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Abstract--Growth conditions are imposed on f such that  the following boundary value problem: 
( - 1 ) m y  (2m) = f ( t , y ) ,  o~i+ly(2i)(0) - f~i+ly(2/+l) (0)  -- 7i+ly(2i)(1) + 5i+1y(2i+1)(1) = O, 0 < i < 
m -  1, has an arbitrary number of positive solutions. (~) 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - B o u n d a r y  value problem, Multiple solutions. 

1. I N T R O D U C T I O N  

Boundary value problems for even-order differential equations can arise, especially for fourth- 
order equations, in applications such as 

(a) modeling a number of axially loaded beams fastened together with boundary conditions 
involving displacement (or deflection at ends), velocity (or vibration at ends), bending 
moments, and shear forces; see [1], 

(b) modeling behavior of a compressed beam subjected to a load causing buckling with the 
stipulation that the ends are constrained to remain straight and there is zero end shear 
stress (such as deflection of girders in multilevel buildings as well as deflection of flat-bed 
trailers in tractor-trailer trucks); see [2], and 

(c) modeling the effects of soil settlement on elastically bedded building girders loaded by 
concentrated forces; see [3]. 

Meirovitch [4] used higher even-order boundary value problems in studying the open-loop 
control of a distributed structure whose undamped behavior is governed by 

Lw(x) + m(x)w(x)  = f (x) ,  0 < z < L, 

w(x) is displacement at a point x in the structure, L is a homogeneous differential stiffness 
operator of order 2p, re(x) is the mass density, and f ( x )  is a distributed control force. The 
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solution w(x )  is subject to boundary conditions 

B i w ( x )  = O, x = O, L, 1 < i < p, 

where the B4 are differential operators of maximum order 2p - 1. 

In this paper, with m > 1 fixed, we shall be concerned with the existence of multiple positive 
solutions of the 2mth-order ordinary differential equation 

( -1 )my  (2m) = f ( t , y ) ,  0 < t < 1, (1.1) 

satisfying the boundary conditions 

ai+ly(20(O) - ~4+1y(24+1)(0) -~ O, 

74+1y(20(1) + 54+1y(24+1)(1) = O, 

0 < i < m - 1 ,  
(1 .2)  

O < _ j < _ m - 1 ,  

where f : [0, 1] x [0, c~) -~ [0, co) is continuous, f ( t ,  y) ~ 0 on any subinterval of [0, 1], and for 
all 0 < y < co, and for each 1 < i < m, (~4, f~i,74, 54 _> 0 such that  

Pi = 74~i + a4~/i + a454 > 0. (1.3) 

When m = 1, the boundary value problem (1.1),(1.2) has received much attention in determining 
conditions on f for which there are either at least one, at least two, or at least three positive 
solutions. Some of those results, along with excellent lists of references are contained in [5-7]. In 

addition, when m = 1, Erbe and Tang [8] gave sufficient conditions on f for the existence of any 
number of positive solutions of (1.1),(1.2). 

For m > 1, recent attention has been devoted to multiple solutions of (1.1) satisfying usually 
boundary conditions of the conjugate or right focal types; see, for example, [9-12], and the 
recent book by Agarwal, O'Regan and Wong [13] is an excellent treatise on positive solutions. 
The techniques for obtaining multiple solutions in most of the above cited papers have involved 
applications of fixed-point theorems due to Krasnosel'skii [14] and to Leggett and Williams [15]. 

The techniques in this work will follow along the lines of those introduced by Erbe and Tang [8] 
when m = 1, and then were extended in [16] for the case when m > 1 and (~4 = ~+1 ,  ~.i = f~4+1, 

74 = 74+1, 54 = 54+1, to yield symmetric solutions. For this work, their techniques will be used in 
conjunction with certain properties of the Green's function, Gi(t ,  s), 1 < i < m,  for each of the 
boundary value problems 

- u "  = 0, (1.4) 

 4u(0) - Z u'(0) = 0, 

74u(1)  + 54u'(1) = 0. 
(1.5)  

Growth conditions will be imposed on h(t,  y) = f ( t ,  y ) / y ,  0 < t < 1, 0 < y < co, which yield the 
existence of any number of positive solutions of (1.1),(1.2) that  lie in nested annular-like regions. 
In that  direction, we define the extended real-valued functions ho(t) and h ~ ( t )  by 

ho(t) = lim h( t ,y ) ,  
y---,O + 

h ~ ( t )  = lim h( t ,y ) .  

