt) with Mouse anti-Aβ MOAB-2 (1:500, Biosensis, Cat# M-
1586-100); Rabbit anti-Reelin (1:50, Biorbyt) with Mouse anti-Reelin
G10 (1:500, Millipore, Cat# MAB5364, RRID: AB_2179313); Goat anti-
Reelin (1:200, R&D Systems, Cat# AF3820, RRID AB_2253745) with
Mouse anti-Aβ McSA1 (1:1000, Medimabs, Inc.); Mouse anti-Reelin
G10 (1:1000, Millipore) with Rabbit anti-Aβ42 (1:500, IBL Ltd., Cat#

nif-antibody:AB_10750301
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18582). For immunofluorescence, secondary antibodies were pur-
chased from Life Technologies and included Alexa 488 Goat anti-Rabbit
(Cat# A11008, RRID: AB_10563748), Alexa 546 Goat anti-Mouse (Cat#
A11003, RRID: AB_10562732) and Alexa 488 Donkey anti-Goat (Cat#
A11055, RRID AB_10564074). For fluorescence, all sections were incu-
bated with secondary antibodies in 1:350 dilution with PB containing
0.5% Triton X-100 and 5% goat serum. Each pair of secondary antibodies
was applied simultaneously for 2 h at room temperature, with one ex-
ception: in the double-immunofluorescence staining with Goat anti-
Reelin and McSA1 (see Fig. 5B) the tissue was first incubated with
Alexa 488 Donkey anti-Goat for 1 h, then washed, and then incubated
with Alexa 546 Goat anti-Mouse for 1 h. For immunoenzyme-staining
of rat tissue, we used as secondary antibodies AP-conjugated goat
anti-mouse polymer (Biocare, Cat# MALP521L) and HRP-conjugated
goat anti-rabbit polymer (Dako, Cat# K4011), both ready-to-use re-
agents. The secondary antibodieswere visualized using enzymatic chro-
mogens, and the incubation was conducted under close visual
inspection until a satisfactory color-contrast was achieved. Chromogens
includedDako DAB+ (Dako, Cat#K4011) for HRP-conjugated goat anti-
rabbit polymer (dilution according to themanufacturer's instruction, in-
cubation time approximately 10min) followed by Ferangi Blue (Biocare
Medical, Cat# FB813S) for the AP-conjugated goat anti-mouse polymer
(dilution 1:300, incubation time approximately 5 min). Processed
tissue was mounted on glass slides from a solution of 50 mM
tris(hydroxymethyl)aminomethane (Millipore, Cat# 1.08382.1000)
with hydrochloric acid, at pH 7.6, containing gelatin (Oxoid, Ltd. Cat#
LP0008), and then left to dry overnight before being coverslipped
using entellan (Merck KGaA, Cat# 1.07960.0500).

2.5. Human tissue

The human-tissue was initially incubated with Dual-Block reagent
(Dako Cat# S2003) for 10 min followed by incubation with 10% goat
serum in PB for 1 h. Subsequently, co-incubation with primary antibod-
ies in PB containing 0.4% Saponin (VWR, Cat# 27534.187) and 5% goat
serum was carried out, using Rabbit anti-Reelin (1:50, Biorbyt) with
Mouse anti-Aβ McSA1 (1:150, Medimabs). As secondary antibodies
we used AP-conjugated goat anti-mouse polymer (Biocare, Cat#
MALP521L) and HRP-conjugated goat anti-rabbit polymer (Dako, Cat#
K4011), both ready-to-use reagents. The secondary antibodies were vi-
sualized using enzymatic chromogens, and the incubationwas conduct-
ed under close visual inspection until a satisfactory color-contrast was
achieved. Chromogens included AEC (Dako, Cat# K3469) for the HRP-
conjugated goat anti-rabbit polymer (incubation time approximately
5 min) followed by Ferangi Blue (Biocare Medical) for the AP-conjugat-
ed goat anti-mouse polymer (dilution 1:125, incubation time approxi-
mately 10 min).

