
Topology and its Applications 120 (2002) 105–156
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Abstract

If a continuous mapf :X → Q is approximable arbitrary closely by embeddingsX ↪→ Q, can
some embedding be taken ontof by a pseudo-isotopy? This question, called Isotopic Realization
Problem, was raised by Ščepin and Akhmet’ev. We consider the case whereX is a compactn-
polyhedron,Q a PL m-manifold and show that the answer is ‘generally no’ for(n,m) = (3,6);
(1,3), and ‘yes’ when:

(1) m> 2n, (n,m) �= (1,3);
(2) m > 3(n + 1)/2 and∆(f ) = {(x, y) | f (x) = f (y)} has an equivariant (with respect to the

factor exchanging involution) mapping cylinder neighborhood inX × X;
(3) m> n + 2 andf is the composition of a PL map and a TOP embedding.

In doing this, we answer affirmatively (with a minor preservation) a question of Kirby: does small
smooth isotopy imply small smooth ambient isotopy in the metastable range, verify a conjecture of
Kearton–Lickorish: small PL concordance implies small PL ambient isotopy in codimension� 3,
and a conjecture set of Repovs–Skopenkov. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A general mathematical problem is to decide whether a singular state of some system is
stable or unstable. In terms of geometric topology it can be expressed as follows: given
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a continuous mapf of a compactumX into a manifoldQ, can it beε-approximated
by an embeddingfε :X ↪→ Q for eachε > 0? If this is the case, the mapf is called
realizable [80] or discretely realizable [2]. If f is a constant map, its realizability evidently
coincides with embeddability ofX into RdimQ, meanwhile embeddability of a compactum
into Rm can be reduced to realizability of certain PL maps, cf. [80,43,75,2].

As far as in some cases theε-approximation off can be made in infinite number of
inequivalent ways (i.e., by embeddings, not joined by sufficiently small ambient isotopies
— e.g., a mapSn 	 Sn → Sn ∨ Sn ↪→ R2n+1, which embeds each sphere, can be
approximated by links with arbitrary linking number), it is natural to ask, whether an
approximation off can be viewed as acontinuous process, parametrized by real numbers?
The mapf is isotopically realizable, if there exists a homotopyHt :Q → Q, t ∈ I = [0,1],
such thatHt is a homeomorphism fort < 1 (such homotopy is called apseudo-isotopy, cf.
[46]), H0 = idQ andH1 ◦ g = f for some embeddingg :X ↪→ Q.

Isotopic Realization Problem (E.V. Š̌cepin, 1993; P.M. Akhmet’ev [2]). When does
discrete realizability imply isotopic realizability?

To the best of the author’s knowledge, the concept of isotopic realizability was first
considered by Blass and Holsztyński in 1971 [39]. It was independently introduced under
the present name in a paper by Ščepin and Štan’ko [75] (subsequent to the work of Ščepin
on uncountable inverse spectra and the earlier work of Štan’ko on embedding dimension).
Although both papers [39,75] also dealt with discrete realizability, the relationship was not
discussed there, and it appears that until recently the IR Problem above has been virtually
untouched.

Actually it traces back to the Keldyš Problem (1966) on realizability of wildly embedded
polyhedra by pseudo-isotopy of subpolyhedra [44,45] (see also [26], compare [65]).
That is, in the aboveX should be replaced by a polyhedron,Q by a PL manifold,
f by an embedding andg by a PL embedding, and, strictly speaking, the pointwise
equalityH1 ◦ g = f by the setwiseH1(g(X)) = f (X). In a few succeeding years the
Keldyš Problem was solved positively for wild surfaces in 3-manifolds [45] and for wild
n-polyhedra in PLm-manifolds,m−n � 3 [25] (cf. Theorem 3.5(a) below), and negatively
for certain wild knots inR3 [47,81] (see Example 1.2 below). On the other hand, it should
be noticed that isotopic realizability as a property of maps in the closure of the space of
embeddings is similar to tameness as a property of TOP embeddings in the closure of the
space of PL embeddings, moreover, in codimension� 3, the fact that all TOP embeddings
lie in the latter closure was used in proofs of equivalence of tameness and the 1-LCC
property [14,18,15] (see also [25, 8.2], [68, 2.5.1]).

The concept of discrete realizability was studied widely (see brief surveys in [69]
and [4]). For example, each self-map of the pseudo-arc is realizable (see [54]), meanwhile
for locally connected continuaX,Y , dimX � 1, all mapsX → Y ↪→ R2 are realizable
iff either X is contained in triod andY is in S1, or X is contained in the ‘letter q’ and
Y is in I [80]. Realizability of a given mapX → R2 seems to be a harder question
(see [67] for the PL case). Any map of ann-dimensional compactumX into Rm is



S.A. Melikhov / Topology and its Applications 120 (2002) 105–156 107

realizable form � 2n + 1 (cf. [79]) and even form = 2n if dim X × X < 2n [24,84].
All maps T n → T n ↪→standardR

2n are realizable ifn > 1 [43], meanwhile the maps
Sn → Sn ↪→standardR

2n are realizable whenevern �= 1,2,3,7, and are not, generally
speaking, ifn = 1, 3 or 7 [2,4]. Furthermore, for eachk one can find ann such that
all mapsSn → Sn ↪→st. R2n−k are realizable [3,4]. Surprisingly, in the space of maps
S2 → R3 ↪→st. R4 the subset of non-realizable maps is dense [6].

As for isotopic realizability, two principal results had been previously known.
From Černavskij’s Theorem on local contractibility of the homeomorphism group of

a closed manifoldM [19,27] it follows that discrete realizability implies isotopic for
self-maps ofM (thus for dimM �= 3 both are equivalent to the property of being cell-
like [78,68]). Secondly, Akhmet’ev showed in 1996 that all mapsSn → Sn ↪→st. R2n are
isotopically realizable forn = 4k + 1� 9 [2].

The real question, implicit in the above universal statement of the IR Problem and
originally motivating this deep result of Akhmet’ev as well as the present paper was,
does discrete realizability imply isotopic for maps of nice spaces (say, of a manifold into
Euclidean space) in high codimensions (say, greater than 2, in order to kill the fundamental
group)? Our main result is that it does not. The counter-example (Example 1.9) is an
explicit geometric construction with a self-contained verification, but it was not until the
rest of the paper had been written when it naturally appeared. The major part of the paper is
devoted to the reduction of the IR Problem for maps of nice spaces in the metastable range
to a homotopy-theoretic question, which, in turn, admits an answer in terms of vanishing
of certain cohomological obstructions.

Despite such an algebraization, it is still unknown whether the above conditionn =
4k + 1 is really necessary, and even whether2 discrete realizability implies isotopic for
all mapsSn → R2n−1 ↪→st. R2n (see [59] for partial results). A new technique seems
to be necessary here, which may be also useful in attacking the following problem [6]:
Supposef :M → Rn is a generic smooth map andi :Rn ↪→ Rn+k the standard inclusion,
does discrete realizability ofi ◦ f imply that f can be factored into the composition of
an embeddingM ↪→ Rn+k and the projectionRn+k → Rn? (The latter clearly implies
isotopic realizability ofi ◦ f .)

1.1. Low-codimensional examples

In the general setting it is easy to construct discretely realizable maps which are not
isotopically realizable.

Example 1.1. Let S be the countable union ofn-spheresSn
1 , S

n
2 , . . . , compactified by a

pointp, and letf :S 	 q → Rn+1 be a map, throwing the pointsp,q onto the origin and
eachSn

k homeomorphically onto the standard sphere of radius 1/k centered at the origin.
Clearly,f is realizable but not isotopically.

2 The answer here appears to be negative. The example for eachn = 2k � 4 is included in [59]. It is also shown
in [59] that if n �= 5,6 and neithern nor n + 1 is a power of 2, then any mapSn → Sn ⊂ R2n is isotopically
realizable.
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Fig. 1.

There are also somewhat less straightforward examples.

Example 1.1′. Let P denote the pseudo-arc,p :P 	 P → P the trivial double cover and
i :P ↪→ R2 any embedding yielded by the Bing definition of the pseudo-arc [8,54] where
all links are round disks in the plane. Clearly, the compositioni ◦p is discretely realizable,
however in Section 2 we show that it is not isotopically realizable.

Perhaps it is worth determining, which compacta admit such natural maps into Euclidean
space, realizable discretely but not isotopically, in particular, whether the standard
embedding of thep-adic solenoid intoR3 (cf. Example 1.9) precomposed with the trivial
double cover is isotopically realizable.

However, in this paper we treat such cases as pathological, and to eliminate them we
restrict the spaces under consideration in the IR Problem.

From nowwe assume the domain X to be a compact n-polyhedron and the target
space Q a PL m-manifold (without boundary). In this setting, the following example was
known.

Example 1.2. Let f : I ↪→ R3 be the Wilder arc (i.e., one of the two wild arcs shown
on Fig. 1) or, more generally, a non-trivial Wilder arc in the sense of [31]. Up to
an ambient isotopy, we can assume thatf consists of infinitely many tame knots
f |[ai ,ai+1] : [ai, ai+1] ↪→ R2 × [ai, ai+1] (each of them can be chosen of arbitrary non-
trivial isotopy class), whereai = 1/2 − 1/2i , i = 1,2, . . . , and of a straight line segment
f |[1/2,1]. It was noticed by Keldyš [47] and Sikkema [81] thatf cannot be obtained by a
pseudo-isotopy of a tame arc.

For convenience of the reader (since in [81] the reduction of Theorem 1 to Theorem 2
was omitted, while the argument in [47] seems to be too complicated to prove this particular
statement), we outline a proof. Indeed, suppose on the contrary thatg : I ↪→ R3 is a PL arc
andHt :R3 → R3 a pseudo-isotopy such thatH0 = id andH1 ◦ g = f . The arcg is the
restriction of a PL knotḡ :S1 ↪→ R3 (it is supposed thatI ⊂ S1), and without loss of
generalityHt ◦ ḡ(S1 \ I) is sufficiently far fromf ([1

4,
3
4]) for all t ∈ I (for Ht andg can

be assumed as close as desired to the identity and tof , respectively). But then for eachn
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there exists anε > 0 such thatH1−ε ◦ ḡ can be decomposed into at leastn knots, which
contradicts the uniqueness of decomposition ofḡ into prime knots (cf. [30]).

We call a discretely realizable mapf :X → Q continuously realizable, if ∀ε > 0 ∃δ > 0
such that each embeddinggδ :X ↪→ Q, δ-close tof , can be taken ontof by anε-pseudo-
isotopy. Of course, every continuously realizable map is isotopically realizable, but not vice
versa, as Example 1.2 shows. We will see below that maps, realizable discretely but not
continuously, are often easier to find and to classify than ones realizable discretely but not
isotopically. That is why in what follows we keep in mind, along with the IR Problem, the
following Pre-limit IR Problem: When does realizability imply continuous realizability?

Example 1.3. The mapf : I 	 I → I ∨ I ↪→ R3, whose image is shown on Fig. 1, is
not isotopically realizable. As in Example 1.2, the proof rests on the Schubert Theorem of
uniqueness of decomposition into prime knots.

The following argument was inspired by an idea due to Akhmet’ev. First let us define
an invariant of PL links. Given a PL linkl :S1

1 	 S1
2 → R3 with vanishing linking

number, we consider a decomposition ofl|S1
1

into the connected sum of prime knots

k1, k2, . . . , kp :S1
1 → R3. We callki inessential, if the homotopy class ofl|S1

2
in R3 \ l(S1

1),

regarded as a conjugate class inπ1(R
3 \ l(S1

1)), lies in the kernel of the homomorphism

π1
(
R3 \ l

(
S1

1

)) → π1
(
R3 \ ki

(
S1

1

))
,

yielded by introduction of the commutativity relations killing the rest prime knots
k1, . . . , ki−1, ki+1, . . . , kp . We defineα(l) to be the number of essential prime knots among
k1, . . . , kp.

Now suppose that there exists a (possibly wild) embeddingg : I1 	 I2 ↪→ R3 and a
pseudo-isotopyHt :R3 → R3 such thatH0 = id andH1 ◦ g = f . Extendg by adding
two arcs to obtain a link of two (possibly wild) knots̄g :S1

1 	 S1
2 ↪→ R3 with zero

linking number. It can be assumed thatHt ◦ ḡ(S1
i \ Ii), i = 1,2, is sufficiently far from

f ([1
4,

3
4] 	 [1

4,
3
4]) for all t ∈ I . It is easy to see that for each positive integern there exists

anε > 0 such that for every PL linkl, sufficiently close toH1−ε ◦ ḡ, the invariantα(l) is
greater thann. On the other hand, for reasons of compactness (see Section 2 for details)
α(l) is bounded for PL linksl, sufficiently close tōg.

Remark. It is not clear whetherα(l) necessarily stabilizes asl → ḡ. This is evidently true
if some polyhedral neighborhood ofḡ(S1

1) in R3 \ ḡ(S1
2) is homeomorphic to the solid

torus. In general it seems (cf. Example 1.5) that, whatever happens to the quantity of the
essential prime knots, their isotopy types need not stabilize.

Example 1.3′. If we replace the Wilder arcs in the previous example by the wild arcs from
[66, p. 303], we will obtain an isotopically realizable map (compare to [47, Example 1]).
Initial steps of a pseudo-isotopy are indicated on Fig. 2.
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Fig. 2.

The above argument in Example 1.3 works equally well for plenty of maps, similar to
the one on Fig. 1, in particular when one of the two wild arcs on Fig. 1 is replaced by a
straight line segment. One may focus his attention on a class of maps for which it does
not work, namely, the mapsI 	 I → I ∨ I ↪→ R3 whose restriction on each component
is a tame arc. (For example, the mapI 	 I → R3, obtained from Fig. 1 by replacing
each elementary link of two trefoils with the Whitehead link.) The question, whether
these maps are isotopically realizable, seems to be important, because the contrary would
show that, in the range, the phenomenon of a map, realizable but not isotopically, is not
just a ramification of the phenomenon of a wild embedding, but is somewhat completely
different. More generally:

Question I. Does there exist a discretely realizable but not isotopically realizable map
which is a locally flat topological immersion?3

The positive answer would follow from the positive answer to a general problem in the
link theory [60]. Speaking informally, is there a natural theory of ‘links modulo knots’
with a well-defined operation of connected sum admitting accumulation of complexity
(that is, for some ‘link modulo knot’λ and anyλ′ and any positive integern there exists
a positive integerN such that for anyλ′′, the connected sum(&Nλ)&λ′′ is not equivalent
to (&nλ)&λ

′)? See [60] and [61] for precise statement and some partial results concerning
the latter question, which turns out to be somewhat related to the long-standing problem of
equivalence of the bounded Engel condition and nilpotence in the class of finitely generated
groups.

3 Recently such maps were found, namely a series of mapsSn → R2n, n � 3 [59]. However, for maps of a
1-manifold intoR3 the question remains open.
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Fig. 3.

Another question, arising from the above examples: should a map, realizable discretely
but not isotopically, necessarily be of infinite complexity (in some sense), or does there
exist, say, a PL map such that the better we try to approximate it, the more ‘knotted’
embedding we should use? We make this more precise as follows:

Question II. Does there exist a PL map which is PL discretely realizable but not PL
isotopically realizable?

The definitions ofPL (discrete, isotopic, continuous) realizability can be obtained by
stating the definitions above in the PL category. Although the answer is unknown in general
(see Section 1.2 for the codimension� 3 case), we suggest the following negative answer
to the pre-limit version of the latter problem:

Example 1.4. The PL unknotf0 :S1 ↪→ R3 is not PL continuously realizable, for there
exist PL knotsf1/k :S1 ↪→ R3 (see Fig. 3), arbitrarily close tof0, which cannot be taken
onto f0 by a small PL pseudo-isotopy. (One can drop ‘small’ by the price of replacing
the knotsf1/k with the linksf ′

1/k, obtained in the similar way from the Hopf linkf ′
0.)

We prove this in Section 2 by showing thatf0 is not equivalent tof1/k ’s by a small PL
(possibly not locally flat) isotopy. One cannot obtain such example by tying small knots on
the image off0, since they can be untied by a small PL pseudo-isotopy pushing them to
points.

Example 1.4′. Alternatively, recall the Hsiang–Shaneson–Wall–Casson–Kirby–Sieben-
mann example of PL homeomorphisms of ann-torus,n � 5, arbitrarily close to the identity
(therefore small isotopic to the identity) but not PL isotopic to it [49, proof of Theorem C],
[50, Appendix 2 to Essay IV]. (This example was the key ingredient in the elementary
disproof of the Hauptvermutung for manifolds [77, §2], [49, §0], [50].) Perhaps the knots
f1/k from the previous example can lead to a similar construction, cf. [23, §12]. See also
[25, end of §7] and [16].

Finally we remark that the straightforward way to disprove isotopic realizability of a
continuous mapf :S1 	 S1 → R3 is to measure the way of linking of two simple closed
curves by a positive integerN , tending to infinity as they get closer tof . In general, the
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problem of finding such invariants of a wild link seems to be intricate and poorly studied
(however, see [51, Part II] and [61] for possible sources of such invariants, leaving alone
α(l) from Example 1.3). One of the reasons for this difficulty is existence of the Bing
sling [9], closely related to the knotsf1/k from Example 1.4.

Example 1.5. Given a link l :S1 	 S1 ↪→ R3, we defineN(l) to be the minimal number
of intersections of distinct components under a null-homotopy of the second component.
Let h0 be the Hopf link andhi :S1

1 	 S1
2 ↪→ R3 be obtained fromhi−1 by replacing a small

regular neighborhood ofhi−1(S
1
1) by the solid torus containing the knotf1/k(i), wherek

is some sufficiently fast growing function, providing dist(hi−1, hi) � 1/2i . In other words,
hi−1|S1

1
is the axis ofhi |S1

1
in the sense of [30], meanwhilehi |S1

2
= hi−1|S1

2
. The limit

of hi ’s is a wild link h :S1 	 S1 ↪→ R3 (compare to [9, Fig. 1]). In the verification of
Example 1.4 in Section 2 we show thatN(f ′

1/i ) = 3 for eachi. HenceN(hi) = 3i and
N(h) = ∞.

1.2. Isotopic realization in higher codimensions

Whereas every mapf :Xn → Qm is discretely realizable (even approximable by
PL embeddings) wheneverm � 2n + 1, the ‘stable range’ for isotopic and continuous
realizability is, generally speaking,m � 2n + 2 (this restriction is sharp by the above
examples). Indeed, sufficiently close PL embeddingsXn ↪→ Qm, m � 2n+2, are joined by
a small PL ambient isotopy (cf. [11, 5.5]), and the statement follows (cf. [46, Lemma 1]).
We shall see that often the restrictionm � 2n + 2 can be weakened, especially for maps
satisfying some additional assumptions of ‘niceness’.

Theorem 1.6. Let Xn be a compact polyhedron, Qm a PL manifold, m − n � 3.
(a) Any PL realizable PL map f :X → Q is PL continuously realizable.
(b) If h :X → Y is a PL map into a polyhedron Y , i :Y ↪→ Q is an embedding and i ◦ h

is realizable, then i ◦ h is continuously realizable.

In part (a), under a stronger assumptionm> 3(n+ 1)/2,Q = Rm, a weaker conclusion
of PL isotopic realizability was conjectured in [70, 1.9d]. A special case of (b) was
proved in [6]: if X is a closed smooth manifold,f :Xn → R2n−1 a generic smooth map,
i :R2n−1 ↪→ R2n the standard inclusion,i ◦ f is realizable, theni ◦ f is isotopically
realizable. The proof of Theorem 1.6 is based on the results of [25] (see Section 3).
We reduce (b) to (a) and prove the latter using slicing techniques (see Section 4). For
(n,m) = (1,3) both statements of Theorem 1.6 fail by the above examples, and so does
isotopic realizability in (b), but using the proof of (a), it is easy to verify that PL isotopic
realizability in (a) holds in this case.