The respective cases, when f is superlinear (at both y = 0 and y = co) or f is sublinear (at 
both y -- 0 and y = co), have been studied in [6,8,17], for m = 1. Recently (yet for m = 1), 
Lian, Wong and Yeh [18] assumed particular smallness or largeness conditions, not as restrictive 
as superlinearity nor sublinearity, on h(t, y) at y = 0 and y = co to obtain multiple positive 
solutions. 
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2.  E X I S T E N C E  O F  A P O S I T I V E  S O L U T I O N  

In this section, we apply a Krasnosel'skii [14] fixed-point theorem for operators which are of 
an expansion/compression type with respect to an annular region in a cone. 

THEOREM 2.1. Let £ be a Banach space, and let ICc  £ be a cone in £. Assume ~1,~2 are open 
subsets o r s  with 0 E ~1 C ~1 C f~2, and let 

A : / C N  (~2 \ fl,) ~ / C  

be a completely continuous operator such that either 

(i) IlAull _< Ilull, u e / c  n 0~-~1, and IlAull _> Ilull, u e / c  n o f  re, or  
(ii) IlAull > Ilull, u ~ ]C n 0~1,  and IlZull < Ilull, u ~ K: n 0f~2. 

Then A has a fixed point in E N (f~2 \ f21). 

We will apply Theorem 2.1 to a completely continuous operator whose kernel is the Green's 
function for 

( - 1 ) m y  (2m) = O, (2.1) 

satisfying boundary conditions (1.2). For 1 < i < m, let G~(t, s) be the Green's function for 
(1.4),(1.5). Then, for 1 < i < m, 

Gi(t,s)=l{ ('~i+rhi-Tit)(13i+ais), 0 < s < t < l ,  

(/~i + a~t)(7~ + hi - Tis), O < t < s < l, 

where pg is defined by (1.3). Next, we set 

Hi(t ,  s) = Cl( t ,  s), 

and for 2 _< j _< m, we recursively define 

1 
Hj( t , s )  = H j_ l ( t , r ) )G j ( r , s )d r ,  0 < s , t  < 1. (2.2) 

Then Hm(t,  s) is the Green's function for (2.1),(1.2). It is rather straightforward that,  for 1 _< 
i < m ,  

0 < Gi(t, s) <_ Gi(s, s),  0 < t, S < 1, (2.3) 

1 3 
O<aiGi ( s , s )<_Gi ( t , s ) ,  ~ _ < t _ < ~ ,  0 < s < l ,  (2.4) 

where 
7i + 45i ai + 4/3i } 

ai = min 1 , 4 ~ ) ,  4(a~ + ~i) ~ < 1. 

If we define 

/o L~ = Gi(r,r) dr, 1 < i < m 

and 

f 
3/4 

Ki = Gi(r ,r)dr ,  1 < i < m, 
J1/4 

it follows that 
m-1  

O<_Hm(t,s) <_ 1-I LjGm(S,s) ,  0 < s , t  <_ 1 (2.5) 
j = l  

and 
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and 
m--1 

1 4'3 0 < s < 1. (2.6) gin( t ,  s) > o~ H ~ jg ja~( s ,  s), <_ t < 
j = l  

Inequalities (2.5) and (2.6) will play a fundamental role in the growth constraints we impose on f 
which yield positive and multiple solutions of (1.1),(1.2). 

Now, let the Banach space E = C[0, 1] equipped with norm HyH = max0<_t<l ]y(t)l, y • C[0,1]. 
Let 

m - 1  ( 7 j g j  
M : a m  H --f'~-j <1, 

j = l  

and then define a cone/C c E by 

r~ = { v  e e l v(t) > O on [O, 1l and 1/4<_t<3/4min v(t) > MIIvll}. 
In obtaining solutions of (1.1),(1.2) which are positive with respect to the cone ]C, we seek a 

fixed point of the completely continuous integral operator A : C -~ £ defined by 

(Ay)(t) = Hm(t, s)f(s, y(s)) ds. 

From inequalities (2.5) and (2.6), it is immediate that  A :/C --* ]C. 
For notational convenience, define the constants 

~/= Lj , 
j = l  

# = a3Kj 
j-~-i 

The growth restrictions on f which will yield the existence of positive and multiple solutions are 
as follows. 