Table 1 contains an overview of the primary and secondary antibod-
ies used in this study.
Table 1
Overviewof primary and secondary antibodies used for rat tissue (top panel) and human tissue
which primary antibodies were used together in double-labeling experiments shown in the in

Antibodies used on rat tissue

Primary Rabbit anti-Reelin 1, 2, 3 Mouse anti-Reelin 1′, 4* Goat anti-Reelin

Secondary Alexa 488 goat anti-rabbit Alexa 546 goat anti-mouse Alexa 488 donke
anti-goat

HRP-conjugated goat
anti-rabbit polymer

AP-conjugated goat
anti-mouse polymer

Antibodies used on human tissue

Primary Rabbit anti-Reelin

Secondary HRP-conjugated goat anti-rabbit polym

(1 and 1′ Fig. 5A; 2 and 2′ Figs. 1B, 2A–D, 3A, B, 4A, B, 7A, B; 3 and 3′ Figs. 6, 7A, B; 4 and 4′ Fig
Fig. 9A, B.
2.6. Microscopy and stereology

For the rat model, we randomly selected one of the six series of sec-
tions from each brain, such that the full extent of ECwas represented for
each animal. Layer II of LEC andMECwas delineated in Stereo Investiga-
tor (MicroBrightField Inc.) following established criteria (Kjonigsen et
al., 2011) under dark field illumination (Axio Imager M1 microscope,
Carl Zeiss). Analysis of co-localization was carried out using Stereo In-
vestigator, applying the principles of stereology, which have been de-
scribed in detail previously (West et al., 1991). Briefly, using
epifluorescence microscopy (Zeiss Axio Imager M1), neurons were
identified in a systematically randomized manner by applying a
predefined virtual grid where each intersection contains a counting
frame. Each neuron contained within a counting frame according to
the stereological principles for inclusion was analyzed to determine if
it was positive for Reelin and/or iAβ, by focusing through the tissue
within a virtual dissector frame using a high power objective (100×
oil, N.A. 1.4). Confocal images were obtained with the use of a
Zeiss LSM Meta 510 confocal microscope, using Zen software (Carl
Zeiss, Version 6,0,0303) with a 100× oil immersion objective (N.A.
1.4). Confocal images were subsequently color coded using the lookup
table in ImageJ (NIH, Version 1.43 m).

We tested for normality of distribution, homogeneity of variance
and a statistical difference in estimated numbers of Reelin-IR neurons
between age groups (one-way ANOVA followed by a post hoc Tukey
test) using IBM SPSS Statistics (Version 20.0.0.1).

Tissue from human AD-subjects was analyzed for co-localization
using brightfield microscopy (Zeiss Axio Imager M1) and focusing
through the tissue using a high power objective (100× oil, N.A. 1.4).
As we did not have access to complete series of sections through EC,
we analyzed all stained neurons rather than doing a stereological anal-
ysis on EC-layer II from the available tissue-samples. Consequently, EC-
layer II was delineated on each section and all stained neuronswere an-
alyzed to determine whether they were positive for Reelin and/or iAβ.
Images of human tissue were optimized for color-contrast in ImageJ.

3. Results

3.1. In EC-layer II, iAβ is selectively expressed in Reelin-IR neurons

In the rat transgenic model, immunoenzyme-staining for Reelin and
iAβ on separate coronal sections taken from the same level of EC-layer II
revealed a highly similar pattern of immunoreactive (IR) neurons for
both molecules (Fig. 1A). To test whether Reelin-IR neurons in EC-
layer II selectively express iAβ in the transgenic model, we used a dou-
ble-immunofluorescent staining for both substances, combining a rab-
bit anti-Reelin antibody with a mouse anti-Aβ (MCSA1) antibody (Fig.
1B). This corroborated the impression of overlap between the two
markers while also showing that irrespective of the rostrocaudal level,
(bottompanel). In the case of the rat tissue, corresponding numbers (e.g. 1 and 1′) indicate
dicated figures.

5
Mouse anti-Aβ (McSA1) 2′,
5′*

Mouse anti-Aβ
(MOAB-2) 3′ Rabbit anti-Aβ42 (IBL) 4′

y Alexa 546 goat anti-mouse Alexa 546 goat
anti-mouse

AP-conjugated goat
anti-mouse polymer

HRP-conjugated goat
anti-rabbit polymer

Mouse anti-Aβ (McSA1)

er AP-conjugated goat anti-mouse polymer

. 8A, B; 5 and 5′ Fig. 5B; * these antibodies were also used for single labeling, Fig. 1A, C).

