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1. INTRODUCTION

We consider a differential operator on R together with boundary conditions
imposed at a sequence of points, Our idea is to study the relationship between
extensions of a certain symmetric operator, and the associated ‘‘admissable”
boundary conditions. This correspondence has been analyzed in the case of a
finite number of boundary conditions (see [3, 5, 7]). The generalization of
these results to our new context is not trivial because the deficiency indices
may be infinite. Some progress in certain cases has already been made in [2].
In our Theorems 3.13 and 3.14, we analyze this relationship completely for
operators a little more general than differential operators.

Let {I;:1 <<j <<k} (x« <X ) be a set of disjoint open intervals and I =
Us—1Z; . I may not be an interval. When « = oo, the set of end points of all I;
can have infinitely many cluster points in the extended real line. For each
7=12,..,«, let r; denote a formally self-adjoint ordinary linear differential
expression with complex coefficients in the interval I; such that the leading
coefficients of 7; does not vanish on I;. (For definition, see, for example, [8].)
Let % denote the linear expression

Ly =1y + Ay + ' MB(y) (L.1)

where « = (—1)1/2. Here 4 is a given bounded linear operator defined every-
where in Ly(I), x € (Ly(I))™ (m << o), M is a m X N Hilbert matrix, B(y) is
an N X 1 “boundary” column vector in ¥, and = is the (possible infinite)
direct sum expression acting on the functions y for ¢ €I defined by

(@) = (ry)N8)  if tel;, 1<j<«

We briefly summarize the contents of our paper. In Section 2, we prove
or state some results on Hilbert matrices which we need later. In Section 3,
we define the closed symmetric operator Ty(r) generated by the expressions 7; .
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We perturb Ty(r) to get the maximal operator I(%#) generated by £. The
rest of Section 3 is devoted to studying the densely defined closed restrictions
of Ty(Z). Using “adjoint pairs,” the adjoint operators to the restrictions of
T (&) are found (Theorem 3.13). All possible closed symmetric restrictions
T of Ty(¥) of the type T* C Ty(F) are found (Theorem 3.14). Finally all
possible self-adjoint restrictions of 77(%#) are characterized using Hilbert
matrices (Theorem 3.15). In Section 3 we give examples of self-adjoint operators.

The following notation is used in this paper. The set of positive integers,
real numbers, and complex numbers are denoted by N, R, and C, respectively.
If D is a matrix, then the transpose and conjugate transpose are denoted by D%
and D*. ¥ D = (d;;) and Q = (g;;) are p X gand g X 7 (p, g, v < ) matrix
functions of ¢ € 1, the set in which all of our analysis will take place, then (D | O}
denotes the p X r matrix [; D(£) Q,(t) dt whose (k. j) entry is S, [1d(t) §,,(t) dr.
The algebraic direct sum of linear subspaces G; and G, are denoted by
G, @®G,. If D; (j=1,2,.., k) are finite matrices, then the usual matrix
direct sum (block matrix) of all D; are denoted by @';:1 D;. The k x &
(k < o) identity matrix is denoted by E, . The closure of I; is denoted by {; .
For an operator T, its domain and adjoint operator are denoted by Z(T") and T

2. HiLBErT MATRICES

Let ,Y (N < o) denote the Hilbert space of all IV X 1 complex constant
column vector « such that o*a < c0. The norm of « is denoted by || «ll; ~.
Thus, if N < o0, then LY = C¥. If N = oo, L,¥ will be denoted by /,. An
X N (m < oo, N << ) matrix D is called a Hilbert matrix if, for every
a€l,™ and Be LY, the sum (possibly infinite) o*DB converges (see also [4]).
Thus, a m X o0 (m < o0) matrix D is a Hilbert matrix iff the = rows of D
are in L) = {1 a € ,}.

The following can be found in [4].

ProrositionN 2.1. Let D be an o0 X oo Hilbert matrix. Then
(1) Dt D* are Hilbert matrices.
(2) Every row of Dis in I}, and every column of D is in I,
(3) If Dy and D, are the o0 X o0 matrices such that every row of Dy is in I!,
and every column of Dy is in by, then (D\D)D, = D,(DD,) (associative).

ProposiTioN 2.2. Let D be an o0 X 90 matrix. Then the following is equiva-
lent:

(1) D is a Hilbert mairix.

(2) For each wel,, Do exisis and belongs to I, .
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(3) The map o — Do defines a bounded linear operator from I, into I,.
(4) There exists a constant K << co such that

a*DB | < K[|y, 1B

Sfor all o, f € L°. Here L, is the set of all o = (o;) € l, suck that o; vanishes for all
but finitely many j.