(C1) There exists a p > 0 such that  f(t, y) <_ 77p for 0 < t < 1 and 0 _< y < p. 
(C2) There exists a q > 0 such that  f(t, y) >_ #q for 1/4 < t < 3/4 and Mq <_ y <_ q. 

THEOREM 2.2. Suppose there exist positive numbers p # q such that Condition (C1) is satisfied 
with respect top and Condition (C2) is satisfied with respect to q. Then (1.1),(1.2) has a positive 
solution y such that [[y[[ lies between p and q. 
PROOF. Without loss of generality, we may assume 0 < p < q. Define open sets 

~p = {y • C[0,1] l ilYll < P} 

and 

nq = {y • c [0 ,1]  I Ilyll < q}. 
Then 0 • l%p C f~q. Now, for y •/CAOf~p, so that  Ilyll = p, we have from (2.5) that,  for 0 < t < 1, 

< 

Thus, IIAyH <- HyH, for y e pC n O~p. 

~0 
1 

Ay(t) = Hm(t, s)f(s, y(s)) ds 

l m - 1  

</o I ]  LjGm(s, s)f(s, y(s)) ds 

m - 1  1 

YI  Lj~P/o Gm(s,s) ds 
j----1 

P 
Ilyll. 
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Similarly, if y E ~ n Otiq, so that  [lY[I - q and Mq <_ y(s) <_ q, for 1/4 < s < 3/4, we have 

from (2.6) that ,  for 1/4 < t < 3/4, 

~0 
1 

Ay(t) = Hm(t, s) f (s ,  y(s)) ds 

f 
3/4 

>_ Hm( t , s ) f ( s , y ( s ) )d s  
J1/4 

f 
3/4 

>_ Hm (t, s)#q ds 
J l /4  

m - 1  f 3 / 4  

>_ #qam Y I  a jK j  J ,  Gm(s,s) ds 
j= l  /4 

= q  

= Ilyll, 

a n d  so HAy[] >_ [[YH, for y E K: n Ol2q. By Theorem 2.1, A has a fixed point y E ]C n (tiq \ tip), 

which is a positive solution of (1.1),(1.2) such that  p _< HY[[ -< q. I 

COROLLARY 2.1. The boundary value problem (1.1),(1.2) has a positive solution provided, either 

(C3) ho(t) < 7, for 0 < t < 1, and ha( t )  > # / M ,  for 1/4 < t < 3/4, or 
(C4) ho(t) > # / M ,  for 1/4 < t < 3/4, and ho~(t) < r/, for 0 < t < 1. 

PROOF. Suppose first that  (C3) holds. Then, there exist sufficiently small p > 0 and sufficiently 

large q > 0 such that  

f ( t , y )  <~?, 0 < t < l ,  O < y < _ p  
Y 

and 

Thus, 

f ( t ,  y) 1 3 1 £  
> M '  4 < t < - y > Mq. y - - - 4 '  - 

f ( t , y )  <_ Tly <_ ~p, 0 < t < l ,  O <_ y <_ p 

and 
# 1 3 

f ( t , y )  . . . .  > - ~ y  > #q, ~ < t < -4, Mq _< y <_ q. 

In particular, both (C1) and (C2) hold, and (1.1),(1.2) has positive solutions by Theorem 2.2. 
For the remainder of the proof, assume that  (C4) holds. Then, there are 0 < p < q such that  

1 3 
f ( t , y )  > M ,  < t <  ~, O < y < p ,  (2.7) y - ~ -  - _ 

f ( t ,  y)  _< n, o < t < 1, y > q. (2.8)  
Y 

From (2.7) it follows that  

1 3 
f ( t , y ) > - ~ y > # p ,  ~<_t<_~,  Mp<_y<_p,  

so that  (C2) is satisfied with respect to p. 
In dealing with inequality (2.8), we wish to show that (C1) is satisfied. To that  end, there are 

two cases to consider: 

(a) f ( t , y )  is bounded, or 
(b) f ( t , y )  is unbounded. 
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CASE (a). Suppose there exists N > 0 such that  f ( t , y )  <_ N,  for 0 < t < 1 and 0 < y < oo. 
By (2.8), there is an r _> max{q, N/TI} such that  f ( t ,  y) <_ N <_ ~r, for 0 < t < 1 and 0 < y _< r, 
and thus, (C1) is satisfied with respect to r. 