nif-antibody:AB_10563748
nif-antibody:AB_10562732
nif-antibody:AB_10564074


Fig. 1. In EC-layer II iAβ-IR follows the distribution of Reelin-IR and displays a topographical arrangement. (A) Separate immunoenzyme-staining for iAβ (left, McSA1) or Reelin (right,
mouse anti-Reelin G10) on sections taken from the same level of EC-layer II produces highly similar patterns. (B) Double-immunofluorescence staining against iAβ (top, McSA1) and
Reelin (bottom, rabbit anti-Reelin) reveals virtually identical patterns in EC-layer II. Note that both signals are stronger towards the rhinal fissure (towards the left side of the images).
(C) The intensity of iAβ-IR in EC-layer II is topographically distributed. (left) Seven coronal iAβ-immunoreacted sections representative of EC as situated in the rat brain. Position of the
rhinal fissure is indicated with a dotted line (magenta). (right) iAβ-immunoreacted sections spread out for better view of EC. In EC-layer II, the highest amount of iAβ-IR material is
located towards the rhinal fissure, then gradually drops off when moving away from the rhinal fissure until only a minimal amount is present in the most ventromedial part. LEC and
MEC indicated with solid contours; bordering structures indicated with dotted contours. Anatomical compass: A = anterior, P = posterior, D = dorsal, V = ventral, L = lateral, and
M = medial. Scale bars: A 100 μm; B, main figures 500 μm, insets 40 μm.
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neurons located closer to the rhinal fissure consistently have stronger
iAβ- and Reelin-staining than neurons located progressively further
away from the rhinal fissure (Fig. 1B, C). In the case of Reelin, this fea-
ture has also been noted by others (Perez-Garcia et al., 2001).

To determine the degree of overlap between iAβ-IR and Reelin-IR
neurons, we used the double-immunofluorescence staining method
and analyzed 5852 neurons in the lateral (LEC) and medial (MEC) sub-
divisions of EC-layer II (LEC 2114; MEC 3738) from 20 animals divided
into four age-groups (P15, 1 month, 3 months and 6 months). The
age-groups were selected to start at P15 when adult-like principal neu-
rons are known to be present in EC (Canto and Witter, 2012a, 2012b)
and extending up to and including 6 months, thereby covering the
pre-plaque stage in our colony of McGill-R-Thy1-APP rats (Heggland
et al., 2015). With stereological systematic random sampling, we ob-
tained a reliable estimate of the number of layer II Reelin-IR neurons
(P15: LEC 34772, MEC 74710; 1 month: LEC 44558, MEC 116613;
3 months: LEC 52124, MEC 111394; 6 months: LEC 40923, MEC
130129). The estimated Reelin-IR neuron numbers were found normal-
ly distributed and with homogeneous variance. Analysis of variance
followed by post hoc multiple comparison test (Tukey test), conducted
separately for LEC and MEC on all age groups, revealed a significantly
lower estimate of Reelin-IR neurons in MEC for the P15 group as com-
pared with MEC-estimates in each of the other three age groups
(P b 0.05).

In linewith our initial observations, the analysis of neurons revealed
that iAβ is selectively present in Reelin-IR principal neurons throughout
the pre-plaque stage (Fig. 2). In the P15-group, 98.6% of LEC (437/443)
and 98.9% ofMEC (616/623) Reelin-IR principal neurons in layer II were
positive for iAβ (Fig. 2A). For each subsequent age-group we found
100% of Reelin-IR principal neurons in layer II to be immunoreactive
for iAβ (Fig. 2B–D). Further, all obtained data combined (n=5852 neu-
rons) showed that only 11 iAβ-IR neuronswere not immunoreactive for
Reelin; these were found in the P15 (N=4), 3 months (N=4) and the
6 months group (N = 3).