Proof. (1)< (2) is a direct consequence of the definition of Hilbert matrix.
(3) <> (4) and (3) = (2) are easy to check. To see (2) = (3), let « = (x;) €1,
and let o™ be the vector in I, whose kth entry is o, if 2 <C 7, and zero elsewhere.
Then o® — o in I, and, by (2), Da® — Da as n— 0. However, for each
n e N fixed, the map o« — Do defines a bounded operator defined everywhere
in [, . Therefore by the Banach—Steinhaus closure theorem (see [9]), the map
o —> Do defines a bounded operator from /, into /, .

An N X N (N < o) Hilbert matrix D is called nonsingular if the map
o — Do defines an isomorphism from " onto LY. By an isomorphism we
mean a one-to-one, onto and continuous linear map. If D is nonsingular in
LY, then it admits a unique matrix inverse D1 (see [1]) and D~ is also a non-
singular Hilbert matrix in L".

ProrosiTioN 2.3.

(1) If D={(dy;) s an o0 X oo nonsingular Hilbert matrix, then
St | s |2 = 0.
(2) If Dis an oo X o matrix with D*D = E , then the map « — Da
defines an isometry from I, into I, .
(3) For an oo X oo matrix D, the following are equivalent:
(3-1) D is a unitary matrix, i.e., DD* = D*D = E, .
(3-ii) The map o — Do defines a unitary operator from I, onto 1, .
(3-iii) The set of the rows forms an orthonormal basis for Lt
Proof. (1) If ¥y, 1 | dy; |2 < oo, then the map o —> Da defines a compact
operator on I, which is one-to-one and onto. This is impossible because I,
is infinite dimensional. For (2), note first that (Da)*(DB) = o*8 for every
a, B e L0 Since [,° 1s dense in [, we can extend the above map to the unique
isometry V, say, on l,, and thus the matrix representation of } must coincide
with D. The rest of the theorem is easy to check.

3. DirFFERENTIAL OPERATORS

For ecach j =1, 2,...,k, let To(r;) denote the minimal closed symmetric
differential operator in L,(I;) associated with =;, and put Ty(7;) = T¢(;).
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Let Z,(+) denote the linear space of all f € Ly(I) such that for eachj =1, 2,..., &,
fli € Zy(r) = D(Ty(ry)), and 7f € Ly(I). Let Ty(r) denote the operator in Ly(f)
defined by

Iy)y =1y,  D(Ty7)) = Zi)-

Clearly Ty(+) is a densely defined closed operator in Ly(I), and its adjoint operator
To(7) = T¥(r) is a closed symmetric operator. Let (f]|g)s denote the inner
product in the Hilbert space @,(7) (see, for example, [5]). The topology in
Z,(7) generated by the above inner product will be called the 7-topology or
Ty(7)-topology. Let Zy(7) denote the domain of Ty(r). Then we have

Zy(1) = Dy(7) & AN (—) DA (),

where the direct sum is orthogonal in the Hilbert space &y(r). Here 44} =
{feZ(r): of = -bif}. It is easy to see that the s-topology and the norm
topology in A (—1) @ A(—:) are equivalent.
Let
Nt = dim{f e Dy(r;): ;f = £} (J=1,2s ),
NE = dim A7), N == N- 4 N+#,
Then

K ®
0<N- =Y Nr-<ew, O<KN=Y NF<ce
j=1 =1

Clearly if each Ty(r;) is self-adjoint, then N~ = N* =0, and if each 7, is
regular and if x = o0, then N;* = n;, N* = o0, where #; is the order of 7;.
Throughout this paper we identify any feLy(l;) as an element of Ly(I) by
letting () = O for ¢t ¢1;. Let {¢;: 1 <<j << N} be an arbitrary but fixed basis
Sfor A (—1) @ A(e) such that in the case when N = co, the basis is orthonormal
with respect to the v-topology.
Let @ denote the V x 1 column vector whose jth entry is ¢, . Let B denote
the operator
B(y) = (1P, yeDr). 2.1

Tueorem 3.4.

(1) B annihilates D), and B restricted fo A (—c) P AN(1) defines an
isomorphism onto LY. If N = oo (thus by assumption {¢;: j € N} is v-orthonormal),
then B restricted to A (—1) (D A1) provided with the t-topology defines a unitary
operator onto I, .

(2) There exists a unique N X N nonsingular Hermition Hilbert matrix C
(depending on B) such that

(v 1) — (v | 18) = «(B(g)* CB(y)
Jor y, g € Dy(7). In particular, if N = oo, then C = C* = CL.