To approach the general case, wheref is an arbitrary continuous mapping, we introduce
ε’s into the Haefliger–Harris theory of isovariant maps. In the metastable range there is
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a certain correspondence between embeddings and isovariant maps, and in Section 7 we
extend it for discrete and isotopic realizability:

Criterion 1.7. Let Xn be a compact polyhedron,Qm a PL manifold,f :X → Q a (PL)
map,m � 3(n+ 1)/2 in the (a)’s andm> 3(n+ 1)/2 in the (b)’s.

(a−) [37] f is (PL) homotopic to a (PL) embedding ifff 2 :X × X → Q × Q is
equivariantly homotopic to an isovariant map.

(a) f is (PL) realizable ifff 2 is ε-approximable by isovariant maps for eachε > 0.
(a+) Moreover, for eachε > 0 there existsδ > 0 such that iff 2 is δ-close to an

isovariant map, thenf is ε-close to a PL embedding.
(b−) [37,25] (PL) embeddingsg,h :X ↪→ Q are (PL ambient) isotopic iffg2, h2 are

isovariantly homotopic. (In the TOP case, no restrictions of local flatness are
imposed on isotopy, in the spirit of [66].)

(b) f is (PL) isotopically realizable iff there is a homotopyΦt :X×X → Q×Q such
thatΦ1 = f 2 andΦt is isovariant fort < 1.

(b+) Moreover, for eachε > 0 there existsδ > 0 such that ifg :X ↪→ Q is a (PL)
embedding andg2 is δ-homotopic tof 2 by a homotopyΦt , isovariant fort < 1,
theng is taken ontof by a (PL)ε-pseudo-isotopy.

A mapΦ :X ×X → Q×Q is equivariant if it commutes with the involutions(x, y) ↔
(y, x) on X × X andQ × Q, and isovariant (cf. [35]), if in additionΦ−1(∆Q) = ∆X ,
where∆X means the diagonal of the productX × X. The ‘only if’ parts are evidently
true without any dimensional restrictions. The TOP case of (b−) follows from its PL case,
proved in [37], and an easy corollary (see Theorem 3.5(a)) of [25, 6.1+8.1]. See [35] for
smooth and [82,83] for various deleted product versions of (a−) and (b−).

For Q = Rm the PL case of (a) was proved in [70], and seemingly its methods suffice
to prove forQ = Rm the statement of (a+), cf. [70, pre-limit formulation of 1.2]. On
the other hand, the deleted product theory of [70] does not work in an arbitraryQ, and,
which seems to be more important, its natural generalizations beyond the metastable
range, the deletednth power obstructions, turn out to be incomplete even in Euclidean
space [83]. That is why we reestablish the result of [70] in the more reliable setting of
isovariant maps. To prove (b+), whose special case was conjectured in [70, 1.9c], we
need, besides the straightforward boundary version of (a+), the controlled version of the
classical Concordance Implies Isotopy Theorem, which turns out to be non-trivial and of
independent interest (see Section 1.3).

Since a constant mapX → Q realizes discretely (or isotopically) iffX embeds intoRm,
(a) and (b) generalize the caseQ = Rm of (a−). Consequently by [76] (a), (b) are untrue
for each(n,m) such that 3< m < 3(n+ 1)/2. Counterexamples directly to (a), (b) for
(n,m) = (2,4) can be deduced from [6].

Corollary 1.8. Let Xn be a compact polyhedron and Qm a PL manifold.
(a) If m = 2n+ 1> 3, every continuous map f :X → Q is continuously realizable.
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(b) If m > 3(n+ 1)/2, discrete realizability implies continuous for a map f :X → Q

such that ∆(f ) = {(x, y) ∈ X × X | f (x) = f (y)} has an equivariant, with respect
to the factor exchanging involution, mapping cylinder neighborhood in X × X.

The proof is given in Section 8. Underequivariant mapping cylinder neighborhood of
an invariant subspaceA of a spaceB we mean a closed invariant neighborhood ofA

in B which is equivariantly homeomorphic to the mapping cylinderA ∪n×0�→g(n) N × I

of some equivariant mapg :N → A. In particular, the hypothesis of (b) is satisfied if
∆(f ) is an invariant subpolyhedron ofX × X. Thus we obtain an alternative proof of
Theorem 1.6(b) in the metastable range. Analogously for Theorem 1.6(a) (the required PL
version of Corollary 1.8(b) follows from the PL part of Criterion 1.7 analogously to the
proof of Corollary 1.8(b)); this yields a different proof of [70, Conjecture 1.9d].

Corollary [5]. Let Xn be a compact polyhedron, Qm a PL manifold, m � 3(n+ 1)/2,
and f :X → Q a discretely realizable map. The composition of f and the inclusion
Q = Q × 0 ↪→ Q × R is isotopically realizable.

Example 1.9. Let us construct a mapS1 × B2 	 B3 → R6 (in codimension 3), realizable
discretely but not isotopically.

Let T = T0 ⊃ T1 ⊃ T2 ⊃ · · · be a sequence of solid toriTi
∼= S1 × B2 such that

each inclusionTi ⊂ Ti−1 induces multiplication by 3 in 1-dimensional homology. The
intersectionS = ⋂

Ti is the triadic solenoid (cf. [28]). We define a sequence of maps
fi :T → R3 \0 as follows. For eachi > 0 letB3

i be the(2−i )-neighborhood of the origin 0
in R3, andxi be a point inB3

i \ 0. Letf0 mapT ontox1, and fori > 0 putfi = fi−1 on
T \ Ti and letfi |Ti : (Ti, ∂Ti) → (B2, ∂B2) → (B3

i \ 0, xi) be any map takingTi+1 onto
xi+1 and inducing isomorphism in relative 2-cohomology.

Then the limit mapf :T → R3 meets 0 inf (S) and has the following property: the
absolute magnitude of the differenced(ϕ,f0) ∈ H 2(T , ∂T ;π2(R

3 \ 0)) is arbitrarily great
for every mapϕ : (T , ∂T ) → (R3 \ 0, x1), sufficiently close tof . Indeed, from the fact that
each homomorphism in the sequence

· · · → H 2(T ,T \ T2) → H 2(T ,T \ T1) → H 2(T , ∂T )

is multiplication by 3 of the groupZ of integers, it follows, firstly, thatd(fi, f0) =
1 + 3 + · · · + 3i−1 = (3i − 1)/2 for i > 0 and, secondly, thatd(ϕ,ψ) ∈ 3iZ for each two
mapsϕ,ψ : (T , ∂T ) → (R3 \ 0, x1) agreeing withf on T \ Ti . Given i > 0, we takeϕ
so close tof that it can be homotoped, keeping image inR3 \ 0, to agree withf , hence
with fi , onT \ Ti . Then

d(ϕ,f0) ∈ 3i − 1

2
+ 3iZ

and, consequently,∣∣d(ϕ,f0)
∣∣ � 3i − 1

2
.
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It follows that there does not exist a homotopyht :T → R3 such thath1 = f and
imht ⊂ R3 \ 0 for t < 1.

Now let us usef and the standard inclusionB3 ↪→ R3 to obtain a new mapF :T 	B3 →
R3 × 0∪ 0× R3 ↪→ R6. It is discretely realizable, for there are embeddingsFi :T 	B3 →
R6, i = 1,2, . . . , defined byFi |T (p) = (fi(p), gi(p)), wheregi :T ↪→ B3

i ⊂ R3 are some
embeddings, and byFi |B3 = F |B3. On the other hand,F is not isotopically realizable, for
otherwise it could be assumed (see Remark 6.1) that the image ofB3 was fixed under the
pseudo-isotopy, and hence there would exist a homotopyht as above.

Alternatively, isotopic realizability ofF would imply existence of a homotopyHt :T ×
B3 → R6 such thatH1(p, q) = F(p)−F(q) for each(p, q) ∈ T ×B3 and imHt ⊂ R6 \0
for t < 1, which can be shown to be impossible analogously to the above argument. (Ht is
(pseudo-isotopy|embeddedT )× (pseudo-isotopy|embeddedB3), composed with the projection
R6 × R6 → R6 given by(x, y) �→ x − y.)

Example 1.9′. It is easy to see that, if in the above construction the mapfi |Ti was replaced
with one inducing multiplication byk for eachi, wherek �≡ 1 mod3, or, instead, the triadic
solenoid was replaced with the dyadic one, then the resulting map, although isotopically
realizable, would still be not continuously realizable.

Actually Example 1.9 can be improved to yield a series of mapsSn → R2n, n � 3,
realizable discretely but not isotopically [5]. On the other hand, this example, in view of
Criterion 1.7, opens up the way to a complete algebraic description of isotopically and
continuously realizable maps among discretely realizable maps in the metastable range.
Such a description was obtained recently, and for completeness we state it briefly (for the
caseX = Sn, Q = Rm; the general case is conceptually the same but involves additional
technicalities).

Given a continuous mapf :Sn → Rm, let us consider open sets

U = Sn × Sn \∆Sn ⊃ Uf = Sn × Sn \∆(f ) ⊃ Uf
ε = Sn × Sn \ Pε,

where Pε is some fixed closed polyhedral neighborhood of∆(f ), containingNε =
{(x, y): ‖f (x) − f (y)‖ < ε} and contained inN2ε. The compositionf̃ :Uf → Sm−1 of
the restrictionf 2|Uf and the obvious canonical homotopy equivalence

Rm × Rm \ ∆Rm → Rm \ 0 → Sm−1

is equivariant with respect to the factor exchanging involutiont on Uf ⊂ Sn × Sn and
the antipodal involutions onSm−1. On the quotient spaceU/t , let us consider the locally
constant sheafZm with each stalk isomorphic toZ and the action ofπ1(U/t) on the stalks
defined by

α �→
{
s∗, δ∗(α) = 1,

0, otherwise.

Hereδ∗ :π1(U/t) → Z2 denotes the connecting homomorphism from the exact sequence
of the bundleU → U/t and 1 denotes the non-trivial element ofZ2, while 0 denotes the
trivial automorphism ands∗ the automorphism 1�→ (−1)m (induced by the involutions)
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of the groupZ = πm−1(S
m−1). For eachX ⊂ U we writeHm−1

eq (X) for the cohomology

group Hm−1(X/t;Zm|X/t ). Let (f ) ∈ Hm−1
eq (Uf ) denote the first obstruction for

equivariant homotopy (cf. [22, §§2,4]) of the maps̃f and ĩ|Uf , where i :Sn ↪→ Rm

is the standard (or any, in view of [87]) inclusion. Similarly, we denote byoε(f ) ∈
Hm−1

eq (U
f
ε ) the first obstruction for equivariant homotopy of the restrictionsf̃ |

U
f
ε

, ĩ|
U

f
ε

.
The latter obstruction can be equivalently defined in the spirit of van Kampen (cf. [5],
compare to [70, 1.4]). Finally, for embeddingsg1, g2 :Sn ↪→ Rm, ε-close to f , the
first obstructiond(g1, g2) for equivariantε-homotopy of (g̃i |Uf )’s is an element of
Hm−1

eq (U,U
f
ε ). Let us writeGk = Hm−1

eq (U,U
f

2−k ) and letj l
k :Gl → Gk , l > k, be the

forgetful homomorphism.
The following result, whose proof is based on Criterion 1.7, shows in particular that

from the algebraic viewpoint, maps yielding negative solution to the metastable case of the
IR Problem look quite similar to phantom maps [32].

Theorem4 [5]. Let f :Sn → Rm be a continuous map, m> 3(n+ 1)/2.
(a) f is discretely realizable iff oε(f ) = 0 for ε = 1

2,
1
4,

1
8, . . . .

(b) f is isotopically realizable iff o(f ) = 0.
(c) Suppose that f is discretely realizable. f is continuously realizable iff the inverse

spectrum {Gk; j l
k} satisfies the Mittag–Leffler condition or, equivalently [32],

lim←
1 {

Gk; j l
k

} = 0.

(d) Suppose that f is discretely realizable. f is isotopically realizable iff

0 = O(f ) ∈ lim←
1 {

Gk; j l
k

}
.

The obstructionO(f ) can be defined (cf. [59]) as the class of the sequenced(g1, g2),

d(g2, g3), . . . , where gk :Sn ↪→ Rm is an embedding,(2−k)-close tof . See [57] for
definition and basic properties of the derived limit functor. The fact that no obstructions
arise in dimensions other thanm−1 is due to the Serre Theorem on finiteness of homotopy
groups of spheres. Using the fact that the forgetful homomorphismH ∗

eq(·) → H ∗(·) factors

4 In the casem < 2n, the proof of this theorem in [5] contains a mistake (on page 81, line 8). The argument
in [5] works to prove the theorem only under the additional assumption that the given mapf is discretelyk-
realizable for eachk = m+ 1,m+ 2, . . . ,2n (see definition below). Without this assumption, the parts (a) and (b)
are incorrect already form = 2n − 1, while (d) fails form = 2n − 5 � 9 [59]. Fortunately, the part (c) (and
hence its corollary) is correct as stated, but its proof in [5] is insufficient without the additional assumption; the
correct proof rests on higher cohomology operations and appears in [59] (see also Erratum to [5]). Let us state
the required definition of discretek-realizability. Assume 2n >m> 3(n+ 1)/2 andm � k � 2n. Let us call a PL
mapf :Sn → Rm ak-embedding if there is a triangulationT of Sn such thatf is simplicial in some subdivision
of T and embeds each simplex ofT , andf (σ) ∩ f (τ ) = f (σ ∩ τ ) for any two simplicesσs , τ t of T such
that s + t � k. Let us call a mapf :Sn → Rm discretely k-realizable, if ∀ε > 0 ∃δ > 0 such that any(k − 1)-
embedding,δ-close tof , is PL ε-homotopic in the class of(k − 2)-embeddings to somek-embedding. It is easy
to see thatf is discretelym-realizable iffoε(f ) = 0 for all ε > 0.
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through the multiplication by 2 inH ∗(·), and the Alexander duality, one immediately
obtains the following

Corollary [5]. Let f :Sn → Rm be a discretely realizable map, m > 3(n+ 1)/2. If the
canonical epimorphism H2n−m(∆(f )) → Ȟ2n−m(∆(f )) between the reduced Steenrod
(exact; cf. [57]) and the reduced Čech (continuous; cf. [28]) homology has trivial kernel,
then f is continuously realizable.

This puts the IR Problem in the metastable range in the context of the discussion
‘continuity versus exactness’ in Eilenberg and Steenrod [28, p. 265] (see [29] for a modern
version). It follows, e.g., that if a mapf :Sn → R2n, n � 4, is realizable discretely but not
continuously, then the compactum∆(f ) cannot be zero-dimensional or have countable
Steenrod 0-homology (cf. [36]).

Remark. In proving Criterion 1.7 we obtain a number of interesting results in the
PL category in the metastable range, among which are: sufficient conditions for existence
of an embedding in theε-homotopy class of a map (Theorem 7.1), of an embedding
in the ε-regular homotopy class of an immersion (Theorem 7.2), of an immersion in
the ε-homotopy class of a map (Theorem 7.4), of anε-ambient isotopy between close
embeddings (Corollary 7.9(a)). These all are controlled versions of Harris’ criteria [37],
however we use some ideas, additional (proof of Theorem 7.2) and alternative (proof
of Theorem 7.4) to that of [37]. In fact, our proof of Theorem 7.4 is a new geometric
proof of [37, Theorem 2] (roughly a half of Criterion 1.7(a−)) and a good candidate for
generalization fork-tuples of points.

Conjecture 1.10. In each rangem � (k + 1)(n+ 1)/k (m > (k + 1)(n+ 1)/k) the
analogue of Criterion 1.7 holds for isovariant maps(Xn)k → (Qm)k, providedm− n � 3.

We call a mapΦ : (Xn)k → (Qm)k isovariant if it commutes with the actions of
the symmetric groupSk on (Xn)k and (Qm)k , and if Φ−1(∆S

Q) = ∆S
X for eachS ⊂

{1,2, . . . , k}, where∆S
X = {(x1, . . . , xk) ∈ (Xn)k | i, j ∈ S ⇒ xi = xj }. Such a result

cannot be expected in codimension 2: the reader may wish to verify that non-triviality of
the linkf ′

1/k from Example 1.5 (as well as that of thekth Milnor’s link [66] and of the link
Whiteheadk, cf. [51]) is not detected by the isovariant homotopy class of the(k + 2)th
power mapping. It is worth observing that, in contrast to the metastable range (where
smooth embeddability and quasi-embeddability are equivalent to PL embeddability), the
smooth and deleted versions of Conjecture 1.10 are untrue [34,83].

1.3. Other definitions of realizability and relations on close embeddings

A (PL) mapF :X×I → Q×I will be called a (PL)pseudo-concordance if F−1(Q×1)
= X×1 andF |X×[0,1) is an embedding. We call a (PL) mapf :X → Q (PL) concordantly
realizable if f × id1 extends to a (PL) pseudo-concordanceF :X × I → Q × I . If, in
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Fig. 4.

addition,F−1(Q × 0) = X × 0, thenf is (PL) pseudo-concordant to the unique (PL)
embeddingg :X ↪→ Q such thatg × id0 = F |X×0.

Example 1.11. The mapf from Example 1.3 is concordantly realizable. Several slices
(imF) ∩ R3 × t of a pseudo-concordanceF are shown on Fig. 4.

In higher codimensions the situation is again quite different:

Theorem 1.12. Let Xn be a compact polyhedron, Qm a PL manifold, m − n � 3. Then
each (PL) concordantly realizable (PL) map f :X → Q is (PL) isotopically realizable.
Moreover, ∀ε > 0 ∃δ > 0 such that every (PL) embedding g :X ↪→ Q, (PL) δ-pseudo-con-
cordant to f , can be taken onto f by a (PL) ε-pseudo-isotopy.

The proof is given in Section 6; the TOP case is based on the following controlled version
Theorem 1.13(a) of the classical PL Concordance Implies Isotopy Theorem (CIIT):

Theorem 1.13. For each ε > 0 and a positive integer n there exists δ = δ(n, ε) > 0 such
that the following holds.

(a) Let Xn be a compact polyhedron and Qm a PL manifold, m−n � 3. Then each two
PL δ-concordant embeddings f,g :X ↪→ Q are PL ε-ambient isotopic.

(b) Let Xn be a compact smooth manifold, Qm a smooth manifold, m > 3(n+ 1)/2.
Then each two smoothly δ-concordant embeddings f,g :X ↪→ Q are smoothly
ε-ambient isotopic.
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It seems that Hudson’s original proof of CIIT [40] (as well as Lickorish’s proof of the
caseQ = Sm [55, Theorem 6]) does not work to prove 1.13(a) (compare to remarks in
[62, Introduction], [70, §2]). In [73] Rourke sketched a new proof of CIIT, and in [42,
last paragraph] it was ‘expected that, when the details of Rourke’s proof are published,
they will apply’ to prove 1.13(a). A special case of 1.13(a) was conjectured in [70, 1.9a].
Perhaps 1.13(a) can be also proved by the methods of [25, proof of 7.1], but hardly by that
of [21, proof of Lemma 1].

Be that as it may, in Section 5 we present an explicit proof of 1.13(a). It is far from being
a trivial extension of either known proof of CIIT (this is clear at once from the statement
of Lemma 5.8), and it is also a new proof of CIIT (since Theorem 1.13(a) generalizes
CIIT, by taking a metric onQ with all distances< δ). Theorem 1.13(a), along with CIIT,
is untrue in codimension 2 because of slice knots and links. It is worth observing that in
our proof of 1.13(a) the main efforts are applied to obtainε-ambient isotopy, rather than
ambientε-isotopy. In the proof of 1.13(a) we use Theorem 3.3(a), which includes Miller’s
controlled version [62, Theorem 9] of Zeeman’s Unknotting Balls [87]. In turn, the∂Q �= ∅
version of 1.13(a), which is proved analogously, immediately implies [62, Theorem 9]
(this was pointed out in [42, last paragraph]) and [21, Lemma 1]. In [14, Idea of proof of
Theorem 3] a statement, similar to 1.13(a) was used with ‘reference’ to Hudson’s CIIT
(see [40]); the misquotation disappears in the revised proof [15].