Fig. 2. Analysis of double-immunofluorescence staining in EC-layer II of 20 animals revealed that iAβ-IR material is selectively expressed in Reelin-IR neurons (n=5852 neurons). (A–D)
Representative confocal images of iAβ and Reelin-IR neurons in LEC andMEC fromdouble-immunoreacted sections are displayed for ages P15 (A), onemonth (B), threemonths (C) and six
months (D). For each age-group the number of EC-layer II Reelin-IR principal neurons analyzed, together with the number of these co-localizing with iAβ is shown (lower left). The
estimated total population of Reelin-IR neurons in layer II of LEC vs MEC is shown as well (lower right; mean ± standard deviation; CE = coefficient of error). With exception of 13
neurons in the P15 group, every Reelin-IR principal neuron was found positive for iAβ, and, importantly, for all age-groups combined we observed iAβ outside the Reelin-IR population
in only 11 instances. Scale bar, 20 μm. Five animals were used for each age-group.
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Fig. 3. Absence of bleed-through in both epifluorescence and confocal setup. (A) Epifluorescence microscopical images of single-labeled sections (rabbit anti-Reelin with Alexa 488 and
McSA1 with Alexa 546), using the settings used for the analysis, demonstrate absence of bleed-through of signal in the non-matching filter sets. (B) Confocal microscopical analysis of
double-labeled sections (rabbit anti-Reelin with Alexa 488 and McSA1 with Alexa 546) and comparison of the emitted signal between the matching and non-matching detection
channel for each laser line. No indication of bleed-through between the channels used in our confocal microscope-setup is seen. Note a Reelin-IR interneuron (asterisk) negative for
Aβ, serving as an additional control against potential channel bleed-through. Scale bars, 10 μm.
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3.2. Control experiments confirm and reinforce iAβ-Reelin association

The observed high incidence of co-localization between Reelin and
iAβ is based on fluorescence microscopy of immunoreacted brain sec-
tions. This experimental approach suffers from three inherent ways
leading to false positive results. First, crosstalk between fluorophores
could result if these have overlapping excitation or emission spectra.
Second, the rabbit anti-Reelin primary antibody could potentially be un-
specific. Third, the mouse anti-Aβ primary antibody (McSA1) could
Fig. 4. Double-immunoenzyme staining produced results equivalent to the double-immunofl
against iAβ (blue; McSA1) and Reelin (brown; rabbit anti-Reelin). The blue reaction product (
Reelin-IR neurons are negative for iAβ (asterisks). iAβ is not found in non-Reelin-IR neurons
matched controls. Scale bars (A) 100 μm, insets 20 μm (B) 20 μm.
potentially be unspecific. These three possible events were therefore in-
vestigated in turn.

For the experiments we used the Alexa 488 dye to image Reelin and
the Alexa 546 dye to image iAβ. In order to assess potential spectral
bleed-through, we imaged single-immunoreacted sections labeled
with either Alexa 488 dye or Alexa 546 dye and compared the emitted
signal between the matching and non-matching filters used in our
epifluorescencemicroscope-setup. This procedure revealed no evidence
of bleed-through (Fig. 3A). We further tested for bleed-through using
uorescence procedure. (A) EC from 6 month old transgenic rat double-immunoreacted
iAβ) is confined to the vast majority of Reelin-IR layer II neurons; note that three weakly
. (B) iAβ as detected with McSA1 is absent from Reelin-IR EC-layer II neurons from age-



Fig. 5. Specificity of rabbit anti-Reelin antibody corroborated by alternative antibodies. (A) Very high degree of overlap of the rabbit anti-Reelin antibody (Biorbyt) with the well
characterized mouse anti-Reelin G10 clone (Millipore) in layer II of both MEC and LEC. (B) Very high degree of overlap of goat anti-Reelin (R&D Systems) with McSA1 which is
virtually identical to that obtained with rabbit anti-Reelin (see Figs. 1 and 2). Scale bars, 40 μm.
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confocal microscopy by scanning double-immunoreacted sections and
comparing the emitted signal between thematching and non-matching
detection channel for each laser line. Again, we found no evidence of
bleed-through between the channels used in our confocal microscope-
setup. In these confocal images, we further observed a Reelin-IR neuron
negative for iAβ, providing an additional control against bleed-through
(Fig. 3B).

As a control for the double-immunofluorescence method, we per-
formed double-immunoenzyme stainingwith the same pair of antibod-
ies on sections from 1 and 6 month old transgenic rats vs. controls. This
essentially replicated the results of our double-immunofluorescence
procedure (Fig 4A, B).

In order to ensure the specificity of the rabbit anti-Reelin antibody,
we compared its immunoreactivity with that of the well-characterized
mouse anti-Reelin G10 clone in a double-immunostaining procedure.
This revealed a near complete overlap between the two antibodies in
EC-layer II (Fig. 5A). Additionally, we replaced the rabbit anti-Reelin an-
tibody with a goat anti-Reelin antibody and performed double-immu-
nostaining together with McSA1, which corroborated our original
results (Fig. 5B).