CASE (b). For the setting that  f is unbounded, there exist to E [0, 1] and ~ > q such that  
f ( t , y )  <_ f( to,~) ,  for 0 < t < 1 and 0 __% y <_ ~. Then, f ( t , y )  <_ f( to,~)  <_ ~ ,  for 0 < t < 1 and 
0 _< y <: P, and (C1) is satisfied with respect to P. 

Thus in both Cases (a) and (b), Condition (C1) is satisfied, and Theorem 2.2 yields the 

conclusion. | 

3. A N Y  N U M B E R  O F  P O S I T I V E  S O L U T I O N S  

In this section, we show that  any number of positive solutions of (1.1),(1.2) can be obtained 
when appropriate combinations of assumptions like (C1)-(C4) are imposed on f .  We begin the 
pat tern by establishing the existence of at least two positive solutions. 

THEOREM 3.1. The boundary value problem (1.1),(1.2) has at least two positive solutions, Yl 
and Y2, i f  (C1) is satisfied for some p > O, and in addition, both 

1 3 # 1 3 
ho(t) > -~ ,  -~ < t <_ ~ and hoo(t) > --~, ~ < t < ~. (3.1) 

Moreover, 0 < IlYlll < P < IlY211. 

PROOF. Somewhat along the lines of the proof of Corollary 2.1, there exist 0 < Pl < P < P2 for 
which 

1 3 
f ( t , y ) > # p l ,  ~ < t < ~ ,  Mpl  < y < p l  

and 
1 3 

f ( t , y )>_#p2 ,  ~ <_t<_: ~, Mp2<_y<_p2. 

By Theorem 2.2, there exist solutions, Yl and Y2, of (1.1) and (1.2) satisfying 0 < Pl < [[Yllt < 

p < Ily211 < p2. ! 
In a completely analogous manner, the next result is also obtained. 

THEOREM 3.2. The boundary value problem (1.1),(1.2) has at least two positive solutions, Yl 
and Y2, ff (C2) is satisfied for some q > 0, and in addition, both 

ho(t) < ~?, O < t < l and hoo(t) < r/, O < t <  1. (3.2) 

Moreover, 0 < [[Yl[I < q < HY2[[. 

To set the pattern for the manner in which an arbitrary number of positive solutions are 
obtained, we state an existence result for at least three positive solutions. 

THEOREM 3.3. Suppose Condition (C3) (or respectively, Condition (C4)), is satisfied, and sup- 
pose there exist 0 < Pl < P2 such that (C1) holds with respect to p = P2 (respectively, with 
respect to p = pl), and (C2) holds with respect to q = Pl (respectively, with respect to q = P2). 
Then, the boundary value problem (1.1),(1.2) has at least three positive solutions, Yl, Y2, and 
Y3, satisfying 0 < I[Ylll < Pl < I]Y2[[ < P2 < [[Y3[[. 

We now state sufficient conditions under which there are n positive solutions of (1.1),(1.2), for 
any n E N. We state these results in terms of whether n is odd or even. 

THEOREM 3.4. Let n = 2k + 1, where k E N, be given. Suppose Condition (C3) (or respectively, 
Condition (C4)), is satisfied, and suppose there exist 0 < Pl < "'" < Pn-1 such that (C2) holds 
(respectively, (CI)  holds), with respect to P2i-1, 1 < i < k, and (C1) holds (respectively, (C2) 
holds), with respect to P2i, 1 < i < k. Then, the boundary value problem (1.1),(1.2) has at 
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least n positive solutions, Yl ,Y2 , . . .  ,Y,~, satisfying 0 < IlY, II < P~ < Ily2ll < p2 < ' "  < Ilyn-~ll < 

THEOREM 3.5 .  Let  n = 2k, whe re  k E N, be given. Suppose  (3.1) (or respectively, (3.2)), is 

satisfied, and suppose t h e r e  exist 0 < Pl < "'" < Pn-1 such that  (C1) holds (respectively, (C2) 

holds), wi th  respect  to P2~-1, 1 < i < k, and (C2) holds (respectively, (C1) holds), wi th  respect  

to P2~, 1 < i < k - 1. Then,  the boundary value problem (1.1),(1.2) has at least n posi t ive 

solutions, y l , y 2 , . . .  , y ~ ,  satisfying 0 < IlYlll < Pl  < IlY211 < P2 < " "  < IlY~-~II < P ~ - ~  < IlY~II. 
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