Next we convert 1.13(a) to the smooth category and obtain Theorem 1.13(b). It answers,
at least to some extent, a question of Kirby [48, discussion preceding 2.1]: ‘suppose
m > 3(n+ 1)/2, is there a functionε of δ such that any smoothlyδ-isotopic smooth
embeddings are smoothlyε-ambient isotopic?’ (From the proof of 1.13(b) it follows that
ε can be taken asc(n) ∗ δ, wherec(n) is a constant depending onn = dimX.) It should
be mentioned that our proof of 1.13(b) uses Kirby’s partial answer to his question (see
Theorem 3.3(b)). We conjecture that 1.13(b) holds in codimension� 3.

A corollary of Theorem 1.13(b) is the smooth version 3.2(b+) of Edwards’ Theo-
rem 3.2(a) onε-equivalence of PL embeddings, close to a TOP embedding (see also Theo-
rem 3.5(b+)). Using 1.13(a) we also obtain an alternative controlled version 3.7+ of CIIT.

Example 1.14. In general, small (smooth or TOP/PL locally flat) isotopy, in particular
small concordance, does not imply small ambient isotopy. (Of course, it implies a great
smooth or TOP/PL ambient isotopy [38,27,74].) Indeed, take the standard circleS1 ⊂ R3

and tie, near a pointx ∈ S1, a small (e.g., trefoil) knot on it to obtain an embedding
f0 :S1 ↪→ R3. One can shift this small knot alongS1 by a (smooth or TOP/PL locally
flat) isotopyft , which, at each momentt ∈ I , has support in a small neighborhood of the
current position of the small knot on the circle. (Such an isotopy cannot be obtained by
means of rotation of the whole circle.) But it is clear (see Section 2 for details) thatf0 and
f1 can not be joined by a small ambient isotopy.

Finally, we relate the Š̌cepin–Štan’ko definition of isotopic realizability to the two
Akhmet’ev’s definitions [2]. A mapf :X → Q of a compact smooth manifold into a
smooth manifold isA1-(A2-)isotopically realizable, if there is a homotopyft :X → Q
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Fig. 5.

(respectivelyHt :Q → Q), called anA1-(A2-)pseudo-isotopy, such thatf1 = f (respec-
tively H0 = id andH1 ◦ g = f for some smooth embeddingg :X ↪→ Q), and which is
a smooth isotopy (respectively smooth ambient isotopy) fort < 1. Certainly,Ai -isotopic
realizability is not equivalent to isotopic realizability, see Example 1.2. Evidently,A2-
isotopic realizability impliesA1-. But the author does not see why the reverse implication
holds, as claimed in [2].

Example 1.15. The standard embeddingf :S1 ↪→ R3 is, of course, isotopically realizable
in either sense. However, there is anA1-pseudo-isotopyft fromf to an embedding, which
cannot be covered by a pseudo-isotopy (in particular, by anA2-pseudo-isotopy).

Indeed, rotate a small knot around the circle, as in Example 1.14, so that its size tends to
zero (henceft → f ) ast → 1 and so that the speed of its rotation, along with the number
of turns, tends to infinity ast → 1. If ft was covered by a pseudo-isotopyHt :Q → Q, we
would obtain a contradiction with Example 1.14.

In order to avoid too restrictive assumptions of smoothness, let us say that a map
f :X → Q is M-isotopically realizable, if there exists a homotopyft :X → Q, called
an M-pseudo-isotopy, such thatf1 = f and for eacht < 1 the mapft is a topological
embedding. The letter ‘M ’ accounts for the fact thatft for t ∈ [0,1) is an isotopy in the
sense of Milnor [66].

Question III. Does there exist anM-isotopically realizable map which is not isotopically
realizable?

By Theorem 1.12 such a map cannot be found in the codimension� 3 range.
Furthermore, the DIFF case of the following theorem, proved in Section 6, implies (in
view of Theorem 1.12) that in the metastable range all four definitions of pseudo-isotopy,
as well as all four definitions of isotopic realizability (A1 andA2 of Akhmet’ev,M in
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the spirit of Milnor, and the classical one of Ščepin–Štan’ko) are equivalent. For another
application of Theorems 1.12 and 1.16, see Remark 6.1.

Theorem 1.16. Let Xn be a compact polyhedron (compact smooth manifold), Qm a
PL (smooth) manifold, f :X → Q a continuous map, m − n � 3 (respectively m �
3(n+ 1)/2, n > 1 in (a), m> 3(n+ 1)/2 in (b)).

(a) If f is isotopically realizable, then there exists a pseudo-isotopy, taking a PL
(smooth) embedding g :X ↪→ Q onto f .

(b) If a PL (smooth) embedding g :X ↪→ Q is taken onto f by a pseudo-isotopy, then g

can be taken onto f by a pseudo-isotopy Ht :Q → Q such that whenever t ∈ [0,1),
Ht is a PL (smooth) isotopy.

A continuous mapf :X1 	 · · · 	 Xk → Q (where the componentsX1, . . . ,Xk are
fixed, but not necessarily connected) is calleddisjoinable, if it is approximable by link
maps (cf. [85,24,84]); a mapg :X1 	 · · · 	 Xk → Q is called a(generalized) link map if
g(Xi)∩g(Xj ) = ∅ wheneveri �= j (cf. [58]). We callf homotopically disjoinable if there
is a homotopyft such thatf1 = f andft is a link map fort < 1.

Example 1.17.
(i) The proof of Example 1.1′ allows to replace ‘(isotopically) realizable’ with

‘(homotopically) disjoinable’ in its statement.
(ii) The construction of Example 1.9 yields a mapS1 × B2 	 pt → R3, which is

disjoinable but not homotopically disjoinable.
(iii) The mapf from Example 1.3 turns out to be homotopically disjoinable. Indeed,

we start from two disjoint arcs. In the spirit of Example 1.11 we generate linking
trefoils, keeping ends of arcs fixed, by the price of self-intersections of components.
In the spirit of Example 1.3′ we compensate the increase of the linking number by
small loops tending to the singular point as the time approaches 1.

We conjecture that the analogues of 1.6–1.8 for homotopic disjoinability hold and can
be proved analogously. Moreover, the remark 1.17(iii) in conjuction with the facts that for
classical links singular link concordance implies link homotopy and thatκ-invariant has
trivial kernel up to link homotopy motivate a conjecture that every mapS1 	 · · ·	S1 → R3

is homotopically disjoinable.

Remark. For completeness let us consider a concept, approximately dual to homotopic
disjoinability, that is, admitting distant self-intersections and prohibiting close ones. We
call a mapf :X → Q locally isotopically realizable if there is a homotopyft :X → Q

such thatf1 = f andft is a topological immersion fort < 1.
From theC0-denseh-principle for smooth immersions it follows [2, proof of Lemma 2]

that if a compact smooth manifoldXn smoothly immerses into a smooth manifoldQm,
m − n � 1, then each mapf :X → Q is locally isotopically realizable.
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2. Verification of examples

Verification of 1.1′. The argument below was inspired by an idea of Skopenkov
(compare [72] and [70]). Suppose thatft :P × {0,1} → R2 is a homotopy such that
f1 = i ◦p andft (P ×0)∩ft (P ×1) = ∅ whenevert < 1. LetFt :P ×P → R2×R2 be the
map defined by(p, q) �→ (f (p × 0), f (q × 1)). (In other words,Ft = f 2

t |(P×0)×(P×1).)
ThenF−1

t (∆
R2) is empty fort < 1 and equals∆P = {(p,p) ∈ P × P } for t = 1.

SinceP is acyclic,P × P is acyclic and the mapF0 :P × P → R2 × R2 \ ∆R2 is
null-homotopic inR2 × R2 \ ∆R2. Therefore the map

F1|P×P \∆P :P × P \∆P → R2 × R2 \ ∆R2

is also null-homotopic inR2 × R2 \ ∆
R2. The latter map is equivariant with respect to the

involutions(p, q) ↔ (q,p) on P × P \ ∆P andR2 × R2 \ ∆
R2, and the latter space is

equivariant homotopy equivalent toS1 equipped with the antipodal involution. Thus we
obtain an inessential equivariant mapP × P \ ∆P → S1.

By [71], existence of such a map implies thatP × P \ ∆P is not connected. Suppose
that (p1,p2) and(q1, q2) lie in distinct connected components ofP × P \ ∆P ; without
loss of generalityp2 �= q1. Then either(p1,p2), (q1,p2) or (q1,p2), (q1, q2) lie in
distinct components, say the first ones. Consequently,p1 andq1 lie in distinct connected
components ofP \ p2. ButP has no separating points, and we arrive at a contradiction.

Verification of 1.3. We are to prove that for every wild link̄g :S1
1 	 S1

2 ↪→ R3

lim sup
l→ḡ,

l∈LPL

α(l) < ∞,

whereLPL denotes the subspace of PL embeddings in the space of all continuous maps
S1 	 S1 → R3, equipped with the topology of uniform convergence.

Assume on the contrary that there is a sequence of PL linksl1, l2, . . . , converging toḡ
and such thatα(li ) → ∞. Let N be a polyhedral neighborhood ofḡ(S1

1) in R3 \ ḡ(S1
2).

We can assume thatli(S1
1) ⊂ N for eachi. We fix a decomposition ofN into handles:

N = B3 ∪ H1 ∪ · · · ∪ Hq , whereHj
∼= D2 × I via a homeomorphismhj :D2 × I → Hj

andHj ∩ B3 = hj (D
2 × ∂I) (without loss of generality there are no 2-handles). By the

definition of a prime knot, there is a collection of disjoint 3-ballsBi,1,Bi,2, . . . ,Bi,α(li )

such that the boundary of eachBij meets li (S1
1) precisely in two points, separating

one essential prime knotki,ej : (I, ∂I) → (Bij , ∂Bij ) from all other prime knots in the
decomposition ofli |S1

1
. Sinceki,ej is essential, its image meets eachD2-fiber of some

handleHmij . By our assumptionα(li ) → ∞ as i → ∞, hence for some handleHl the
numberni of the knotski,ej such thatmij = l tends to infinity asi → ∞. Let us fix the
handleHl = hl(D

2 × I) and denote the images of the latter knots byκi,1, κi,2, . . . , κi,ni .
Now for eachi, j the intersectionκij ∩ Hl is the union of some PL arcs. Each of these

arcs meets eitherhl(D
2 × 0) or hl(D

2 × 1), and at least one of these arcs, denoted byaij ,
meetshl(D

2 × 1
2). The diameter ofaij is therefore at leastd = dist(hl(D

2 × 1
2), hl(D

2 ×
{0,1}). Since the arcsai,1, . . . , ai,ni are contained in disjoint curvesκi,1, . . . , κi,ni ⊂ li (S

1
1),
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the PL curveli (S1
1) contains at leastni disjoint subarcs, each of diameter at leastd . Since

ni tends to infinity asi → ∞, this is in contradiction with the assumption of convergence
of li ’s to ḡ.

Verification of 1.5. Let T be a small regular neighborhood off0(S
1) andl be a circle in

the complement ofT , linked with f0(S
1) with linking number one. IfHt :R3 → R3 is a

PL pseudo-isotopy taking a PL embeddingfε ontof0, thenht = Ht ◦ fε is a PL (possibly
not locally flat) isotopy (with all points of failure of local flatness occurring fort = 1), and
moreover ifHt is sufficiently small, the image ofht lies inT . The statement of Example 1.5
follows from Claims 2.1, 2.2 below.

Claim 2.1. If g :S1 ↪→ T is a PL embedding, the minimal number I (g) of transversal
intersections of a singular disk, spanned by l, with g(S1) is invariant under PL (generally
not locally flat) isotopy in T .

Proof. Letht :S1 ↪→ T be a PL (possibly not locally flat) isotopy andD be a disk, spanned
by l and meetingh0(S

1) in I (h0) points. It suffices to show that there is a diskD′, spanned
by l and meetingh1(l) in I (h0) points. Without loss of generality we can assume thatht

is either locally flat, or locally knotted at a unique pointa ∈ S1 in the momentt = 1/2, so
thatht = h0 outside a small neighborhoodU of a andht (U) ⊂ W , whereW is a regular
neighborhood ofh1/2(S

1) relativeh1/2(S
1 \U).

In the first caseht can be covered by an ambient isotopyHt [74], which carries the
disk D so that the number of intersections ofDt = Ht(D) with ht (S

1) = Ht(h0(S
1))

remains constant. In the second case we modify the diskD as follows. First we shift any
intersections withh0(S

1) alongh0(S
1) out of h0(U). Then the shiftedD, denoted bỹD,

does not meeth0(S
1) in W . Next we push̃D out ofW . It is possible since the kernel of

incl∗ :π1
(
R3 \ (h0(S

1) ∪ W)
) → π1

(
R3 \ h0(S

1)
)

is trivial. Indeed, introduction of commutativity relations into the subgroup ofπ1(R
3 \

(h0(S
1))), consisting of conjugates to the loops lying inW , yields

comm∗ :π1
(
R3 \ (h0(S

1))
) → π1

(
R3 \ (h0(S

1) ∪ W)
)

such that

incl∗ ◦ comm∗ = id .

Henceincl∗ has trivial kernel, consequently we can replaceD̃ by a diskD′ avoidingW .
Sinceht has its support inW , the diskD′ meetsh0(S

1) andh1(S
1) in the same points. ✷

Now let us recall the knotsf1/k from Example 1.5.

Claim 2.2. I (f1/k) = 3 for each k = 1,2, . . . (while I (f0) is clearly 1).

Proof. It is clear thatI (f1/k) � 3 for eachk = 1,2 . . . . There is ak-fold coverp :T → T

such thatp−1(f1(S
1)) = fk(S

1), henceI (f1/k) � I (f1). It remains to show thatI (f1)
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is not less than 3. Actuallyf1 is the trefoil knot, andl representsa−1b2 in its group
G = 〈a, b | aba = bab〉. A disk, spanned byl, cannot meetf1(S

1) in 2 points, for this
would imply an even linking number ofl andf 1(S1).

Suppose that there is a disk, spanned byl and meetingf1(S
1) transversely in one point.

Thenl is homotopic to a loop representing an element ofG of typeg−1bεg, whereg ∈ G,
ε = 1 or −1. Since[[l]] = [a−1b2] = [b] in G/[G,G] = H1(R

3 \ f (S1)), necessarily
ε = 1, hence for someg ∈ G the equalitya−1b2 = bg holds inG (herebg denotesg−1bg).
We will show this to be impossible by considering a representation ofG.

It is easy to see that the formulaea �→ (123), b �→ (432) yield a representationϕ :G →
A4 ⊂ S4 in the symmetric group (the well-known representationψ in S3 is insufficient,
sinceψ(a−1b2) = ψ(a−1) = ψ(bba)). We haveϕ(a−1b2) = (412) andϕ(bg) = (432)ϕ(g).
But (432) and(412)= (432)(13) are not conjugate inA4, which is a contradiction. ✷
Verification of 1.14. Suppose that the small isotopyft can be covered by a small ambient
isotopyHt :R3 → R3, H0 = id, H1 ◦ f0 = f1 (we omit the epsilonics). Denote byπ the
fundamental groupπ1(R

3 \ f0(S
1)). Let a ∈ π be the class of a small circle aroundS1

far from x. Let b be any element ofπ which is not a power ofa, and representb by a
small loopl (which necessarily lies nearx). ThenH1(l) lies possibly little farther fromx,
but still near it. Nowf1 has its small knot far fromx, hence far froml. This means thatl
should represent a power ofa in π = π1(R

3 \ f1(S
1)), which is a contradiction.

3. Some facts on close PL, DIFF and TOP embeddings

In this section we recall some approximation theorems to be heavily used in the rest
of the paper. Exceptions are Theorems 3.2(b+), 3.5(b+), 3.7+, which are not used in the
sequel; on the contrary, their proofs require Theorem 1.13, proved in Section 5.

Theorem 3.1.
(a) [20], [63], [12], [25, 8.1], [13]. Let (Xn,Y n−1) be a polyhedral pair, (Qm, ∂Q) a

PL manifold, m − n � 3. Then any TOP embedding f : (X,Y ) ↪→ (Q,∂Q) is ε-
approximable, for each ε :X → (0,∞), by a PL embedding g : (X,Y ) ↪→ (Q,∂Q).
Moreover if Z is a subpolyhedron of X and f |Z is PL, then it can be assumed that
g|Z = f |Z .

(b) [33], [48, 2.2]. Let Xn be a compact smooth manifold, Qm a smooth manifold
and m � 3(n+ 1)/2. Any TOP embedding f :X ↪→ Q is ε-approximable, for each
ε > 0, by a smooth embedding g :X ↪→ Q. Moreover if Z is a closed subset of X and
f is smooth on the δ-neighborhood of Z, then it can be assumed that g|Z = f |Z .

Theorem 3.2.
(a) [7], [15], [63], [25, 6.1]. Let (Xn,Y n−1) be a polyhedral pair, (Qm, ∂Q) a PL

manifold, m − n � 3, Z a subpolyhedron of X, and f : (X,Y ) ↪→ (Q,∂Q) a
TOP embedding. For each ε :Q → (0,∞) there exists δ :X → (0,∞) such that
any PL embeddings g,h : (X,Y ) ↪→ (Q,∂Q), δ-close to f , are PL ε-ambient
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isotopic. Moreover if g|Z = h|Z , then the isotopy can be chosen fixing g(Z) =
h(Z).

(b) Let Xn be a compact smooth manifold, Qm a smooth manifold, m > 3(n+ 1)/2,
Z a closed subset of X, and f :X ↪→ Q a TOP embedding. For each ε > 0 there
exists δ > 0 such that any smooth embeddings g,h :X ↪→ Q, δ-close to f , are
smoothly ε-isotopic. Moreover if g = h on the δ-neighborhood of Z, then the
isotopy can be chosen fixing g(Z) = h(Z).

(b+) In the (b) part, ‘ε-isotopic’ can be replaced with ‘ε-ambient isotopic’.

The (b) and (b+) parts are proved later in this section. We point out the following special
case of Theorem 3.2.

Theorem 3.3.
(a) [17,62,21]. Let Xn be a compact polyhedron, Qm a PL manifold, m − n � 3, and

f :X ↪→ Q a PL embedding. For each ε > 0 there exists δ > 0 such that any PL
embedding f ′ :X ↪→ Q, δ-close to f , is PL ε-ambient isotopic to f .

(b) [48, 2.1]. Let Xn be a compact smooth manifold, Qm a smooth manifold, m >

3(n+ 1)/2, and f :X ↪→ Q a smooth embedding. For each ε > 0 there exists δ > 0
such that any smooth embedding f ′ :X ↪→ Q, δ-close to f , is smoothly ε-ambient
isotopic to f .

Theorem 3.4.
(a) Let Xn be a compact polyhedron, Qm a PL manifold, m − n � 3. Any TOP isotopy

ft between PL embeddings f0, f1 :X ↪→ Q is ε-approximable, for each ε > 0, by a
PL isotopy gt between f0 and f1. Moreover if ft fixes a subpolyhedron Z of X, then
gt can be chosen fixing Z.

(b) [33], [48, 2.3]. Let Xn be a compact smooth manifold, Qm a smooth manifold and
m > 3(n+ 1)/2. Any TOP isotopy ft between smooth embeddings f0, f1 :X ↪→ Q

is ε-approximable, for each ε > 0, by a smooth isotopy gt between f0 and f1.
Moreover if ft fixes the δ-neighborhood of a closed subset Z of X, then gt can
be chosen fixing Z.

Proof of 3.4(a). (Compare to [56], [64, proof of Theorem 3]; see Remark 3.8 for an
alternative proof.) For eacht ∈ I let U(t) denote an open neighborhood oft in I such
that for eachs ∈ U(t) the embeddingfs is β(t)-close toft , where 2β(t) = δ3.2(a) is given
by 3.2(a) forε3.2(a) = ε/2 andf3.2(a) = ft ; we can assumeβ(t) < ε/4.