As a control for theMcSA1 antibody, we replaced it withMOAB-2, an
antibody that exclusively binds Aβ-peptides, in particular the Aβ42-
form (Youmans et al., 2012). Double-immunofluorescence staining
Fig. 6.Aβ42 (detectedwith a specific antibody,MOAB-2; Biosensis) is confined to Reelin-IR neu
2 staining. Scale bars, 100 μm, inset 10 μm.
using MOAB-2 and rabbit anti-Reelin again confirmed our original re-
sults, i.e. iAβwas selectively associated with Reelin-IR neurons (Fig. 6).

Further, MOAB-2 immunolabeling gave an intracellular pattern
strikingly similar to that seen in case of Reelin-IR (Fig. 6, insets). Subse-
quent confocal microscopy revealed Reelin-IR material partially co-lo-
calized with iAβ as detected by McSA1, while a near complete co-
localizationwas observed betweenReelin-IRmaterial and iAβ as detect-
ed by MOAB-2 (Fig. 7A, B).

Finally, we used a rabbit C-terminal specific antibody against Aβ42
together with the mouse anti-Reelin G10 clone and performed dou-
ble-immunoenzyme staining on 6 month old animals. This method re-
vealed strong iAβ42 labeling in EC-layer II Reelin-IR neurons in the rat
transgenic model vs. controls (Fig. 8).

3.3. Evidence for iAβ-Reelin association in EC of human AD-cases

Wenext investigatedwhether the iAβ-Reelin association directly re-
lates to the etiology of AD in humans, by using the MCSA1 and rabbit
anti-Reelin antibodies and analyzing double-immunoreacted samples
of EC-tissue from three human subjects with pathologically confirmed
AD, including Braak stages I, III and V (Fig. 9A, B). Out of 3077 layer II
neurons immunoreactive for Reelin across all analyzed samples, 2871
neurons were also immunoreactive for iAβ. Only 36 neurons negative
rons in EC-layer II. Note the high degree of intracellular overlap between Reelin andMOAB-



Fig. 7. Intracellular colocalization in granules between MOAB-2 and Reelin immunoreactivity, and McSA1 and Reelin immunoreactivity. The McSA1 and MOAB-2 antibodies both detect
iAβ; the latter preferentially binds Aβ42. For both antibodies, confocal analysis shows that immunoreactivity colocalizes with Reelin-IR granules. (A) Example from LEC of a 3 month old
rat. (B) Example from LEC of a 6 month old rat. Scale bar, 10 μm.
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for Reelin were found to contain iAβ (Fig. 9C). In particular, for Braak
stage I, we identified 1631 Reelin-IR neurons in EC-layer II of which
1497 were also iAβ-IR, while 8 Reelin-negative neurons contained iAβ.
For Braak stage III, we identified 969 Reelin-IR neurons in EC-layer II
of which 950 were also iAβ-IR, while 21 Reelin-negative neurons
contained iAβ. For Braak stage V, we identified 441 Reelin-IR neurons
in EC-layer II of which 424 were also iAβ-IR, while 7 Reelin-negative
neurons contained iAβ.
4. Discussion

We report that in EC-layer II, Reelin-IR neurons selectively express
iAβ during the pre-plaque stage in a transgenic rat model for AD, such
that essentially no iAβ is found in layer II neurons that do not express
Reelin. Further, we present evidence that this may directly translate to
the situation in the human brain during the initial pathological stages
of AD. Finally, in the rat model we observe a topographical gradient in



Fig. 8.C-terminal specific Aβ42-antibody confirms expression of iAβ in EC-layer II Reelin positive neurons. (A)Double-immunoenzyme stainingon 6month old transgenic rats using rabbit
IBL anti-Aβ42 (dark brown) and mouse anti-Reelin G10 (blue) shows clear presence of iAβ42 in EC-layer II Reelin-IR neurons. (B) Minimal amounts of iAβ42 are detected in EC-layer II
Reelin-IR neurons in 6 month old control rats. Scale bar, 10 μm.