Since I is compact, it can be covered by a finite numberk of open intervals
U1,U2, . . . ,Uk , whereUi = U(si) for somesi ∈ I , s1 = 0, sk = 1 andUi ∩ Ui+1 �= ∅
for eachi = 1, . . . , k − 1; let ti be a point inUi ∩Ui+1. By 3.1(a) for eachi = 1, . . . , k − 1
there is a PL embeddinggi :X ↪→ Q, agreeing withfti onZ and such that dist(gi , fti ) <

min(β(si), β(si+1)). We put g0 = f0 and gk = f1. Then gi is 2β(si)-close tofsi and
2β(si+1)-close tofsi+1 for eachi = 0, . . . , k. By 3.2(a) for eachi = 0, . . . , k − 1 the
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embeddingsgi andgi+1 are PL 1
2ε-isotopic fixingZ. The stacked composition of these

isotopies is the required isotopy,ε-close toft . ✷
Theorem 3.5.

(a) Suppose that Xn is a compact polyhedron, Qm a PL manifold, m − n � 3, Z a
subpolyhedron of X, and f :X ↪→ Q a TOP embedding. For each ε > 0 there
exists δ > 0 such that for any PL embedding g :X ↪→ Q, δ-close to f , there is
an ε-isotopy ft :X → Q such that f0 = g, f1 = f and such that ft for t < 1 is a
PL isotopy. Moreover, if g|Z = f |Z , then ft fixes g(Z) = f (Z).
Furthermore, ft is covered by an ε-homotopy Ht :Q → Q such that:

H |Q×[0,1) is a PL homeomorphism;
H0 = idQ and H1 ◦ g = f ;
if g|Z = f |Z, then Ht fixes g(Z) = f (Z).

(b) Suppose that Xn is a compact smooth manifold, Qm a smooth manifold, m >

3(n+ 1)/2, Z a closed subset of X, and f :X ↪→ Q a TOP embedding. For each
ε > 0 there exists δ > 0 such that for any smooth embedding g :X ↪→ Q, δ-close
to f , there is an ε-isotopy ft :X ↪→ Q such that f0 = g, f1 = f and such that
ft for t < 1 is a smooth isotopy. Moreover if f = g on the δ-neighborhood of Z,
then ft can be chosen fixing Z.

(b+) In the (b) part it can be assumed that ft is covered by an ε-homotopy Ht :Q → Q

such that H |Q×[0,1) is a diffeomorphism, H0 = idQ, and H1 ◦ g = f .

Theorem 3.5(a) is an immediate corollary of 3.1(a) and 3.2(a).

Proof of 3.2(b). TriangulateX and ambient isotopg onto a PL embeddingH ◦ g. LetZ′
be a subpolyhedron ofX such thatg|Z′ = h|Z′ andZ ⊂ Z′.

By 3.1(a) and 3.5(a),H ◦h is TOP isotopic, by an arbitrarily small isotopy, fixingZ′, to
a PL embeddingh′. Henceh andH−1 ◦ h′ can be assumed TOP13ε-isotopic fixingZ′.

By 3.2(a),H ◦g andh′ can be assumed topologically (even PL) isotopic, by a sufficiently
small isotopy, fixingZ′. Henceg andH−1 ◦ h′ can be assumed TOPε3-isotopic fixingZ′.

Finally, by 3.4(b), the obtained TOP23ε-isotopy betweeng andh can be approximated
by a smoothε-isotopy fixingZ. ✷

Theorem 3.2(b+) follows immediately from 3.2(b) and 1.13(b).
Theorem 3.5(b) follows immediately from 3.1(b) and 3.2(b).
Theorem 3.5(b+) follows immediately from 3.1(b) and 3.2(b+).

Theorem 3.6. Let Xn be a compact polyhedron, Qm a PL manifold, m − n � 3.
(a) Suppose that f :X → Q is an embedding. For each ε > 0 there exists δ > 0 such

that if an embedding g :X ↪→ Q is δ-close to f , then for any γ > 0 there is an
ε-ambient isotopy, taking g onto an embedding, γ -close to f .

(a′) In addition, there is an ε-ambient isotopy, taking f onto an embedding, γ -close
to g.
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(b) Suppose that f :X → Q is a map and g :X → Q an embedding. For each ε > 0
there exists δ > 0 such that if an embedding g′ :X ↪→ Q, δ-close to g, is taken onto
f by a pseudo-isotopy H ′

t , then g is taken onto f by a pseudo-isotopy Ht , ε-close
to H ′

t .

Proof. (a) Let 2δ = δ3.5(a) be given by 3.5(a) forf3.5(a) = f andε3.5(a) = 1
2ε. In addition

let δ′ = δ3.5(a) be given by 3.5(a) forf3.5(a) = g and ε3.5(a) = 1
2ε. We can assume that

δ′ < δ. By 3.1(a)g is δ′-close to a PL embeddingh :X ↪→ Q. By 3.5(a)h can be taken by
an 1

2ε-pseudo-isotopyGt ontog and by an1
2ε-pseudo-isotopyFt ontof .

Let U ⊂ Q × I be the closed neighborhood ofG1 ◦ h(X) × [0,1) in Q × I such
that U ∩ Q × 1 = G1 ◦ h(X) × 1. ThenG|U is injective, and sinceU is compact, the
map G−1|U :U → G−1(U) is uniformly continuous. Hence for eachβ > 0 there is a
numbert0 < 1 such that the embeddingh′ = G−1

t0
◦ g is β-close toh = G−1

1 ◦ g. The map

G′
t = G−1

t0
◦Gt0(1−t ), t ∈ I , yields an1

2ε-ambient isotopy takingg ontoh′. Finally, sinceF
is uniformly continuous, the numberβ can be chosen so that for eacht ∈ I the embeddings
Ft ◦h′, Ft ◦h are 1

2γ -close, whileh′ andFt ◦h′ are clearly1
2ε-ambient isotopic. Ift < 1 is

such thatFt ◦ h andF1 ◦ h = f are 1
2γ -close, thenf andFt ◦ h′ areγ -close, whileFt ◦ h′

andg areε-ambient isotopic.
(a′) Proceed as in the proof of (a) untilFt , Gt are constructed, and after that exchange

their roles.
(b) We can assume thatQ is compact, henceH ′

t is uniformly continuous. For any
fixed t0 < 1 the map(H ′

t )
−1, t ∈ [0, t0], is uniformly continuous, and so is the map

H ′
st = H ′

t ◦ (H ′
s)

−1, s ∈ [0, t0], t ∈ I . For k = 0,1, . . . let λk > 0 be such number that
dist(H ′

st (p),H
′
st (q)) < λdist(p, q) wheneverp,q ∈ Q, s ∈ [0,1 − 2k], t ∈ I . Let εk ,

k = 0,1, . . . be a sequence of reals such that

∞∑
k=0

εkλk < ε. (∗)

Let δ = δ3.6(a) be given by the (a′) part forf3.6(a) = g andε3.6(a) = ε0. Let δk = δ3.6(a)

be given by the (a) part forf3.6(a) = g′
k = H1−2−k ◦ g′ andε3.6(a) = εk, k = 1,2, . . . .

For k = 0,1, . . . put γk = δk+1/λk+1. Then for any embeddinggk , γk-close tog′
k =

H1−2−k ◦ g′, and for eacht ∈ [1 − 2−k,1 − 2−k−1] the embeddingH ′
1−2−k,t

◦ gk is δk+1-

close toH ′
t ◦ g′. In particular, the embeddinḡgk+1 = H ′

1−2−k,1−2−k−1 ◦ gk is δk+1-close

to g′
k+1, k = 0,1, . . . . The statement ‘̄gk is δk-close tog′

k ’ holds also fork = 0 if we put
ḡ0 = g, δ0 = δ.

Now by (a) and (a′) for k = 0,1, . . . one can take an embeddingḡk , which isδk-close to
g′
k , onto an embeddinggk , which isγk-close tog′

k , by anεk-ambient isotopyGk
t :Q → Q.

Then the stacked composition of isotopies

G0
t ; H ′

t , t ∈ [0, 1
2]; G1

t ; H ′
t , t ∈ [1

2,
3
4]; G2

t ; . . .

yields a pseudo-isotopyHt (the possibility of continuous extension ast → 1 is guaranteed
by (∗), cf. [46, Lemma 1]). By (∗) Ht is ε-close toH ′

t . Sinceδk → 0 ask → ∞ and
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Ht ◦ g = H ′
1−2−k,t

◦ gk is δk+1-close toH ′
t ◦ g′, wherek = [− log2(1− t)], we obtain that

H1 ◦ g = H ′
1 ◦ g′ = f . ✷

Theorem 3.7 [25, 4.1].For each ε > 0 and a positive integer n there exists δ > 0 such that
the following holds.

Let Xn be a compact polyhedron and Yn−1 its subpolyhedron, (Qm, ∂Q) a PL manifold,
m − n � 3, and f : (X,Y ) × [−1,1] → (Q,∂Q) × R a PL embedding such that Π ◦ f

is δ-close to π . (Here Π :Q × R → R, π :X × [−1,1] → [−1,1] ⊂ R denote the
projections.) Then there is a PL ε-ambient isotopy Ht with support in Q × [−ε, ε],
taking f onto a PL embedding g such that g−1(Q × J ) = X × (J ∩ [−1,1]) for each
J = (−∞,0],0, [0,+∞).

Furthermore, for each γ > 0 given in advance it can be assumed that P ◦ Ht

moves points less than γ , where P :Q × R → Q denotes the projection. Moreover, if
f −1(∂Q× J ) = Y × J for each J as above, Ht can be chosen to fix ∂Q× R.

Theorem 3.7, called Slicing Lemma in [25,64], was one of the key steps in the proof
of the (a) parts of Theorems 3.1 and 3.2. (In the statement [25, 4.1(3)] one should read
‘ (h1 ◦ g)−1’ instead of ‘g−1’.) In view of an analogy between Lemmas 4.1 and 7.6
below, one can regard Theorem 3.7 as a geometric version of the Freudental Suspension
Theorem. The proof of Theorem 3.7 in [25] is somewhat similar to the proof of the
Penrose–Whitehead–Zeeman–Irwin Embedding Theorem, meanwhile Miller proves a
generalization of Theorem 3.7 in [64] using his controlled version (see [62]) of sunny
collapsing (see Section 5).

The following curious statement, not required in the rest of this paper, can be regarded
as an alternative controlled version of the Concordance Implies Isotopy Theorem. Call a
concordanceF :X×I ↪→ Q×I ε-level-disturbing if for eacht ∈ I there is a neighborhood
U(t) of t in I such thatΠ ◦ F(X × t) ⊂ U(t), Π :Q × I → I being the projection,
andF |X×U(t) moves points less thanε. Notice that a 0-level-disturbing concordance is
an isotopy, and the property of beingε-level-disturbing is independent on the choice of
metric inI .

Theorem 3.7+. For each ε > 0 and a positive integer n there exists δ > 0 such that the
following holds. Consider a compact polyhedron Xn, a PL manifold Qm, m − n � 3, and
PL embeddings f,g :X ↪→ Q. Then any PL δ-level-disturbing concordance between f,g

is ε-close to a PL isotopy between f,g.

Proof. Let F :X × I ↪→ Q × I be the given concordance. Without loss of generality
F(X × I) ⊂ Q × I . Let γ = δ1.13(a) be given by 1.13(a) forε1.13(a) = 1

2ε and suppose
γ < 1

2ε. If F moves points less than12γ , then by 1.13(a)F is (1
2γ + 1

2ε)-close to an
isotopy betweenf,g.

Otherwise we can splitI into piecesJi such thatF |X×Ji moves points less than
1
2γ but more than1

4γ for each i. Then for eachi there is a pointxi ∈ X such that
diamP ◦ F(xi × Ji) >

1
4γ , P :Q × I → Q being the projection. Hence for eachi and
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any positive numberδ < 1
4γ one can find numbersdi1 < · · · < dim, wherem = [γ /4δ],

such thatJi = (di1, dim) and dist(P ◦ F(xi × dij ),P ◦ F(xi × di,j+1)) � δ.
Now suppose thatF is δ-level-disturbing, then for eacht ∈ I there existsU(t) such that

Π ◦ F(X × t) ⊂ U(t), andF |X×U(t) moves points less thanδ. Then for eacht ∈ I , U(t)

contains at most one pointdij . Choose a metric onI such that dist(dij , di,j+1) = δ
2, then

diamU(t) < δ, while diamJi = 1
2δm > 1

10γ , providedδ � 4
5γ . Finally letδ = δ3.7, which

is obtained from Lemma 3.7 forε3.7 = 1
20γ .

Then by 3.7,F is 1
20γ -ambient isotopic (hence120γ -close) to a concordanceG between

f,g such thatG(X × Ji) ⊂ Q × Ji for eachi. ThusG splits into concordancesG|X×Ji ,
each moving points less than120γ + 1

2γ + 1
20γ . By 1.13(a) each of them is(12

20γ + 1
2ε)-close

to an isotopy. Together these isotopies yield an isotopyΦ :X × I ↪→ Q × I , (12
20γ + 1

2ε)-
close toG, hence(13

20γ + 1
2ε)-close (thusε-close) toF . ✷

Remark 3.8. Given a homotopyH :X × I → Q × I , for eachε > 0 it is easy to find
δ > 0 (depending onH ) such that any concordance,δ-close toH , is ε-level-disturbing.
Taking into account Theorems 3.1(a) and 3.7+, we thus obtain an alternative proof of
Theorem 3.4(a).

4. Proof of Theorem 1.6

The following lemma is a corollary of Theorem 3.7:

Theorem 4.1. Let Xn be a finite simplicial complex, Qm a combinatorial manifold,
m − n � 3, f :X → Q a simplicial map and C a union of some top-dimensional dual
cells of Q. Then for each ε > 0 there exists δ > 0 such that the following holds. Suppose
that g :X ↪→ Q is a PL embedding, δ-close to f and such that g−1(B) = f −1(B) for each
dual cell B of C. Then g is PL ε-ambient isotopic, keeping C fixed, to a PL embedding
h :X ↪→ Q such that h−1(B) = f −1(B) for each dual cell B of Q.

Suppose that dimf (X) = k, andQ \C consists ofl top-dimensional dual cells. Denote
by 4.1(k, l) the statement of Theorem 4.1 fork andl. Then 4.1(i,0) and 4.1(0, j) are trivial
for any i, j . Assuming that 4.1(i, j) is proved fori < k and arbitraryj , and fori = k and
j < l, let us prove 4.1(k, l).

Proof of 4.1(k, l). Choose any vertexv of Q outsideC. Let D = st(v,Q′) be its dual
cell, and writeE = ∂D \ ∂C. Notice that the pair(E, ∂E) is bi-collared in(Q \ C,∂C).
By Theorem 3.7, for anyγ > 0 the numberδ can be chosen so thatg is PL γ -ambient
isotopic, keepingC fixed, to a PL embeddingϕ :X ↪→ Q such thatϕ−1(E) = f −1(E). It
follows that, in addition,ϕ−1(D) = f −1(D).

Pseudo-radial projection [74] yields a PL homeomorphism∂D → ∂ st(v,Q) (in general
the latter complex does not coincide with lk(v,Q)), which takes the intersection ofD with
a simplex ofQ onto a simplex of∂ st(v,Q) and a dual cell ofQ, lying in ∂D, onto a dual
cell of ∂ st(v,Q). We apply 4.1(k − 1, l′) in ∂D, equipped with triangulation, inherited
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from ∂ st(v,Q), wherel′ is the number of dual cells ofQ in C ∩ ∂D. Using collaring,
we obtain that for eachβ > 0 we can chooseγ + δ so thatϕ (which is (γ + δ)-close
to f ), is PLβ-ambient isotopic, keepingC fixed, to a PL embeddingψ :X ↪→ Q such that
ψ−1(B) = f −1(B) for each dual cellB of C ∪D.

By 4.1(k, l − 1), for anyα > 0 the numberβ + γ + δ can be chosen so thatψ (which is
(β +γ + δ)-close tof ) is PLα-ambient isotopic, keepingC ∪D fixed, to a PL embedding
h :X ↪→ Q such thath−1(B) = f −1(B) for each dual cellB of Q. Thusg is ε-ambient
isotopic toh, keepingC fixed, providedα + β + γ < ε. ✷
Lemma 4.2. Let Xn be a finite simplicial complex, Qm a combinatorial manifold,
m − n � 3, and f :X → Q a simplicial map. If h :X ↪→ Q is a PL embedding such that
h−1(B) = f −1(B) for each dual cell B of Q, then h is taken onto f by a PL pseudo-isotopy
Ht :Q → Q such that Ht(B) = B for each dual cell B of Q.

Proof. PutH0 = idQ andHt = id outsideN = N(f (X),Q). Let A1, . . . ,Am be the dual
cells ofN , except for those in∂N , arranged in an order of increasing dimension. Assuming
thatH is defined onAj ×I for all j < i (hence on(∂Ai)×I ), extend it toAi ×I as follows.

Denote the cone point ofAi by ai . Let R be a relative regular neighborhood inAi of
∂Ai ∪ h(f −1(Ai)) moduloh(f −1(ai)), and putP = Ai \R. Thenh−1(P ) = f −1(ai),
and we defineHt(p) = t ∗ ai + (1− t) ∗ p for eachp ∈ P (we use here the cone structure
ai ∗ ∂Ai onAi ).

The quotient spaceAi/P is PL homeomorphic keeping∂Ai fixed toAi = ai ∗ ∂Ai , and
f−1(Ai)/f

−1(ai) is PL homeomorphickeepingf −1(∂Ai) fixed to the coneai ∗f −1(∂Ai).
Denote these homeomorphisms byϕ andψ , respectively, and let

i :Ai \ P ↪→ Ai/P, j :f −1(Ai) \ f −1(ai) ↪→ f−1(Ai)/f
−1(ai)

be the natural inclusions. Leth′ :ai ∗ f−1(∂Ai) ↪→ ai ∗ ∂Ai be the embedding defined by
the identity onai and byϕ ◦ i ◦h◦j−1◦ψ−1 elsewhere. By the Lickorish Cone Unknotting
Theorem [55] there is a PL homeomorphismλ :ai ∗∂Ai → ai ∗∂Ai keeping∂Ai fixed and
such thatλ◦h′ is the conical map idai ∗h′|f −1(∂Ai)

. Define an isotopyΛ :Ai × I → Ai × I

by

Λ = (
idai×1 ∗ (λ−1 × id0 ∪ id∂Ai×I )

) ◦ (λ × idI ),

thenΛ ◦ (h′ × idI ) is the conical map idai×1 ∗ (h′ × id0 ∪h′|f−1(∂Ai)
× idI ).

ExtendH ′ = H |∂Ai×I∪Ai×0 conewise to obtain the map

idai×1 ∗H ′ : (ai × 1) ∗ (∂Ai × I ∪ Ai × 0) → (ai × 1) ∗ (∂Ai × I ∪ Ai × 0).

Finally, defineH on (Ai \ P) × I by

H = (
idai×1 ∗H ′) ◦ Λ ◦ (ϕ × idI ) ◦ (i × idI ).

Clearly,H is well-defined, is PL, andH1 takesh ontof .
Assuming thatH |Aj×I is level-preserving for eachj < i, we see from the construction

above that so isH |Ai×I . Assuming thatH is a homeomorphism onAj × [0,1) for
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eachj < i and recalling that it is a homeomorphism onQ × 0, we see thatH is a
homeomorphism onAi × [0,1). ✷
Proof of 1.6. (a) TriangulateX andQ so thatf is simplicial and each dual cell ofQ is
of diameter< 1

2ε. Let δ be less thanδ4.1, which is given by Lemma 4.1 forε4.1 = 1
2ε, and

apply Lemma 4.1 to obtain a PL12ε-isotopy, takingg onto a PL embeddingh :X ↪→ Q

such thath−1(B) = f −1(B) for each dual cellB of Q. Finally, apply Lemma 4.2 to obtain
a PL pseudo-isotopyHt :Q → Q takingh ontof . ThenH moves no point as much as the
maximal diameter of a dual cell ofQ, which, in turn, is less than12ε.

(b) By 3.6(b) and 3.1(a), we can assume that theδ-close toi ◦ f embeddingg :X ↪→ Q

is PL. Without loss of generalityf is surjective, hence we can assume dimY � n � m− 3.
Then by 3.1(a) and 3.5(a) there is a PL embeddingj :Y ↪→ Q and a pseudo-isotopyHt ,
takingj ontoi. For anyγ > 0 we can assume thatHt moves points less thanγ andj ◦ f

is γ -close toi ◦ f .
The PL embeddingg is (γ + δ)-close to the PL mapj ◦ f , and one could attempt to

apply Theorem 1.6(a) here. But this is impossible, for one cannot makeγ as small as
required keepingj ◦ f unchanged. The solution is to use uniform continuity (as in the
proof of 3.6(a)).

Let U ⊂ Q × I be a closed neighborhood ofH1 ◦ j (Y ) × [0,1) in Q × I such that
U ∩ Q × 1 = H1 ◦ j (Y ) × 1. ThenH |U is injective, and sinceU is compact, the map
H−1|U :U → H−1(U) is uniformly continuous. Clearly, for eacht0 < 1 the numberδ > 0
can be chosen so that the image of the embeddingg× t0 :X → Q× t0 lies inU . Nowg× t0

is (1− t0+ δ)-close to(i ◦f )×1, therefore for eachβ > 0 the numberst0, δ can be chosen
so thatg′ = H−1

t0
◦ g is β-close toj ◦ f = H−1

1 ◦ (i ◦ f ). The mapGt = H−1
t0

◦ Ht0(1−t ),
t ∈ I , yields aγ -ambient isotopy takingg ontog′.

By 1.6(a), for anyα > 0 the numberβ can be chosen so thatg′ is taken ontoj ◦ f

by anα-pseudo-isotopyFt :Q → Q. Then the ‘diagonal’(α + γ )-pseudo-isotopyΦt =
Ht ◦ Ft :Q → Q takesg′ onto i ◦ f . Sinceg is γ -ambient isotopic tog′, there is anε-
pseudo-isotopy takingg ontoi ◦ f , provided 2γ + α < ε. ✷

5. Proof of Theorem 1.13

Definition. A subcomplexY of a simplicial complexX is said to belocally of codimension
� k in X, if everyn-simplex ofY faces some(n+ k)-simplex ofX [55]. We call

S(f ) = {
x ∈ X | f−1f (x) �= x

}
thesingular set of a mapf :X → Y .

Lemma 5.1 [41,10].Let Xn be a compact polyhedron and Qm a PL manifold, m− n� 3,
and p :X × I → X, P :Q× I → Q the projections. For any PL embedding F :X × I ↪→
Q× I and any ε > 0 there is a PL level-preserving ε-homeomorphism H :Q× I → Q× I

such that S(P ◦ H ◦F) is locally of codimension � 2 in X × I .
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Moreover, one can choose H so that p|S(P◦H◦F) is non-degenerate. Furthermore, the
preimage of any point under P ◦ H ◦ F contains at most ϕ(n) = [(n+ 1)/3] + 1 points.

Definition. Let us think of the second factor ofQ× I as of height (that is, a point(q1, t1)

lies below a point(q2, t2) if q1 = q2 andt1 < t2). If X ⊂ Q × I , let shX denote ashadow
of X, the set of points ofQ× I lying below some point ofX.

We say that a collapseX ↘ Y in Q × I is asimple sunny collapse, if no point ofX \ Y

lies in shX. A sequence of simple sunny collapses is called asunny collapse [87]. Let us
say that a sunny collapse ism-complex, if it consists of at mostm simple sunny collapses.
Repeating the same forX \ Y instead ofX \ Y , we define a (simple/m-complex)stable
sunny collapse [58].

Example 5.2 (Compare to [87, Remark on p. 510]). Let us illustrate the relation between
sunny collapsing and unknotting. Evidently,I collapses onto 0. LetF : I → I3 be a
PL embedding such thatF(i) ⊂ Int(I2 × i), i = 0,1. It turns out that if a collapse
F(I) ↘ F(0) is sunny,F is unknotted. Indeed, define a PL isotopyHt : I ↪→ I3 by
s �→ F(s) for s � 1− t and by mapping(1− t,1] linearly onto points lying aboveF(1− t).
ThenH0 = F andH1 is linear. Clearly,H is locally flat, hence by [74] it extends to a
PL ambient isotopy, which ‘unknots’F .

Surprisingly, ifF : I ↪→ I3 maps 0 into Int(I2 × 1) and 1 into Int(I2 × 0), thenF can
be knotted even if there is a sunny collapseF(I) ↘ F(0). However, in all other cases
of PL embeddingsF : (I, ∂I) ↪→ (I3, ∂I3) existence of a sunny collapseF(I) ↘ F(0)
implies thatF is unknotted. Indeed, in the caseF(1) ⊂ ∂I3 \ (I2 × 0) we use that N(0, I )
is not overshadowed byI to shiftF(0) upwards into(∂I2) × 1. Then we apply the above
construction ofHt for t � 1 − ε, whereε > 0 is the minimal distance between vertices
in F(I). Now H1−ε consists of two linear pieces, hence is unknotted. To manage with the
caseF(0) ⊂ ∂I3 \ (I2 × 1), notice that a collapseF(I) ↘ F(0) is sunny, iff sunny is the
analogous collapseU ◦ F ◦ u(I) ↘ U ◦ F ◦ u(0), whereu : I → I andU : I3 → I3 are
defined byt �→ 1− t and(r, s, t) �→ (r, s,1− t), respectively.

Lemma 5.3 [41, Lemma 2].Let X be a simplicial complex, Q a combinatorial manifold,
p :X × I → X and P :Q × I → Q simplicial projections. Let G :X × I ↪→ Q × I be a
simplicial embedding satisfying the conclusion of 5.1 and such that G(X × 0) ⊂ Q × 0.
Then there is a sunny collapse G(X × I) ↘ G(X × 0) such that

(i) tr Z × I ⊂ N(Z × I,X × I) for any simplex Z of X.

Speaking informally, the main idea of the proof of Lemma 5.3 was to use codimension 2
(that is, connectedness ofG(X× I \S)) to have a simultaneous collapsing access to all the
m-simplices ofG(S) successively form = n− 1, . . . ,0, which enabled to collapse them in
the order they overshadow each other. See [87, proof of Lemma 9] for a detailed proof of
a similar statement.

Addendum to 5.3. The sunny collapse G(X × I) ↘ G(X × 0) can be chosen ψ(n) =
1
6(n+ 7)2-complex.
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Proof. Arrange the simplices ofK = G(S) in the following order. Assuming that the
order is defined in the case dimK � m, define it when dimK = m, as follows. Let first
go all the top-dimensional non-overshadowed simplices, then all the top-dimensional once
overshadowed and so on, up to the top-dimensional simplices, overshadowed byϕ(m)− 1
ones. After that put all at most(m − 1)-dimensional simplices ofK, arranged in the order
given by the inductive assumption. The proof of Lemma 5.3 actually allows to collapse the
simplices ofK in any order of decreasing dimension, given in advance, particularly in the
above. Clearly, the obtained collapse is sunny, and sinceψ(n) � ϕ(n− 1) + · · · + ϕ(0), it
is ψ(n)-complex. ✷

It turns out that any sunny collapse can be improved to a stable sunny one. We prove this
by following the given collapse with a slight but precisely calculated lag.

Lemma 5.4. Let Q be a combinatorial manifold, P :Q × I → Q a simplicial projection
and K0 ⊃ · · · ⊃ KN be a sequence of subcomplexes of Q such that shKi ∩ K0 ⊂ Ki+1

for each i � N , where KN+1 = ∅, and suppose that P |K0 is non-degenerate. Then there
is a sequence K0 = U0 ⊃ · · · ⊃ UM = KN of subpolyhedra of Q such that shUj ∩ U0 ⊂
IntUj+1 for each j � M , where UM+1 = ∅ and

(i) K0 ↘ · · · ↘ Ki ↘ · · · ↘ KN (simplicially) implies U0 ↘ · · · ↘ Uj ↘ · · · ↘ UM ;
(ii) the trace of any simplex Z of K0 under U0 ↘ UM lies in that under K0 ↘ KN .

Actually, in the application of Lemma 5.4 the hypothesis of (i) will be fulfilled; we
allow it not to be fulfilled only to carry out induction in the proof of 5.4. The prototypes of
Lemma 5.4 can be found in [40, proof of Proposition 5.1] and [58, Lemma 4.1]. To prove
Lemma 5.4 we need a couple of preliminary observations.

Claim 5.5. There is a second derived subdivision αK0 of K0 such that for any subcomplex
Y of K0, the inclusion shY ∩ K0 ⊂ Y implies

shN(Y,αK0) ∩K0 ⊂ IntN(Y,αK0).

Proof. Let K ′
0 be the barycentrically derived subdivision ofK0 and construct a derived

subdivisionαK0 of K ′
0 as follows. For each simplexA of K0 define a mapfA :A → R1

by ∂Aj �→ −1, Â �→ ϕ ◦ Π(a) and extending linearly, wherêA denotes the barycenter
of A, Π :Q × I → I denotes the projection, andϕ maps[0,1] linearly onto [ 1

100,1].
Let F = (A0 � · · · � Am) run over the flags of simplices inK0 and letBi = Bi(F) =
Âi ∗ · · · ∗ Âm. ThenB0 runs over the simplices ofK ′

0. Define a derivation point ofB0 by
d(B0) = Â0 ∗ B̂1 ∩ f−1

A0
(0), unlessm = 0. The subdivisionαK0 is defined.

It is easy to see thatd(Bm) = Bm lies in a subcomplexY of K0 if and only if
d(B0) ∗ · · · ∗ d(Bm) (or, equivalently,d(B0)) lies in N(Y,αK0). Notice thatB̂0 ∈ Â0 ∗ B̂1

and

fA0

(
B̂0

) = fA0(Â0) − m

m + 1
< 0
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(unlessm = 0), henceB̂0 ∈ Int(d(B0) ∗ B̂1). An induction onm implies that B̂0 ∈
Int(d(B0) ∗ · · · ∗ d(Bm)), and moreover, that ifx ∈ Int(d(B0) ∗ B̂1) thenx ∈ Int(d(B0) ∗
· · · ∗ d(Bm)).

Now suppose thatd = d(B0) overshadows a pointd∗ of K0. Then there are a flag
F∗ = (A∗

0 � · · · � A∗
m) and the simplicesB∗

i = Bi(F∗), overshadowed respectively by
a flagF = (A0 � · · · � Am) and the simplicesBi = Bi(F) (in the sense that each each
point, say, ofA∗

0 is overshadowed by, or coincides with a point ofA0) and such that
d∗ ∈ Â∗

0∗ B̂∗
1 . If d ∈ N(Y,αK0) thenBm ⊂ Y , and sinceBm overshadows, or equals, toB∗

m,
we obtainB∗

m ⊂ Y . Consequentlyd(B∗
0) ∗ · · · ∗ d(B∗

0) ⊂ N(Y,αK0). Finally, Â∗
0 �= Â0,

hencefA∗
0
(Â∗

0) < fA0(Â0), thereforefA∗
0
(d∗) < fA0(d) and fA∗

0
(d∗) < 0. Thus by the

aboved∗ ∈ IntN(Y,αK0). ✷
Claim 5.6. Let K be a simplicial complex and A its simplex.

(a) If V ⊃ W in lk(A,K ′′) then N(∂A,K ′′)∪A ∗V ↘ N(∂A,K ′′)∪A ∗W . Moreover,
trZ ⊂ Z for any simplex Z of K .

(b) If K ↘ L simplicially, then K ↘ N(L,K ′′). Moreover, the trace of any simplex Z

of K under the second collapse lies in that under the first.

Proof. (a) Suppose that a simplexA (strictly) faces a simplexB. Since a ball collapses
onto its face, N(A,B ′′) ↘ N(A, ∂B ′′) ∪ N(∂A,B ′′). Applying this toB running over the
simplices ofK which are faced byA and meetV \ W , in order of decreasing dimension,
we obtain the required collapse.

(b) For each elementary collapseKi ↘ Ki+1 it suffices to prove thatN(Ki,K
′′) ↘

N(Ki+1,K
′′). Suppose thatKi ↘ Ki+1 goes fromAi alongBi . Apply the full collapse of

(a) first toA = Ai and then toA = Bi to obtain a collapse N(Ki,K
′′) ↘ N(Ki+1,K

′′)∪Ki .
Finally, since ball collapses onto its face,V ∪ N(W,K ′′) ↘ N(W,K ′′). By the moreover
part of (a) and since trAi ⊂ Bi under the last collapse, the trace of any simplexZ of K0

under the obtained collapseK ↘ N(L,K ′′) lies in that underK ↘ L. ✷
Proof of 5.4. Assume that 5.4 is proved for dimK0 < n and prove it for dimK0 = n. We
will construct a descending sequence of subpolyhedraU∗ (with several indices) inK0,
arranged lexicographically, so that the lexicographic unwrapping of indices yields the
required sequenceU0 ⊃ · · · ⊃ UM .

Let αK0 be the subdivision given by 5.5. DefineUi = Ki ∪ N(Ki+1, αK0), i � N

and insert between themUi,0 = N(Ki+1, αK0), i < N . ThenU0 = K0, UN = KN and
Ui \ Ui,0 ⊂ Ki \ Ki+1. By 5.5 and since shKi ∩ K0 ⊂ Ki+1 ⊂ IntUi,0, we obtain
shUi ∩U0 ⊂ IntUi,0. By 5.6(b),Ki ↘ Ki+1 impliesKi ↘ N(Ki+1, αKi), or, equivalently,
Ui ↘ Ui,0, and the trace of any simplexZ of K under the last collapse lies in that under
the first.

It remains to insert subpolyhedra in betweenUi−1,0 and Ui . Let A1, . . . ,AT be the
simplices ofKi \Ki+1, arranged in an order of decreasing dimension and putBj = ⋃{Ak |
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k > j }. DefineUij = Ki ∪ N(Ki+1 ∪ Bj ,αK0), j � T , thenUi,0 is same as above and
Ui,T = Ui+1. By 5.5, shUij ∩ U0 ⊂ IntUij for eachj � T . Unfortunately

shUij ∩ U0 �⊂ IntUi,j+1

in general, so we should insert yet more subpolyhedra. PutLl = lk(Aj ,Kl) for eachl � i.
Since shKl ∩ K0 ⊂ Kl+1, we have that shLl ∩ L0 ⊂ Ll+1. Now dimL0 < n and we can
apply the inductive hypothesis to obtain a sequence of subpolyhedraL0 = V0 ⊃ · · · ⊃
VR = Li such that shVk ∩ V0 ⊂ IntV0 Vk+1, k � R, whereVR+1 = ∅. Here ‘IntV0’ denotes
topological interior inV0. SinceP |K0 is simplicial and non-degenerate,

sh(Aj ∗ Vk) ∩ Int(Aj ∗ V0) ⊂ Int(Aj ∗ Vk+1).

We putWk = Aj ∗ Vk ∩ N(Aj ,αK0) for k � R, thenW0 ∪ N(∂Aj ,αK0) = N(Aj ,αK0)

andWR ⊂ Ki . Furthermore, shWk ∩ W0 lies in

sh(Aj ∗ Vk) ∩ sh N(Aj ,αK0) ∩ N(Aj ,αK0)

⊂ sh(Aj ∗ Vk) ∩ IntN(Aj ,αK0)

⊂ sh(Aj ∗ Vk) ∩ (
Int(Aj ∗ V0) ∩ IntN(Aj ,αK0) ∪ IntN(∂Aj ,αK0)

)
⊂ Int(Aj ∗ Vk+1) ∩ IntN(Aj ,αK0) ∪ IntN(∂Aj ,αK0)

= Int
(
Wk+1 ∪ N(∂Aj ,αK0)

)
.

Finally, defineUijk = Ui,j+1 ∪ Wk , k � R. Then by the aboveUij,0 = Uij andUij,R =
Ui,j+1, while shUijk ∩U0 ⊂ IntUij,k+1. By 5.6(a)Uijk collapses ontoUij,k+1 for all k < R

and trZ ⊂ Z under this collapse for any simplexZ of K0. ✷
Addendum to 5.4. M can be chosen equal to ξ(N,n) = Nn+1n!.

Proof. Prove this by induction onn. Clearly, we can chooseM = N if n = 0. SinceM
originally depends on an arbitrarily great numberT , we should redefine the subpolyhedra
U∗ so that it does not. Notice that since shAj ∩ K0 ⊂ Ki+1 for each simplexAj of
Ki \ Ki+1, by 5.5, sh N(Aj ,αK0) ∩ K0 ⊂ IntN(Ki+1 ∪ Aj,αK0). Hence

shWk ∩K0 ⊂ Int
(
Wk+1 ∪ N(Ki+1 ∪ ∂Aj ,αK0)

)
,

whereWk = Wk(Aj ) is defined for each simplexAj of Ki \ Ki+1 as in the proof of 5.4,
k � R (by the inductive hypothesis we can chooseR = ξ(N,n − 1) to be the same for
all Aj ). We redefine the subpolyhedraU∗ by

Uij = Ki ∪ N
(
Ki+1 ∪ (Ki \Ki+1)

(n−j), αK0
)
, j � n,

Uijk = Ui,j+1 ∪ {
Wk(Al) | dimAl = n − j

}
, k � R.

Then by the above shUijk ∩ U0 ⊂ Uij,k+1 and the statement is fulfilled for the new
sequence of subpolyhedraU∗, while there are onlyM = NnR of them. Hence we can
chooseξ(N,n) = Nnξ(N,n − 1) = Nn+1n!. ✷
Proof of 1.13(a). Let F :X × I → Q × I be the given concordance betweenF0 = f

and F1 = g. Write G = H ◦ F and S = S(P ◦ G). Let ζ(n) = ξ(ψ(n),n) and δ =
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ε/(5ζ(n) + 1). SubdivideQ × I andX × I so thatG, p andP are simplicial andγ =
mesh(Q × I) is less than min(δ, 1

3δ3.3(a)), whereδ3.3(a) is obtained from Theorem 3.3(a)
for f3.3(a) = f andε3.3(a) = δ.

Apply Lemma 5.4 to the sunny collapse of Lemma 5.3 to obtain a stable sunny collapse
G(X× I) = U0 ↘ · · · ↘ UM = G(X × 0). By Addenda, it consists of at mostζ(n) simple
stable sunny collapses. Also, trG(Z×1) ⊂ Nγ (G(Z×I)) for any simplexZ of X. SinceF
is aδ-concordance andH is arbitrarily, say,δ-close to the identity,G is a 2δ-concordance.
Hence trG(Z × 1) ⊂ N2δ+γ ((G0 × idI )(Z × I)).

By the simple stable condition, the projectionP :Q× I → Q, restricted toUi \ Ui+1 ∪
imi G(X×1), where imi denotes the image under the firsti collapses, is a homeomorphism
for eachi <M. Notice that

Ui \ Ui+1 ∪ imi G(X × 1) ⊂ Ui \ (IntUi+1 \X × 1)

(the inclusion follows by an induction oni). SinceUi \Ui+1 ∪ imi G(X × 1) collapses
onto imi+1G(X × 1), there is a sequence of at mostζ(n) collapses

P
(
Ui \ Ui+1 ∪ imi G(X × 1)

) ↘ P
(
imi+1G(X × 1)

)
, (∗)

each of diameter at most 2δ + γ < 3δ. SubdivideQ so that these collapses are simplicial.
Our next goal is to obtain a sequence of isotopies, using the following

Lemma 5.7 [62, Proposition 1], [64, proof of Theorem 11].Let Q be a combinatorial
manifold, V and W be its subcomplexes such that V collapses simplicially to W . Then
there is a PL ambient isotopy Ht of Q, H0 = idQ such that for any subcomplex Z of V and
arbitrary t ∈ I

(i) H1N(V ,Q′′) = N(W,Q′′);
(ii) Ht is the identity outside N(N(vertices in(V \ W)′,Q′′),Q′′′);
(iii) H1N(Z,Q′′) ⊂ N(imZ,Q′′);
(iv) HtN(N(Z,Q′′),Q′′′) ⊂ N(N(trZ,Q′′),Q′′′).

Addendum to 5.7 [62, Corollary 2]. If the diameter of the collapse is less than α and
meshQ< γ , then H moves points less than α + 2γ .

Proof of 1.13(a) (continued). By 5.3, 5.4 and 5.7(iii), there is a sequence of ambient
isotopieshi

t of Q such that for any simplexZ of X

hi
1N

(
P(imi G(Z × 1)),Q′′) ⊂ N

(
P(imi+1G(Z × 1)),Q′′).