Fig. 9. Strong association of iAβ and Reelin-IR EC-layer II neurons in human subjects diagnosed with AD. (A) Example of EC from subject classified as Braak stage III, where iAβ (blue) is
selectively present in Reelin-IR (red) neurons in layer II. Scale bars, left image 500 μm,middle images 40 μm, right images 10 μm. (B) High powermicrographs of representative individual
EC-layer II Reelin-IR neurons containing iAβ from each of Braak stages I, III and V. Note that in some areas of the intracellular compartment the red and blue chromogens appear to overlap,
yielding a purple intermediate. Scale bar, 10 μm. (C) Quantification of neuron types. Out of 3077 EC-layer II Reelin-IR neurons analyzed, 2871 stained positive for iAβ. Conversely, only 36
Reelin-negative neurons stained positive for iAβ. Numbers pr. Braak stage of total Reelin-IR/iAβ-positive Reelin-IR/iAβ-positive Reelin-negative: Braak I, 1631/1497/8; Braak III, 969/950/
21; Braak V, 441/424/7.
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EC-layer II, with immunoreactivity for iAβ being strongest in neurons
located closest to the rhinal fissure.

Immunolabeling as a means to detect Aβ-peptides requires the use
of antibodies that are not confounded by exhibiting cross reactivity to
APP or its non-Aβ cleavage fragments. For our experiments we used
the extensively tested anti-Aβ antibody MCSA1, which has been
shown to exhibit minimal cross reactivity with APP as well as the β C-
terminal fragment (β-CTF) (Iulita et al., 2014; Leon et al., 2010). We
subsequently verified the presence of iAβ in EC-layer II Reelin-IR neu-
ronswith theMOAB-2 antibody, which binds Aβ-peptideswith a strong
preference for Aβ42 without any cross reactivity to APP or β-CTF
(Youmans et al., 2012). Finally, we used a C-terminal specific anti-
Aβ42 antibody in order to substantiate that elevated levels of Aβ42 is in-
deed a characteristic of EC-layer II Reelin-IR neurons.

Aβ-peptides have been recognized as important factors in the initia-
tion of AD (Billings et al., 2005; Casas et al., 2004; Choi et al., 2014;
Cohen et al., 2013; Iulita et al., 2014; Knobloch et al., 2007; Lambert et
al., 1998; Leon et al., 2010; McLean et al., 1999; Naslund et al., 2000;
Umeda et al., 2011; Walsh et al., 2002). Neuronal accumulation of iAβ,
in particular Aβ42, is an initial event in AD (D'Andrea et al., 2001;
Fernandez-Vizarra et al., 2004; Gouras et al., 2000, 2010; Pensalfini et
al., 2014), while EC-layer II has been identified as exhibiting early path-
ological changes,with neuronal loss evident already at preclinical stages
(Braak and Braak, 1991; Gomez-Isla et al., 1996; Kordower et al., 2001).
Our findings in EC-layer II that iAβ is confined to Reelin-IR neurons, and
that Aβ42 and Reelin apparently are co-localized within the cells pro-
vide a clear indication that Reelin and iAβ could be structurally associat-
ed. This is in line with reports that amyloid-peptides and Reelin co-
localize in hippocampal amyloid deposits of aged transgenic and wild-
type mice (Doehner et al., 2010) and that Reelin extracted from AD-
brains consists of various complexes of higher molecular mass instead
of the functional homodimers seen in age-matched controls (Cuchillo-
Ibáñez et al., 2013).

Supporting this proposed structural association is a report that in the
presence of Aβ42, Reelin fails to form thehomodimers,which constitute
the active form of Reelin. This results in a reduced ability to activate
ApoER2, the main Reelin-receptor in the brain (Cuchillo-Ibáñez et al.,
2013). Aβ-induced impairment of Reelin signaling may influence tar-
gets downstream of Reelin-IR neurons. Reelin-IR neurons are the exclu-
sive origin of the excitatory projection from EC-layer II onto the
hippocampal DG, as well as to the CA2 and CA3 subdivisions
(Berndtsson, 2013; Gianatti, 2015; Kitamura et al., 2014; Varga et al.,
2010). A substantial proportion of non-Reelin positive neurons in
layer II have been identified as being immunoreactive for the calcium
binding protein calbindin (Naumann et al., 2015; Varga et al., 2010). Al-
though the functional properties of Reelin positive and calbindin posi-
tive neurons in layer II are still enigmatic, it is established that
calbindin neurons do not, or sparsely project to HF (Kitamura et al.,
2014; Varga et al., 2010).