Let ht be the stacked composition ofh0
t , . . . , h

M
t . Then by the addendum to 5.7ht is a

composition of at mostζ(n) of 5δ-ambient isotopies. An induction oni implies

h1N
(
P ◦ G(Z × 1),Q′′) ⊂ N

(
P(imM G(Z × 1)),Q′′).

By 5.1 the homeomorphismH can be chosen arbitrarily, say,1
4γ -close to the identity.

By 5.3(i) and 5.4(ii), imM G(Z × 1) ⊂ N(G(Z × 0),G(X × 0)). Thus,
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h1 ◦ P ◦F(Z × 1) ⊂ h1N
(
P ◦G(Z × 1),Q′′)

⊂ N
(
G

(
N(Z × 0,X × 0)

)
,Q′′)

⊂ N2γ
(
F(Z × 0)

)
,

that is,h1 ◦ P ◦ F(a × 1) ⊂ N3γ (F (a × 0)) for any a ∈ X. Recalling thatf = F0 and
g = P ◦ F1 are the given embeddings, we obtain thath1 ◦ g is 3γ -close tof .

Finally, we use 3.3(a) to obtain aδ-ambient isotopyϕt , taking h1 ◦ g onto f . Since
(5ζ(n) + 1)δ = ε, the stacked composition ofht andϕt is anε-ambient isotopy, takingg
ontof . ✷

In the proof of 1.13(b) we will need the following observation.

Lemma 5.8. For each positive integer n there is a number ρ(n) such that the following
holds. Let Xn be a compact polyhedron, Qm a PL manifold, m− n � 3, and f,g :X ↪→ Q

two PL δ-concordant embeddings.
Given β > 0, there are PL ambient isotopies H 1

t , . . . ,H
ρ(n)
t such that for each i =

1, . . . , ρ(n), Hi
0 = idQ and the isotopy Hi

t has support in the disjoint union of sets of

diameter < 7δ, and the composition H
ρ(n)
1 ◦ · · · ◦ H 1

1 ◦ g is β-close to f .

Proof. This is clear from the proof of 1.13(a), provided the following modification is
made. (We use the notation from the proof of 1.13(a).)

We can divide eachith collapse (∗), i = 1, . . . , ζ(n), which we denote for simplicity
by Ki ↘ Li , into n + 1 collapsesKi ↘ K1,i ∪ Li ↘ · · · ↘ Kn,i ∪ Li ↘ Li , whereKij =
trKi↘Li P (imi G(X×1)(n−j)). For eachi = 1, . . . , ζ(n), j = 0, . . . , n, the setKij \Ki,j+1

is the disjoint union of the setsTi,Z \Ki,j+1, whereTi,Z denotes trKi↘Li P (imi G(Z × 1))
andZ runs over the(n− j)-simplices ofX.

By 5.3(i) and 5.4(ii), eachTi,Z is of diameter at mostδ + 4γ . Now the sets
N(N(vertices in(Ti,Z \ Ki,j+1)

′,Q′′),Q′′′) are each of diameter at mostδ + 6γ < 7δ,
and are disjoint for distinct(n − j)-simplicesZ of X. Hence applying Lemma 5.7 for
eachi = 1, . . . , ζ(n), j = 0, . . . , n to the collapseKij ∪ Li ↘ Ki,j+1 ∪ Li , we obtain a

PL ambient isotopyH(n+1)(i−1)+j+1
t with support in the disjoint union of the sets each of

diameter at most 7δ. As in the proof of 1.13(a) it follows thatH(n+1)ζ(n)
1 ◦ · · · ◦ H 1

1 ◦ g

is 3γ -close to f . Finally, the statement follows if we putρ(n) = (n + 1)ζ(n) and
γ = meshQ<

β
3 . ✷

Proof of 1.13(b). Put δ = ε/(29ρ(n)+ 2). Let β = min(δ, 1
3δ3.3(b)), where δ3.3(b) is

obtained from 3.3(b) forf3.3(b) = f andε3.3(b) = δ. By 3.1(a) and 3.5(a),f is topologically
β-isotopic to a PL embeddingfPL. Let α = min(δ, 1

2δ3.3(b)), whereδ3.3(b) is obtained
from 3.3(b) for f3.3(b) = g and ε3.3(b) = δ. By 3.1(a) and 3.5(a),g is topologically
α-isotopic to a PL embeddinggPL. NowgPL is TOP(α+β + δ)-concordant tofPL. Hence
by (the relative case of) 3.1(a) the embeddingsfPL andgPL are PL 4δ-concordant.

Apply Lemma 5.8 to obtain a sequence of PL ambient isotopiesH 1
t , . . . ,H

ρ(n)
t such

that for eachi = 1, . . . , ρ(n) the isotopyHi
t has support in the disjoint union of sets of
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diameter< 28δ, and the compositionHρ(n)
1 ◦ · · · ◦H 1

1 ◦fPL is β-close togPL. EachHi
t has

a compact support, hence is uniformly continuous. Letγρ(n) = β , and assuming thatγi is
defined, defineγi−1 to be a number such that underHi

1 anyγi−1-close points are thrown
into 1

2γi -close points.
Put γ = min(γ0, α) and γ -approximategPL by a smooth embeddingg0 :X ↪→ Q.

By 3.3(b),g0 is smoothlyδ-ambient isotopic tog. Now g0 is topologically isotopic to the
embeddingH 1

1 ◦ g0 by means of the isotopyH 1
t ◦ g0, supported by the disjoint unionU of

sets of diameter< 28δ. The embeddingH 1
1 ◦g0 is smooth outsideU . Hence by (the relative

case of) 3.1(b) and by (the relative case of) 3.5(b) this embedding is TOP1
2γ1-isotopic,

fixing the exterior of an arbitrarily small neighborhoodU ′ of U , to a smooth embedding
g1 :X ↪→ Q. The embeddingg1 is γ1-close toH 1

1 ◦ gPL, therefore by (the relative case
of) 3.4(b)g1 is smoothly isotopic tog0 by an isotopygt , t ∈ I , fixing the exterior of an
arbitrarily small neighborhoodU ′′ of U ′. Hencegt extends to a smooth ambient isotopy
Gt :Q → Q with support in arbitrarily small neighborhoodU ′′′ of U ′′, such thatG0 = idQ

andG1 ◦ g0 = g1. We can assume thatU ′′′ is the disjoint union of sets of diameter< 29δ.
Consequentlyg0 is smoothly 29δ-ambient isotopic tog1.

Repeating the same construction fori = 2,3, . . . , ρ(n), we obtain a sequence of smooth
embeddingsg2, . . . , gρ(n) :X ↪→ Q such thatgi and gi+1 are smoothly 29δ-ambient

isotopic for eachi = 0, . . . , ρ(n) − 1 and such thatgρ(n)+1 is β-close toHρ(n)
1 ◦ · · · ◦

H 1
1 ◦ gPL. Thereforegρ(n)+1 is 3β-close to f . Hence by 3.3(b)gρ(n)+1 and f are

smoothly δ-ambient isotopic. Thusg is smoothlyδ-ambient isotopic tog0, which, in
turn, is smoothly 29δρ(n)-ambient isotopic togρ(n), which is smoothlyδ-ambient isotopic
to f . ✷

6. Proofs of Theorems 1.12 and 1.16

Proof of 1.12. We proceed with the first and the ‘moreover’ parts simultaneously (in the
first part, letε > 0 be any number). LetF :X × I → Q × I be the given (PL) pseudo-
concordance. The proof splits into two cases.

PL case. (Compare to [74, proof of Lemma 4.23 on level-preserving collars].) Fix
some triangulations ofX × I , Q × I such that meshQ < ε/2 andF and the projections
p :X × I → X, P :Q × I → Q are simplicial. Let(X × I)′, (Q × I)′ denote derived
subdivisions ofX × I , Q × I which project simplicially onto the barycentrically derived
subdivisionsX′, Q′ of X, Q. For each simplexA of X× I (respectivelyQ× I ), we denote
by dA its derivation point in(X× I)′ (respectively in(Q× I)′). Let γ > 0 be so small that
no vertex of(X× I)′ lies inX× (1−γ,1) and no vertex of(Q× I)′ lies inQ× (1−γ,1).
Then for each simplexA of X×I (respectivelyQ×I ) meetingX×1 (respectivelyQ×1)
in a simplexB, the joindA ∗ dB meetsX × {1− γ } (respectivelyQ × {1− γ }) precisely
in one point, which we denote byd+

A .
We define a new PL pseudo-concordanceF+ :X × I ↪→ Q × I as follows. PutF+|A =

F |A for any simplexA not meetingX × {1 − γ }. Let A1, . . . ,AM be the simplices of
X × I meetingX × {1 − γ }, arranged in some order of increasing dimension. Assuming
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that F+|∂Ai is defined, defineF+|Ai by d+
Ai

�→ d+
F(Ai)

and extending linearly. Then

F−1+ (Q × {1 − γ }) = X × {1 − γ } (moreover,F+|X×[1−γ,1] is level-preserving, but we
do not use this fact). Also,p ◦ F−1+ (B × {1 − γ }) = p ◦ F−1+ (B × 1) = f−1(B) for each
dual cellB of Q. Let h denote the unique embeddingX ↪→ Q such thath × {1 − γ } =
F+|X×{1−γ }. By Lemma 4.2,h is PL 1

2ε-pseudo-isotopic tof , and this completes the proof
of the first part.

To prove the ‘moreover’ part, notice thatF+|X×[0,1−γ ] yields a PLδ-concordance
betweeng, h. By 1.13(a)δ can be chosen so thatg is PL 1

2ε-ambient isotopic toh.
TOP case. In the ‘moreover’ part we can assume (by 3.6(b), 3.5(a) and 3.1(a)) that the

embeddingg :X ↪→ Q is PL. By the non-compact relative case of Theorem 3.1(a) the
embeddingF |X×[0,1) can be assumed PL.

Put t0 = t1 = 0. Assumingti , i > 1, to be already defined, put

ti+1 =
{

supΠ ◦F(X × [0, 1
2(1− ti )]) if i is even,

supπ ◦ F−1(Q × [0, 1
2(1− ti)]) if i is odd,

whereπ :X × I → I , Π :Q × I → I denote the projections. Clearly,ti < ti+1 < 1 for all
i = 0,1, . . . . The main property ofti ’s is: for eveni

F
(
X × [ti−1, ti+1]

) ⊂ Q× [ti−2, ti+2].
Let 4γ = δ3.7 be given by Theorem 3.7 forε3.7 = 1

2. Define a PL homeomorphism
λ : [0,1) → [0,+∞) by mappingti �→ γ (i − 1) for all odd i, an extending linearly.
Analogously, define a PL homeomorphismµ : [0,1) → [0,+∞) by mappingti �→ γ i for
all eveni, an extending linearly. Let

G = (
λ−1 × idX

) ◦ F ◦ (µ × idQ) :X × [0,+∞) → Q × [0,+∞).

We obtain thatG(X × [γ (i − 2), γ i]) ⊂ Q × [γ (i − 2), γ (i + 2)] for each eveni > 0.
Then by Theorem 3.7 there exists an ambient isotopy takingG onto an embedding
G+ :X × [0,+∞) → Q × [0,+∞) such thatG−1+ (Q × i) = X × i for all i = 1,2, . . .
(in the ‘moreover’ part fori = 0 in addition).

Let us assumei to run over the positive integers in the proof of the first part, and over the
nonnegative integers in the ‘moreover’ part. Letαi = δ1.13(a) be given by Theorem 1.13(a)
for ε1.13(a) = ε/2i+1. (In the ‘moreover’ part we putδ = α0/2 in addition.) SinceF
is continuous, we can choose a sequence of integersni such thatP ◦ G|X×[ni ,+∞) is
1
2αi -close to f × id[ni ,+∞), where P :Q × R1 → Q denotes the projection. (In the
‘moreover’ part the hypothesis allows to taken0 = 0.) By the furthermore part of 3.7
we can assume without loss of generality thatP ◦ G+|X×[ni ,+∞) is 1

2αi -close toP ◦
G|X×[ni,+∞) for eachi. ThereforeG+|X×[ni ,ni+1] is anαi -concordance. Hence by 1.13(a)
for eachi the embeddingsfi = P ◦ G+|X×ni andfi+1 are PL ε

2i+1 -ambient isotopic. It
follows (cf. [46, Lemma 1]) thatf1 (f0 in the ‘moreover’ part) can be taken ontof by an
ε-pseudo-isotopy. ✷
Proof of 1.16. (a) We prove PL and DIFF cases simultaneously. Suppose that an
embeddingg′ :X ↪→ Q is taken ontof by a pseudo-isotopyH ′

t :Q → Q. By 3.1 and 3.5(a)
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there is a PL (smooth) embeddingg :X ↪→ Q, which is taken ontog′ by a pseudo-isotopy
Gt :Q → Q. Then the ‘diagonal’ pseudo-isotopyHt = H ′

t ◦Gt takesg ontof .
(b) The PL case was actually proved in the above proof of 1.12, TOP case. Or it can be

proved analogously to the below proof of the DIFF case:
DIFF case. Let H ′

t :Q → Q be the given pseudo-isotopy and putht = H ′
t ◦ g, where

g :X ↪→ Q is the given smooth embedding. Letαi , i = 1,2, . . . , be a monotonely
decreasing sequence of reals (defined below) and letti , i = 1,2, . . . , be such thathti

is αi -close tof . By 3.1(b) and 3.5(b),hti is TOP αi -isotopic to a smooth embedding
gi, i = 1,2, . . . . Thereforegi andgi+1 are TOP 3αi -isotopic for eachi = 1,2, . . . , andg
is TOP isotopic tog1. By the relative case of 3.1(b) and by 1.13(b),αi can be chosen so that
gi andgi+1 are smoothly 2−i−1-ambient isotopic, whileg andg1 are smoothly ambient
isotopic. It follows thatg can be taken ontof by a pseudo-isotopyHt which is smooth
whenevert ∈ [0,1). ✷
Remark 6.1. We point out one useful observation following from Theorem 1.16 and
the relative version of Theorem 1.12 (which is proved analogously to 1.12, using the
relative version of 1.13(a)). Suppose thatm − n � 3, Xn is a compact polyhedron,Qm

a PL manifold, andf :X → Q a map which PL embeds a subpolyhedronZ of X. It turns
out that if f is isotopically realizable, then there is an embeddingg :X ↪→ Q, agreeing
with f onZ, and a pseudo-isotopyHt :Q → Q, takingg ontof and keepingg(Z) fixed.

Indeed, by 1.16 there is a PL embeddingg′ and a pseudo-isotopyH ′
t , PL whenever

t ∈ [0,1) and takingg′ ontof .
From the non-compact case of Theorem 3.2(a) it follows thatH ′

t ◦ g′|Z , regarded
as a level-preserving embeddingZ × I → Q × I , can be topologically isotoped (not
level-preserving in general) onto the embeddingf |Z × idI . Thus we obtain a pseudo-
concordance from an embedding tof , keepingZ fixed, and it remains to apply the relative
version of 1.12, TOP case.

Notice that ifZ is a manifold orm−n � 4, instead of Theorem 3.2(a) one could apply its
parametric version [64,53,86], thus making the application of the relative version of 1.12
no longer necessary.

7. Proof of Criterion 1.7

The following is the controlled version of [37, Theorem 1(R), p. 21].

Theorem 7.1. For each ε > 0 and a positive integer n there exists δ > 0 such that
the following holds. Let Xn be a compact polyhedron, (Qm, ∂Q) a PL manifold, m �
3(n+ 1)/2, and f :X → Q a PL map which embeds a subpolyhedron Z of X.

If f 2 is equivariantly δ-homotopic to an isovariant map H1 by a homotopy H :X2×I →
Q2 which is isovariant on Z∗

f × I , then f is PL ε-homotopic keeping Z fixed to an

embedding g :X ↪→ Q such that g2 is isovariantly ε-homotopic to H1.
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If f :X → Q is a map into a manifold andZ ⊂ X, we denote byZ∗
f the set

Z2 ∪ (Z ∩ f−1∂Q) × X ∪ X × (Z ∩ f−1∂Q).
Compare 7.1 to [70, pre-limit version of 1.2].
Theorem 7.1 follows from 7.2 and 7.4 below, whereU7.4 = X2 andU7.2 = V7.4.

Theorem 7.2. For each ε > 0 and a positive integer n there exists δ > 0 such that
the following holds. Let Xn be a compact polyhedron, (Qm, ∂Q) a PL manifold, m �
3(n+ 1)/2 and f :X � Q a PL immersion which embeds a subpolyhedron Z.

Suppose that f 2 is equivariantly δ-homotopic to an isovariant map H1 by a homotopy
H :X2 × I → Q2 which is isovariant on (U ∪Z∗

f )× I , where U is some neighborhood of

∆X in X2.
Then f is PL ε-regularly homotopic, keeping Z fixed, to an embedding g :X ↪→ Q such

that g2 is isovariantly ε-homotopic to H1.

Proof. This is a modification of [37, proof of Theorem 3] in the spirit of [70]. Familiarity
with [37, proof of Proposition 9] is assumed.

Fix a triangulation ofX such thatf is simplicial,Z is a subcomplex, and the diameter of
each simplex is less thanδ. Arrange the simplices ofX so that first go that inZ ∩ f−1∂Q

in some order of increasing dimension, then the rest inZ in like order, and then the rest in
X in like order. EquipX2 with a cell structure induced by the triangulation ofX.

Now 7.2 follows from the case(p, q) = (n,n) of the below statement.

Claim 7.3. Let p,q be some integers, −1 � p � q � n. There is a positive integer cpq

such that the following holds.
The immersion f is PL cpqδ-regularly homotopic, keeping Lp fixed, to an immersion

fpq :X � Q such that fpq(A) ∩ fpq(B) = ∅ for any cell A × B of Lpq , and such that
f 2
pq is equivariantly cpqδ-homotopic to H1 by a homotopy Hpq :X2 × I → Q2 which is

isovariant on (V ∪Z∗
f ∪Lpq) × I .

HereLp = X(p) ∪Z andLpq = Lp × Lq ∪ Lq × Lp ∪Lp−1 × X ∪ X × Lp−1.

Proof. The case(p, q) = (−1,−1) follows from the hypothesis of 7.2, assuming
c−1,−1 = 1. The transition from(p,n) to (p + 1,p + 1) can be regarded as that from
(p + 1,p) to (p + 1,p + 1). We thus assume 7.3(p, q) and prove 7.3(p, q + 1).

If two simplicesA,B, whereA× B is a cell ofLp,q+1, are mapped byfpq sufficiently
far from each other (namely, so that the minimal distance between points infpq(A),
fpq(B) is greater than 2cpqδ), then fpq embedsA ∪ B and Hpq is isovariant on
(A× B ∪ B × A) × I .

On the other hand, letJpq denote the set of pairs(Ai,Aj ) of simplices ofX such that
dimAi = p, dimAj = q + 1, Aj is not a simplex ofZ, if p = q thenAi precedesAj in
the ordering, and such that diamfpq(Ai ∪ Aj) < 4cpqδ.

By [70, 3.2] (which obviously generalizes for embedding into a PL manifold) we can
assume that there is a collection of PL ballsBij ⊂ Q, where(Ai,Aj ) run overJpq , such
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that diamBij < 16cpqδ, Bij ∩ Bkl = ∅ whenever(i, j) �= (k, l), fpq(Ai) ∩ fpq(Aj ), if

nonempty, lies in IntBij , andBij meetsAi , Aj in PL ballsBp
i ⊂ IntAi , B

q+1
j ⊂ IntAj .

Now the argument of [37, proof of Proposition 9] can be applied to each pair(Ai,Aj) =
(σp,σ q+1) independently, so that there is a sequence of ambient isotopiesHij , H ′

ij of Q,
supported by arbitrarily small neighborhoodsNij of ballsBij (which can be chosen still
disjoint from each other and of diameter< 17cpqδ).

The immersionfp,q+1 is defined byfp,q+1 = H ′
ij ◦ Hij ◦ fpq on Nij ∩ st(Aj ,X

′)
and byfp,q+1 = fp,q elsewhere, in particular, onNij ∩ st(Ai,X

′). It follows from the
construction ofH , H ′ in [37] thatfp,q+1(A)∩ fp,q+1(B) is empty for any simplicesA of
Lp = X(p) ∪ Z andB of Lq+1 and for any simplicesA of Lp−1 andB of X. Also fp,q+1

is 17cpqδ-regularly homotopic tofpq , keepingZ fixed.
The equivariant homotopyHp,q+1 is defined analogously to asF ′ in [37, proof of

Proposition 9], and it follows from the construction ofF ′ in [37] thatHp,q+1 is isovariant
on (V ∪ Z∗

f ∪ Lpq) × I .
From the obtained control offp,q+1 and the construction ofF ′ in [37] it follows that

Hp,q+1 moves points less than 17
√

2cpqδ.
Hence if we takecp,q+1 > (17

√
2+ 1)cpq , all conditions are satisfied.✷

Addendum to 7.2. Let H ′ :X2 × I → Q2 denote the isovariant homotopy between
g2 and H1, let rt :X → Q denote the regular homotopy between f and g, and let
G :X2 × I → Q2 be defined by Gt = (r1−2t )

2 for t ∈ [0, 1
2] and Gt = H2t−1 for t ∈ [1

2,1].
Then G and H ′ are equivariantly ε-homotopic by a homotopy isovariant on (X2 × ∂I ∪

(V ∪ Z∗
f ) × I) × I , where V is some smaller neighborhood of ∆X in X2.

This addendum is needed to carry out induction in the proof of 7.4 below. It follows
from the proofs of 7.2 and [37, Proposition 9]. (The similar addenda to 7.1 and 7.4 can be
also shown to hold, but are not required in this paper.)

Theorem 7.4. Let Xn be a compact polyhedron, (Qm, ∂Q) be a PL manifold, m �
3(n+ 1)/2, and f :X → Q be a PL map immersing a subpolyhedron Z of X.

Suppose that f 2 is equivariantly homotopic to map H1 which is isovariant on a
neighborhood U of ∆X by a homotopy H :X2 × I → Q2 which is isovariant on (Z∗

f ∩
U) × I .

Then for any ε > 0, f is PL ε-homotopic, keeping Z fixed, to an immersion g :X � Q

such that g2 is equivariantly homotopic to H1 by a homotopy which is ε-close to H and
isovariant on (V ∪ (Z∗

f ∩U)) × I for some smaller neighborhood V of ∆X .

We minimize the program in [37] by using a different method. The idea is to construct
a PL immersion by inductive gathering of certain PL regular homotopies from immersions
to embeddings. (This idea traces back to discussions of Skopenkov and the author, and was
first explicitly realized by Skopenkov; see [83].) More precisely, the PL immersion will be
constructed via an inductive application of (Theorem 7.2+ Addendum).
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Actually we do not use the control in this application, that is, we could apply simply
([37, Theorem 3]+ non-controlled Addendum). Hence the proof below of 7.4, together
with Harris’ original proof of [37, Theorem 3], yields a new short proof of [37, Theorems
1, 2]. It seems that an application of the control in (Theorem 7.2+ Addendum) would be
necessary in a proof of a version of 7.4 withC1-control. Perhaps 7.4 can be also proved by
a modification of [37, proof of Proposition 11] in the spirit of [70].

We prove explicitly only the caseZ = ∅. Lack of Z∗
f allows to use the following

convention: we call a mapf :X2 → Q2 (a homotopyh :X2 × I → Q2) locally isovariant
if there is a neighborhoodW of ∆X in X2 such thatf |W (respectivelyh|W×I ) is isovariant.

Proof. Without loss of generality we can assume thatf is non-degenerate. TriangulateX
andQ so thatf is simplicial and diameter of each dual cellC of Q is less thanε/

√
2.

LetC1, . . . ,CM be the dual cells ofQ arranged in an order of increasing dimension, and
let Ci1, . . . ,CiMi be the dual cones ofX, whose disjoint union isf−1(Ci). Each cellCi

is dual to a simplex ofQ which we denote byAi , whose barycenter we denote bybi , and
whose link inQ′ we denote byBi , so thatbi ∗Bi = Ci . We also writeDi = b2

i ∗B2
i ⊂ C2

i .
We defineAij , bij , Bij andDij analogously.

We writeS for {Ci × Cj , b
2
i ,Di | i, j = 1, . . . ,M}. We arrangeCij lexicographically,

and denoteLpq = C11 ∪ · · · ∪ Cpq .
We use the following notation. Byε(b ∗ B) we denote, for anyε ∈ (0,1] and any cone

b ∗B = B × [0,1]/B×1, its subpolyhedronB × [1− ε,1]/B×1. By Hε(b∗B) we denote the
natural homeomorphism(b ∗ B \ ε(b ∗B),B) → (B × I,B × 0).

Theorem 7.4 follows from 7.5 and the casep = M, q = MM of 7.8.

Claim 7.5. For each δ > 0 there is a locally isovariant homotopy G :X2 × I → Q2, δ-
close to H and such that G1 = H1.

Proof. Clearly, H |∆X×I can be extended (analogously to the Borsuk Lemma) to some
locally isovariant homotopyH ′ :X2 × I → Q2 with H ′

1 = H1. There is a neighborhoodW
of ∆X in X2 such thatH ′|W×I is δ-close toH |W×I .

Moreover, if δ is sufficiently small,H ′|(FrW)×I is equivariantly homotopic, by the
‘linear’ homotopy, toH |(FrW)×I . Hence by the Borsuk Lemma we can assume without
loss of generality (but with possible decrease of the neighborhoodW ′ of ∆X in X2 such
thatH ′|W ′×I is isovariant) thatH ′|(FrW)×I = H |(FrW)×I .

DefineG by G = H ′ on W × I and byG = H elsewhere, thenG is locally isovariant
andδ-close toH . ✷
Lemma 7.6. Let Xn be a finite simplicial complex, (Qm, ∂Q) a combinatorial manifold,
m−n � 2, f :X → Q a simplicial map and C a union of some top-dimensional dual cells
of Q. Then for each ε > 0 there is δ > 0 such that the following holds.

Suppose that G :X2 → Q2 is a locally isovariant map, δ-close to f 2 and such that
G−1(C1 × C2) = (f 2)−1(C1 × C2), where Ci run over (dual cells of C) ∪ {Q}. Then G

is locally isovariantly ε-homotopic, keeping C2 fixed and preserving C × Q ∪ Q × C, to
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a map F :X2 → Q2 such that F−1(C1 × C2) = (f 2)−1(C1 × C2) for each dual cells C1,
C2 of Q.

The proof of Lemma 7.6 modulo Lemma 7.7(a) is analogous to the proof of Lemma 4.1
modulo Theorem 3.7 and we leave it for the reader.

Lemma 7.7. Suppose that m − n � 1.
(a) Let Xn be a compact polyhedron, Y its collared subpolyhedron, (Qm, ∂Q) a PL

manifold and J0 = {(−∞,0],0, [0,+∞)}2. Any locally isovariant map

f : (X2,X × Y ∪ Y × X) × [−1,1]2 → (
Q2, ∂(Q2)

) × R2

such that f −1((∂Q)2 × J ) = Y 2 × (J ∩ [−1,1]2) for each J ∈ J0 is locally
isovariantly homotopic, keeping (∂Q)2 × R2 fixed and preserving ∂(Q2)× R2, to a
map g such that g−1(Q2 × J ) = X2 × (J ∩ [−1,1]2) for each J ∈ J0.

(b) Let c ∗ Xn be cone over a compact polyhedron, c ∗ Qm cone over a PL sphere or a
PL ball, and

f :
(
(c ∗X)2,X × (c ∗ X) ∪ (c ∗X) × X

)
→ (

(c ∗ Q)2,Q× (c ∗Q) ∪ (c ∗ Q) × Q
)

a locally isovariant map such that f−1(Q2) = X2. Then f is locally isovariantly
homotopic, keeping (Q × (c ∗ Q) ∪ (c ∗ Q) × Q) fixed, to a mapping g such that
g−1(c2 ∗Q2, c2) = (c2 ∗X2, c2).

(c) Let Xn be a compact polyhedron, Y its subpolyhedron, (Qm, ∂Q) a PL manifold,

Jd = {{(x, y) ∈ R2 | x � y},∆R, {(x, y) ∈ R2 | x � y}},
K an equivariant subpolyhedron of R2. Any locally isovariant map f :X2 ×
[−1,1]2 → Q2 × R2 such that

f −1(∂(Q2) × J∆

) = (X × Y ∪ Y × X) × (
J∆ ∩ [−1,1]2)

and

f −1(Q2 × (K ∩ J∆)
) = X2 × (

K ∩ J∆ ∩ [−1,1]2)
for each J∆ ∈ Jd , is locally isovariantly homotopic, keeping ∂(Q2)× R2 ∪Q2 ×K

fixed, to a map g such that g−1(Q2 ×J∆) = X2 × (J∆ ∩[−1,1]2) for each J∆ ∈ Jd .

Lemma 7.7 can be regarded as a homotopy-theoretic version of Theorem 3.7. We
reduce (a) and (b) to (c), which is proved analogously to the geometric proof of the
Freudental Suspension Theorem.

Proof of 7.7. (a) Let us writeR = ∂(Q2) and Z = Y × X ∪ X × Y . Without loss of
generalityf −1(R × J ) = Z × (J ∩ [−1,1]2) for eachJ ∈ J0.

By 7.7(c) with K = (−∞,0] × [0,+∞) ∪ [0,+∞) × (−∞,0] there is a locally
isovariant homotopyft :Z × [−1,1]2 → R × R2, preservingR × J for eachJ ∈ J0, from
f |Z×[−1,1]2 to a mapf1 such thatf −1

1 (R × J∆) = Z × (J∆ ∩ [−1,1]) for eachJ∆ ∈ Jd .
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Hence (using collars onZ and R) without loss of generality we can assume that
f−1(R × J∆) = Z × (J∆ ∩ [−1,1]) for eachJ∆ ∈ Jd .

Then we can apply 7.7(c) (K = ∅) to obtain a locally isovariant homotopy, keeping
R × R2 fixed, fromf to a maph such thath−1(Q2 × J∆) = X2 × (J∆ ∩ [−1,1]) for each
J∆ ∈ Jd .

There is no obstruction in homotopingh onto requiredg keepingR × R2 fixed.
(b) We consider the caseQ = Sm, since the caseQ = Bm is its corollary. By general

position we can assume thatf−1(c2) = c2, by [37, Appendix] we can assume thatf is PL,
and using pseudo-radial projection [74] we can assume thatf −1(ε(c ∗ Sm)2) = ε(c ∗ X)2

for sufficiently smallε > 0. Let

h : ∂ε(c ∗X)2 → X × (c ∗X) ∪ (c ∗X) × X,

H : ∂ε
(
c ∗ Sm

)2 → Sm × (
c ∗ Sm

) ∪ (
c ∗ Sm

) × Sm

be the natural homeomorphisms. The map

F = H ◦ f |∂ε(c∗X)2 ◦ h−1 :X × (c ∗X) ∪ (c ∗ X) × X →
Sm × (

c ∗ Sm
) ∪ (

c ∗ Sm
) × Sm

is isovariant. Notice thatX × (c ∗ X) ∪ (c ∗ X) × X is homeomorphic toX ∗ X, i.e., to
X × X × I/(X × 0 ∪ X × 1), the productX × X being thrown onto the middle section
X × X × 1

2 of the join. Now the pair(
Sm ∗ Sm \ (

∆Sm × 1
2

)
,
(
Sm × Sm \ ∆Sm

) × 1
2

)
with induced involution(x, y, t) ↔ (y, x,1 − t) equivariantly deformation retracts onto
∇Sm × (I, 1

2) (where∇Sm is theantidiagonal {(x,−x) ∈ Sm × Sm} ∼= Sm) with involution
(z, t) ↔ (−z,1− t). If r denotes the retraction,r ◦F |X∗X\∆X× 1

2
is equivariantly homotopic

to a mapR such thatR−1(∇Sm × 1
2) = X×X× 1

2. Sincer is homotopy invertible, it follows

that there is an isovariant homotopyFt from F to a mapF+ such thatF−1+ ((Sm)2) = X2.
Let us consider the map

f+ = H−1 ◦ F+ ◦ h : ∂
ε

2
(c ∗X)2 → ∂

ε

2

(
c ∗ Sm

)2
.

Let us extendf+ linearly overε2(c ∗X)2, by f+ = f on (c ∗X)2 \ ε(c ∗X)2 and usingFt

on ε(c ∗ X)2 \ 1
2ε(c ∗ X)2 (more precisely, byf+ = H−1

ε(c∗Sm)2
◦ F2t ◦ Hε(c∗X)2). Thenf+

is locally isovariant,

f−1+
(
ε

2

(
c ∗ Sm

)2
,
ε

2

(
c2 ∗ (

Sm
)2)) =

(
ε

2
(c ∗X)2,

ε

2

(
c2 ∗X2)),

andFt yields a locally isovariant homotopy fromf to f+. To obtain the required mapg,
it remains to apply 7.7(c) withK = 1 × [−1,1] ∪ [−1,1] × 1 ∪ [−1,−1 + ε]2 to
f+|(c∗X)2\ ε

2 (c∗X)2.

(c) Let us writeR for ∂(Q2) × R2 ∪ Q2 × K andZ for

(X × Y ∪ Y × X) × R2 ∪ X2 × K.
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By [37, Appendix] we can assume thatf is PL, meanwhile by [52, Theorem 1] there exists
a PL tangent bundle toQ, i.e., a collection of PL open ball pairs(B2m

i ,Dm
i ) ⊂ (Q2,∆Q)

such that for eachi there exists a PL homeomorphismHi : (Bi,Di) → (R2m,Rm), making
the following diagram commutative:

R2m Hi

projection

Bi
inclusion

Q2

(q,r) �→(q,q)

Rm Hi
Di

inclusion ∆Q

Fix equivariant triangulations onX2×[−1,1]2 andQ2 ×R2 in whichf and the projection
δ :Q2 × R2 → Q2 × ∆R are simplicial. We define

Q̂ = N
(
∆Q×R,Q

2 × R2), X̂ = N
(
∆X×[−1,1],X2 × [−1,1]2),

Q̂0 = Q̂ ∩Q2 × ∆R, X̂0 = X̂ ∩X2 × ∆[−1,1].

Notice thatX̂ is a connected component off −1(Q̂). We are to modifyf so thatX̂0 is a
connected component off −1(Q̂0).

We have thatf−1(FrQ̂∩ R) = FrX̂ ∩Z. It suffices to homotopf |FrX̂ onto a map

F+ :
(
FrX̂,FrX̂0

) → (
FrQ̂,FrQ̂0

)
by a sufficiently small homotopyFt keepingQ̂ ∩ R fixed. For ifFt is so small that each
simplex is left by it in the sameBi ×R2, then it can be extended ‘linearly’ (by an induction
on joinsY ∗ Z, whereY andZ run, in orders of increasing dimension, over simplices of
∆Q and lk(Y,Q)∩FrX̂, respectively) to an isovariant homotopyft takingf |X̂ onto a map

f+ :
(
X̂, X̂0

) → (
Q̂, Q̂0

)
.

To arrange such a homotopyFt , let us consider the analogues of the north and the south
poles:

Q̂n = (
FrQ̂

) ∩ ∆Q × (
(−∞)× (+∞),02],

Q̂s = (
FrQ̂

) ∩∆Q × [
02, (+∞) × (−∞)

)
,

X̂n = (
FrX̂

) ∩ ∆X × [
(−1)× 1,02],

X̂s = (
FrX̂

) ∩ ∆X × [
02,1× (−1)

]
.

Since δ is simplicial, these are subcomplexes of FrQ̂,FrX̂, while FrX̂ \ (X̂n ∪ X̂s)

is equivariantly homeomorphic to the cylinderC = FrX̂0 × (0,1) equipped with the
involution ((x, y, s), t) ↔ ((y, x, s),−t). We can assume (adjustingK, if necessary,
without loss of generality) that the homeomorphism takesZ ∩ (FrX̂ \ (X̂n ∪ X̂s)) onto
Z0 × (0,1) for some subpolyhedronZ0 of FrX̂0.

By general position [10] the inequality(2n − m + 1) + (n + 1) < 2n + 2 implies that
f−1(Q̂n) does not meet̂Xn ∪ X̂s , while (2n−m+1)+ (2n−m+1)< 2n+2 implies that
f−1(Q̂n∪Q̂s ), regarded as a subset of FrX̂0×(0,1), is not self-overshadowing. Therefore
there is an equivariant isotopyht : FrX̂ → FrX̂, keepingX̂n ∪ X̂s ∪ Z0 × (0,1) fixed and
preserving the generators of the cylinderC, and takingf −1(Q̂n) (respectivelyf−1(Q̂s))
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into a small neighborhood of̂Xn (respectivelŷXs ). The homotopyHt = f ◦ h−1
t carries

f |FrX̂ (equivariantly and keepingR ∩ FrQ̂ fixed) onto a mapf1 : FrX̂ → FrQ̂, such that
f−1

1 (Q̂n) (respectivelyf−1
1 (Q̂s)) is close toX̂n (respectively tôXs ).

By stretching a neighborhood of̂Qn over the ‘hemisphere’(FrQ̂) ∩ Q2 × {(x, y) |
x � y} (and similarly for the symmetric neighborhood of̂Qs ) we obtain a homotopy
(equivariant, keepingR ∩ FrQ̂ fixed) onto a mapf2 such thatf2(FrX̂0) ⊂ FrQ̂0. Final
straightening in the spirit of the Alexander trick yields an equivariant homotopy, keeping
R∩FrQ̂ fixed, onto the required mapf+ : FrX̂ → FrQ̂ such thatf−1+ (FrQ̂0) = FrX̂0. ✷
Claim 7.8. Let F denote the map, obtained from Lemma 7.6 for G7.6 = G0 and C7.6 = ∅,
and refined by application of Lemma 7.7(b) to cones c ∗ X7.6 running over all dual
cones Cij . Then for each p = 0, . . . ,M , q = 0, . . . ,Mp the following holds.

The map f is PL homotopic to a map fpq :X → Q, which immerses Lpq , by a homotopy
hpq :X × I → Q such that h−1

pq (Ci) = f−1(Ci) × I for each i � M .

Moreover, f 2
pq is equivariantly homotopic to F by a homotopy Fpq :X2 × I → Q2 such

that F−1
pq (S) = (f 2)−1(S)× I for each S ∈ S , and which is locally isovariant on L2

pq × I .

Proof. By lexicographic induction onp,q . The basep,q = 0 follows by takingf00 = f

and constructingF00 inductively by the Alexander trick. (Given polyhedraY ⊃ Y1, Z ⊃ Z1

and mapsΨ0,Ψ1 : c ∗ Y → c ∗ Z such thatΨ−1
i (c) = c andΨ−1

i (c ∗ Z1) = c ∗ Y1, then
any homotopyψt :Y → Z betweenΨ0|Y , Ψ1|Y such thatψ−1(Z1) = Y1 × I can be
extended to a homotopyΨt : c ∗ Y → c ∗ Z betweenΨ0, Ψ1 such thatΨ−1(Z) = Y × I ,
Ψ−1(c ∗ Z1) = (c ∗ Y1) × I , andΨ−1

t (c) = c × I .)
To prove the inductive step, notice thatfp,q−1|Bpq :Bpq → Bp is an immersion, and that

the homotopyFp,q−1|B2
pq×I :B2

pq × I → B2
p is locally isovariant.

Also we have thatFp,q−1|B2
pq×1 = F |B2

pq
is locally isovariantly homotopic to an

isovariant map. Indeed, define a homotopyΨ :B2
pq × I → B2

p by

Ψ = πB2
p

◦HεDp ◦ F ◦ H−1
εDpq

,

whereε is so small thatεDpq lies in a neighborhoodW of ∆X in X × X such thatF |W
is isovariant. Then by 7.2 there is a PL regular homotopyr :Bpq × I → Bp × I from
fp,q−1|Bpq to an embeddingr1. We definefpq by H−1

εCp
◦ r ◦ HεCpq on Cpq \ εCpq ,

conewise onεCpq , and byfp,q−1 outsideCpq . Sincer is a PL regular homotopy and
r1 is a PL embedding,fpq |Cpq is a PL immersion.