Reelin, synthesized in EC-layer II, can be transported to and released
at its hippocampal targets in amanner independent of neurotransmitter
release (Martinez-Cerdeno et al., 2003). The significance of this consti-
tutive release is currently not fully understood, but application of Reelin
to the bathfluid of hippocampal slices enhanced long-termpotentiation
in hippocampal neurons (Qiu et al., 2006; Weeber et al., 2002). Also,
injecting Reelin into the ventricles of adult mice resulted in enhanced
performance on hippocampus-dependent tasks, and correlatedwith in-
creased hippocampal dendritic spine density (Rogers et al., 2011). Since
axons from EC-layer II neurons projecting to the hippocampus also give
rise to an extensive collateral plexus in layers I and II of EC (Canto and
Witter, 2012a, 2012b), onemay suggest that synaptic alterations similar
to those reported in the hippocampus could take place in EC as well. It is
important to keep in mind however, that the relationship between
Reelin, iAβ, and cognitive functions is not unequivocally established.
Nevertheless, if iAβ structurally associates with Reelin in EC-layer II
neurons during initial AD-stages, impaired transport of Reelin from
these neurons onto their hippocampal synaptic terminals might be ex-
pected. In line with this, early (P30) overall loss of Reelin, as measured
with western blot, has been reported in the hippocampus of transgenic
mice carrying human APP with AD-related mutations. Moreover, in
human AD-cases, loss of Reelin was found specifically associated with
CA3-CA2 neurites corresponding to terminations from EC-layer II neu-
rons (Herring et al., 2012).

We observed the strongest iAβ-IR in EC-layer II neurons located in
dorsolateral portions of EC, i.e. close to the rhinal fissure. A topologically
comparable preferred expression of hyperphosphorylated tau has been
found in EC of a transgenic mouse model and in EC of AD-brains (Braak
and Braak, 1991; Khan et al., 2014). In rodents, dorsolateral EC preferen-
tially connects with dorsal parts of the hippocampal formation, while
more ventromedial parts of EC connect to ventral parts of the hippo-
campal formation (Cappaert et al., 2014). This connectional topography
is paralleled by gradual differences in resolution of spatial coding in
both structures, such that the level of resolution with which the envi-
ronment is represented changes along their respective dorsoventral
axes. In the rodent hippocampal formation, the size of the specific spa-
tial receptive field of place cells increases along the dorsoventral axis
(Jung et al., 1994; Kjelstrup et al., 2008). A similar spatial granularity
gradient exists in EC, where grid cells close to the rhinal fissure have a
fine-grained spatial representation, while cells located progressively
further away from the rhinal fissure are tuned to increasingly more
coarse spatial representations (Brun et al., 2008; Stensola et al., 2012).
An analogous gradient is present in human hippocampal formation
and EC, where the most posterior parts correlate with fine-grained spa-
tial representations, while engagement of anterior parts reflect coarse-
grained spatial representations (Evensmoen et al., 2013, 2015). Taken
together, these findings logically imply that initial iAβ-induced impair-
ment of entorhinal-hippocampal connectivity is likely to selectively af-
fect functions associated with fine-grained representations of external
information. This interpretation concurs with navigational deficits that
are already evident in subjects with mild cognitive impairment (Hort
et al., 2007; Laczo et al., 2009), aswell aswith the recently reported pre-
dictive sensitivity of fine grained recall tasks as part of the diagnostic
criteria for early diagnosis of AD (Dubois et al., 2014).

5. Conclusions

Although we only analyzed a small sample of human AD cases, the
consistency of the human observations about the selective presence of
iAβ in EC-layer II Reelin-IR neurons is evident, suggesting that this
might be a common feature of human AD-pathology. This is supported
by the more extensive, consistent rat-model data, where selective pres-
ence of iAβ in Reelin-IR neurons in EC-layer II is evident throughout the
pre-plaque stage. However, a study on a larger sample of human AD-
cases is needed in order to substantiate that selective presence of iAβ
in Reelin-IR neurons in EC-layer II is indeed a shared feature in AD pa-
tients, and whether or not this association in the early stage of the dis-
ease selectively occurs in those parts of EC which are adjacent to the
rhinal and collateral sulci. If so, this will emphasize that a structural in-
teraction between Reelin and iAβ indeed is a crucial factor in the etiol-
ogy of AD, forming a signature of early disease-stages. This may lead
to refined hypotheses concerning disease-initiating mechanisms and
eventually to the development of targeted treatments of AD.
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