Also fpq agrees withfp,q−1 on Bpq , hencefpq |Cpq is linearly homotopic, keeping
Bpq fixed, tofp,q−1|Cpq . We denote this homotopy byl :Cpq × I → Cp , and we denote
its extension overX by identity byL :X × I → Q, so thatL0 = fp,q−1 andL1 = fpq .
ThenL together withhp,q−1 yield the required PL homotopyhpq :X × I → Q between
f andfpq .

Since r is level-preserving,l−1(tCp) = tCpq × I for each t ∈ I . It follows that
(l2)−1(Dp) = (Dpq) and hence(L2)−1(S) = (f 2)−1(S) × I for eachS ∈ S. Now L2

andFp,q−1 together give an equivariant homotopyF+
p,q−1 :X2 × I → Q2 between(fpq)

2
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andF such that(F+
p,q−1)

−1(S) = (f 2)−1(S) × I for eachS ∈ S, and which is locally

isovariant onL2
p,q−1 × I . We want to make it locally isovariant onL2

pq × I .

We define an equivariant homotopyΦ :B2
pq × [−1,2] → B2

p by

Φt =


r−t , t ∈ [−1,0];
(Fp,q−1|B2

pq×I )t , t ∈ [0,1];
Ψt−1, t ∈ [1,2].

By 7.2 and Addendum,Φ is locally isovariantly homotopic to an isovariant mapΞ1 by a
homotopyΞ :B2

pq ×[−1,2]×I → B2
p , which is in addition isovariant onB2

pq ×{−1,2}×
I . DenoteB2

p × I ∪Dp × ∂I by Ep . Define an embeddingϕp :B2
p ×[−1,2] ↪→ Ep by the

identity onB2
p × [0,1], by H−1

εDp×0 ◦ (t �→ −t) on B2
p × [−1,0], and byH−1

εDp×1 ◦ (t �→
t−1) onB2

p ×[1,2]. Define analogouslyEpq andϕpq . Then twice extending the homotopy

ϕp ◦Ξt ◦ϕ−1
pq conewise, we obtain a locally isovariant homotopyΞ+ :Epq × I → Ep × I

from F+
p,q−1|Epq :Epq → Ep to an isovariant mapΞ+

1 .

We define the requiredFpq by F+
p,q−1 outsideC2

pq , by H−1
ε(Dp×I ) ◦ Ξ+ ◦ Hε(Dpq×I ) on

(Dpq × I) \ ε(Dpq × I), conewise onε(Dpq × I), and by the relative Alexander trick on
the rest ofC2

pq × I . ThenFpq is locally isovariant onL2
p,q−1 × I and onC2

pq × I . Also

F−1
pq (S) = (f 2)−1(S)× I for all S ∈ S, and∆Lpq ⊂ L2

p,q−1 ∪C2
pq , thereforeFpq is locally

isovariant onL2
pq × I . ✷

Proof of 1.7(a+). The PL case follows immediately from 7.1, because any equivariant
map,δ-close to a given equivariant mapf 2, is equivariantlyδ-homotopic tof 2, provided
δ > 0 is sufficiently small.

The TOP case follows from the PL case and simplicial approximation.✷
It is convenient to call a homotopyht :X2 → Q2 pseudo-isovariant if ht is isovariant

for t < 1. If f0, f1 :X → Q are maps, let us say that an equivariant (δ-)homotopy
ϕt :X2 → Q2 betweenf 2

0 and f 2
1 (δ-)holonomic if the homotopyϕt is homotopic, in

the class of equivariant (δ-)homotopies betweenf 2
0 andf 2

1 , to a homotopy(ft )
2, where

ft :X → Q is some homotopy betweenf0 andf1.

Corollary 7.9. For each ε > 0 and a positive integer n there exists δ > 0 such that the
following holds. Let Xn be a compact polyhedron,Qm a PL manifold, and m> 3(n+ 1)/2.

(a) If f,g :X ↪→ Q are PL embeddings such that f 2 and g2 are isovariantly
δ-holonomically homotopic, then f and g are PL ε-ambient isotopic.

(b) If f :X ↪→ Q is a PL map and g :X → Q a PL embedding such that f 2 and g2 are
pseudo-isovariantly δ-holonomically homotopic, then f and g are PL ε-pseudo-
isotopic.

Compare Corollary 7.9(a) to [70, Conjecture 1.9b]. Notice that the statement of 7.9(a)
is concerned with embeddings only, although its proof and applications contain the idea of
map realization. Actually 7.1 and 7.9(a) are not only controlled versions of Harris’ results,
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but also generalize them (by considering an appropriate metric onQ). Notice that from 7.1
and 7.9(a) at once follow 3.1(a) and 3.2(a) restricted to the metastable range, respectively
(compare to [37, Corollary 4]).

Observe that ifQ = Rm or if δ is allowed to depend on the metric onQ, the holonomy
condition is fulfilled automatically and can be dropped from the hypotheses of 7.9.

Proof. (a) This is analogous to [37, proof of Corollary 1] (but not to [82, proof of
Theorems 1.0e and 1.1c]).

Let ϕt :X2 → Q2 be the given isovariantδ-homotopy betweenf 2 and g2. Let
Ωs,t :X2 → Q2 be the given homotopy, in the class of equivariantδ-homotopies between
f 2 and g2, from ϕt to (ft )

2, whereft :X → Q is a homotopy betweenf and g. Let
F :X × I → Q × I be the PL map defined byF(x, t) = (ft (x), t). Define an equivariant
homotopyΨt : (X × I)2 → (Q × I)2 from F 2 = Ψ0 to a mapΨ1 by

Ψt(x,u, y, v) =
(
F

(
x,u

(
1− t

2

)
+ v

t

2

)
,F

(
y, v

(
1− t

2

)
+ u

t

2

))
.

Then

Ψ1(x,u, y, v) =
(
F

(
x,

u + v

2

)
,F

(
y,

u + v

2

))
,

which equals((f(u+v)/2)
2(x, y), u, v). Define an equivariant homotopyΦt : (X × I)2 →

(Q× I)2 from Ψ1 = Φ0 to an isovariant mapΦ1 by

Φt

(
(x,u, t, v)

) = (
Ωt,(u+v)/2(x, y), u, v

)
.

TogetherΨt and Φt yield an equivariant 3δ-homotopyHt , which is isovariant on
(X × ∂I) × (X × I) ∪ (X × I) × (X × ∂I), from F 2 to an isovariant mapH1 = Φ1.
Then by 7.1 for anyγ > 0, δ can be chosen so thatF is γ -homotopic, fixingX × ∂I , to a
PL embedding, i.e., to a PL(γ + δ)-concordance betweenf andg. By 1.13(a),γ + δ can
be chosen so thatf andg are PLε-ambient isotopic.

(b) Let F be as above, and use the argument above to obtain an equivariant homotopy
Ht : (X × I)2 → (Q × I)2, isovariant on

(X × 0)× (X × I) ∪ (X × I) × (X × 0),

betweenF 2 = H0 and a mapH1, isovariant on(
X × [0,1)

) × (X × I) ∪ (X × I) × (
X × [0,1)

)
.

Introduce an equivalence relationσ onX × I by

(x, t) ∼ (y, s) : t = s = 1 and f (x) = f (y).

Then the quotient spaceM = X × I/σ is a compact polyhedron (the mapping cylinder
of f ) and the identifying mapΣ :X × I → M is PL. By the construction ofHt , if
(x,u) ∼ (x ′, u′) and(y, v) ∼ (y ′, v′), thenHt maps(x,u, y, v) and(x ′, u′, y ′, v′) to the
same point ofQ2. Hence there is the (unique) homotopyHt/σ :M2 → (Q× I)2 such that
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(Ht/σ ) ◦ Σ2 = Ht . Furthermore,Ht maps(x,u, y, v) to ∆Q, where either ofu, v equals
to 1, only if (x,u) ∼ (y, v). ThereforeHt/σ is isovariant on

(X × ∂I/σ ) × (X × I/σ ) ∪ (X × I/σ ) × (X × ∂I/σ )

andH1/σ is isovariant everywhere. Hence by 7.1 for anyγ > 0, δ can be chosen so that
F/σ = H0/σ :M → Q × I is γ -homotopic, fixingX × ∂I/σ , to a PL embedding, i.e., to
a PL (γ + δ)-pseudo-concordance betweenf andg. By 1.12 (the PL case),γ + δ can be
chosen so thatf is PL ε-pseudo-isotopic tog. ✷
Proof of 1.7(b+). Let χt :X2 → Q2 denote the equivariantδ-homotopy such thatχ1 =
f 2, χ0 = g2 andχt is isovariant fort < 1. The proof splits into two cases.

PL case. Sinceδ is allowed to depend on the metric onQ, the PL case follows at once
from 7.9(b). ✷
Remark 7.10. Notice that to prove only the PL case of 1.7(b), rather than that of 1.7(b+),
one can simplify the argument above by using the non-controlled version of 7.9(b), in
whose proof one can use the first part of 1.12 instead of its ‘moreover’ part, and the
Harris’ Theorem itself instead of its controlled version 7.1. This idea provides a somewhat
simpler proof (not using the control in Harris’ Theorem) of the PL case of 1.7(a) for
m> 3(n+ 1)/2 (instead ofm � 3(n+ 1)/2).

TOP case. By 3.6(b), 3.5(a) and 3.1(a) we can assume that the embeddingg is PL.
For each positive integerk let αk > 0 be some number (defined below). Choose

tk ∈ (0,1) so thatχt moves points less than12αk for t ∈ [tk,1]. Thenχt is equivariantly
αk-homotopic tof 2

k for any PL mapfk , which is 1
2αk-homotopic tof , providedαk is

sufficiently small.
Then by 7.1, for anyβk > 0, αk can be chosen so that there is a PL embedding

ϕk :X ↪→ Q, 1
3βk-close tof and such thatϕ2

k is isovariantly 1
3βk-homotopic toχtk .

Also, χtk is isovariantly 1
3βk-homotopic toχtk+1 (provided 1

3βk � 1
2αk ), which, in turn,

is isovariantly 1
3βk-homotopic toϕ2

k+1 (providedβk+1 < βk). Thus,ϕ2
k and ϕ2

k+1 are
isovariantlyβk-homotopic.

Hence by 7.9(a) for anyγk > 0, the numberβk = βk(γk, n, metric onQ) can be chosen
so thatϕk andϕk+1 are PLγk-ambient isotopic. Similarly, for anyγ0 > 0, the number
δ + 1

3β1 can be chosen so thatϕ1 andg are PLγ0-isotopic. Thus if we takeγk = ε/2k+1,
wherek = 0,1,2, . . . , then composing these isotopies for allk, we obtain anε-pseudo-
isotopy takingf ontog.

8. Proof of Corollary 1.8

In view of Criterion 1.7, it suffices to prove the following:

Lemma 8.1. Let Xn be a compact polyhedron, Qm a PL manifold, ϕ :X2 → Q2 an
equivariant map. If either

(a) S = ϕ−1(∆Q) has an equivariant mapping cylinder neighborhood N1 in X2, or
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(b) m = 2n+ 1, then for each ε > 0 there exists δ > 0 such that any isovariant map ψ ,
δ-close to ϕ, is ε-homotopic to ϕ by a homotopy, isovariant for t < 1.

Recall that for some neighborhoodU of ∆Q in Q × Q the projectionτ onto the first
factor is a PL (in general not vector) bundle overQ, called tangent bundle in the PL
category [52]. For eacht ∈ [0,1] let us denote byUt the total space of some subbundle
of this bundle with each fiberUpt of diameter< t , cf. [52].

Proof of 8.1(a). By the definition,N1 is equivariantly homeomorphic, by a homeomor-
phism G, to the mapping cylinderN × I/∼ of an equivariant mapg :N → S, where
(n1, t) ∼ (n2, s) denotes ‘g(n1) = g(n2) and s = t = 0’. Let Nt be theG-preimage of
N × [0, t]/∼ for any t ∈ (0,1] andNpt be theG-preimage ofp × [0, t]/∼ for anyp ∈ N ,
t ∈ (0,1]. Let us write simply(p, t) for G−1((p, t)/∼) ∈ N1, if t ∈ (0,1]. If δ > 0 is
sufficiently small, there exists a ‘linear’ equivariantδ-homotopyht betweenϕ andψ . Fur-
thermore, by takingδ small enough we can achieve thath−1

t (∆Q) ⊂ IntN1 for eacht ∈ I .
Let us construct an isovariant 2δ-homotopyψt betweenψ0 = ψ andψ1 such thatψ1 is

2δ-close toϕ and equals toϕ outsideN1. Define two functions on triangles: for eacht ∈
[0,1], letαt map[1

3,
2
3t+1(1− t)] linearly onto[1

3,1] andβt map[2
3t+1(1− t),1] linearly

onto [0, t]. Put ψt = ψ0 on N1/3, ψt (p, s) = ψ0(p,αt (s)) for s ∈ [1
3,

2
3t + 1(1 − t)],

ψt(p, s) = hβt (s)(p,1) for s ∈ [2
3t + 1(1 − t),1], andψt = ht outsideN1. Thenψt is

clearly isovariant. Moreover,ht is 2δ-close toϕ, providedN1 is so small thatϕ(p, s) and
ϕ(p, t) areδ-close for anyp ∈ N , s, t ∈ (0,1].

ChooseN1 so small thatϕ(N1) and ψ1(N1) lie in U1. Let α,β : [1,+∞) → (0,1],
be such homeomorphisms thatϕ(Nα(t)) ⊂ Uβ(t) and diamϕ(Npα(t)), diamUpβ(t) are
less thanrt = ε/(11∗ 2t+1) for eacht . Let us write(p, t),Nt ,Npt ,Ut ,Upt instead of
(p,α(t)),Nα(t),Npα(t),Uβ(t),Upβ(t). If δ < ε/44, the statement follows from

Claim 8.2. Let k be a positive integer and ψk :X2 → Q2 an isovariant map, rk-close
to ϕ and coinciding with ϕ outside Nk . Then ψk is isovariantly (11rk)-homotopic to a
map ψk+1, rk+1-close to ϕ and coinciding with ϕ outside Nk+1.

Proof. Define a homotopyΨt :X2 → Q2, t ∈ I , by Ψ0 = ψk , the identity outsideNk , the
identity onNk+2 and by

Ψt(p, s) =



ψk(p, s − (s − k) ∗ 2t), t � 1
2, k � s � k + 3

2,

ψk(p, s − (k + 2− s) ∗ 3∗ 2t), t � 1
2, k + 3

2 � s � k + 2,

ϕ(p, k + (s − k) ∗ (2t − 1)), t � 1
2, k � s � k + 1,

ϕ(p, k + (k + 3
2 − s) ∗ 2∗ (2t − 1)), t � 1

2, k + 1 � s � k + 3
2,

ψk(p, s − (k + 2− s) ∗ 3∗ 1), t � 1
2, k + 3

2 � s � k + 2.

In other words,Ψt stretchesψk(Nk+3/2) over ψk(Nk) and takesψk(Nk \Nk+3/2) onto
ϕ(Nk \Nk+1). The result is thatΨ1 coincides withϕ outsideNk+1. Clearly,Ψt is isovariant
and moves points less than 3rk, meanwhileΨ1 is 3rk-close toϕ.



152 S.A. Melikhov / Topology and its Applications 120 (2002) 105–156

We have thatϕ(Nk+1) ⊂ Uk+1. HomotopΨ1 isovariantly, fixing the exterior ofNk+1,
‘linearly’ towardsϕ onto a mapΨ2 such thatΨ2(Nk+1) ⊂ Uk+1. This homotopy moves
points less than 3rk , andΨ2 is still 3rk-close toϕ.

Now bothϕ(Nk+1) andΨ2(Nk+1) lie in Uk+1. Since tangent bundle is locally trivial,
we can homotopΨ2 isovariantly, fixing the exterior ofNk+1, leaving the image ofNk+1

insideUk+1, and moving points less than 5rk, onto a mapψk+1 such thatτ ◦ ψk+1|Nk+1 =
τ ◦ ϕ|Nk+1. Then the images of any point underϕ andψk+1 lie in the sameUp,k+1, which
implies thatψk+1 is rk+1-close toϕ. ✷
Proof of 8.1(b). The following argument was partially inspired by [1, proof of Proposi-
tion 3.5]. Given a compactumC in the body of a simplicial complexK, we denote by
N(C,K) the union of all simplices ofK, meetingC. LetK1 be a triangulation ofX2, and
for each positive integerk let Kk+1 be a subdivision ofKk such that for any simplexA of
Kk diamϕ(A) < nk = ε/(14∗ 2k+1) andϕ(A) ⊂ Unk .

Let S = ϕ−1(∆Q) and Nk = N(S,Kk), then ϕ(Nk) ⊂ Unk . If δ > 0 is sufficiently
small, there exists a ‘linear’ equivariantδ-homotopyht betweenϕ and ψ such that
h−1
t (∆Q) ⊂ IntN1 for eacht ∈ I . By the equivariant Borsuk Lemma,ψ is isovariantly

2δ-homotopic to a mapψ1 :X2 → Q2 which coincides withϕ outsideN1 and is 2δ-close
to ϕ, provided meshK1 < δ. If δ < ε/56, the statement follows from

Claim 8.3. Let k be a positive integer and ψk :X2 → Q2 an isovariant map, nk-close to
ϕ and coinciding with ϕ outside Nk . Then ψk is isovariantly (14nk)-homotopic to a map
ψk+1, nk+1-close to ϕ and coinciding with ϕ outside Nk+1.

Proof. Observe that in each simplex ofNk there is at least one simplex ofNk+1. Therefore
Pk+1 = X2 \Nk+1 equivariantly strong deformation retracts ontoPk ∪ Y , whereY 2n−1 is
an equivariant subpolyhedron ofNk of dimension 2n − 1. Let rt :Pk+1 → Pk+1 denote
the deformation retraction, so thatr1(Pk+1) = Pk ∪ Y ; we can assume thatrt moves
points< nk .

Nowψk coincides withϕ onPk and isnk-close toϕ elsewhere. Hence there is a ‘linear’
equivariantnk-homotopygt :X2 → Q2 from ψk to ϕ, keepingPk fixed. By equivariant
general position we can assume thatgt |Y 2n−1 does not meet∆Q.

Define an equivariant(3nk)-homotopyΨt :Pk+1 → Q2 \ ∆Q betweenψk|Pk+1 and
ϕ|Pk+1 as follows. PutΨt = g0 ◦ r3t for t ∈ [0, 1

3], Ψt = g3t−1 ◦ r1 for t ∈ [1
3,

2
3], and

Ψt = g1◦r3−3t for t ∈ [2
3,1]. By the equivariant Borsuk LemmaΨt extends to an isovariant

(4nk)-homotopyΨt :X2 → Q2 betweenψk and a mapΨ1 such thatΨ1 = ϕ onPk+1 and
Ψ1 is 4nk-close toϕ. The rest of the proof goes as in 8.2.✷
Remark 8.4. One can give an alternative proof of 8.3 using equivariant obstruction theory
(see [22]) as follows. Since the pair(Pk+1,Pk) is equivariantly homotopy equivalent to
(Pk ∪ Y 2n−1,Pk), the equivariant cohomology groupH 2n

eq (Pk+1,Pk,π) is zero for any

groupπ . Sinceψk andϕ are close, andπi(R
2n+1 × R2n+1 \ ∆

R2n+1) = 0 for i < 2n,
the difference cocycled(ψk,ϕ) ∈ Hi

eq(Pk+1,Pk,πi(Q
2 \ ∆Q)) can be shown to vanish
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for i < 2n. Henceψk can be isovariantly homotoped, keepingPk fixed, so as to agree
with ϕ onPk+1.
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[71] D. Repovš, A.B. Skopenkov, E.V. Ščepin, On uncountable collections of continua and their
span, Colloq. Math. 69 (1995) 289–296.
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