505/29/3-9
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Proof. We shall prove the theorem for the case when N = oo because the
case N < oo follows easily. Clearly B annihilates Zy(r). Let y, g € 2,(r) and
write ¥ = Yo+ Y1, & = go - g1 Where y,, g€ Dy() and y,, g €A (—1) B
A'(¢). Since {¢,: j € N} is an orthonormal basis for A (—) @ A7(:), the entries
of B(y,) are the Fourier coefficients of the expansion of y, with respect to
{¢;: € N}. Therefore the map y — B(y) defines a unitary operator from
N (—) @ A(¢) provided with the 7-topology onto L. Let J denote the unitary
operator from Ly(I) X Ly(I) onto Ly(I) X Ly(I) defined by J({a, b}) = {b, —a}.
Let C denote the N X N hermitian matrix whose (, k)-entry is ((J{{#; , 7)) |
{#r» 7¢:}))/r where (( | )) denotes the inner product of Ly(I) x Ly(I). Then
since [ is a unitary operator on Ly(I) X Ly(I) and {§;: j € N} is an orthonormal
basis for (Ty(r)) © 9(T\(r)), C is a unitary Hilbert matrix. Here % denotes
“the graph of” and §; = {4, , 7¢;}. Let y EN(—1) ®A(t). Then

{3, 9} = (B(y))'d

where the sum converges in Ly(I) X Ly(I) and @ is the oo X 1 column vector
whose jth entry is {¢; , 7¢;}. Thus for y, g e A (—1) DA (—1),

(18— (v 17g) = ((J{y, ) | {g, 72}))
= (J(B(»)D) | (B(g))'D)) = «(B(g))* CB(y).

This completes the proof.

Remark. If x << 00 and each 7; is regular in I;, then C can be obtained
from the Green’s formula for ;.

PropoSITION 3.5. Suppose that F(t,y) is a map from I X Zy(z) into C
such that (i) for a.a. t €I, the map v — F(t, y) is a T-continuous linear functional
on Dy(v), annihilating D7), (ii) for each y € Dy(r) fixed, h(t) = F(t, y) € Ly(I),
(iil) {F(t,3): ¥y € Dy(7)} is an m-dimensional subspace of Ly(I) (m << o0) with a
basis ¥y yores Xm - Then there exists a m X N Hilbert mairvix D such that

F(t, y) = x'(2) DB(y) ()

Jor a.a. tel and y e Dy(v) where y = (X1 X2 »--> Xon)-

Conwversely, if D is a m X N (m < o) Hilbert matrix and if x e (Ly(I))™,
the function F(3, y) defined by (x) satisfies (i) and (ii), and is of finite-dimensional
range with its dimension <m.

Proof. Assume (i)}-(iii). In particular, (i) implies that for a.a. el fixed,
there exists a N X 1 column vector #(z) such that F(¢, y) = (¢) B(y) for all
¥ € @,(r) where the sum converges and (¢) € V. Since B(y) can be an arbitrary
member in LY and A(t) = F(¢, y) € Ly(I), each row of i) is in Ly(I). There
exists a m X N matrix D such that $!(¢) = x'(¢)D for a.a. t € I. Thus F(z, y) =



GENERATED OPERATORS 457

x'(t) DB(y) for a.a. €I and y € Zy(7). Since {x;: 1 <j << m < oo} is linearly
independent, each row of D must be in (LY)!, so that D is a m X N Hilbert
matrix in LY. The converse is clear.

Tueorem 3.6. Let M be a m x N (m < N, m << o) Hilbert matrix and
x €(Lo(3y" and A be a bounded linear operator defined everywhere in L(I). If
T{(Z) is the operator

&)y =Ly, Z(T(ZL)) = Zy(7),
then

THP )z = 2 + A*z,
HTHDL)) = (= 2€ D7), (B(2))"C + (x| 2)M = Opxu}-
Proof. Let T = T(Z). Take 2 € G(T*). Then
0 — (1) — (3| ¥ — A%2) + 3t | 2) MB(y)

for all y e Z,(=). This is in particular true for all y € Zy(+). Thus = e F(r)
and T*z = 7z + 4%z Now for y € Zy(1)

(9 + Ay + o MB(3) | 8) = (| 75 + A%2).
Thus
((BN*C + (x* | 8)M) B(y) = O1xx

for all y € Zy(v). It follows from Theorem 3.4, (B(2))*C —+ (x| 2)M = Oy, .

Prorosition 3.7. Let {y;: | <<j <Cm} (m << o) be a set in Ly(l) and let
D be a N x m Hilbert matrix in L,¥. Let y denote the m x 1 column vecior whose
jth entry is y; . Then

(1) The map y— B(y)+ D(y|x) defines a r-bounded operator from

Zy(7) onto LN,

(2) Assume that the operator B in (2.1) has the form
B(y) = (B! (3 H )y, BHy | L)) (1 X N).

Here each B; is the vj-comtinuous operator from G(Ty(r;)) onto TN+,
annthilating Z(Ty(7;)). Let us write

!

where each D; is (N;~ + N;7) X m. Then {y e Z,(+) | B(y) - D(y | %) = Oy}
1s dense in Ly(I) if for each j = 1,2,...,x, Dyx(t) = 0w~ i1 for aa. t¢l;.
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Proof. (1) Let « € [,V. We may assume that the entries of y;, of y are linearly
independent. Thus the map y —> (v | ) from Z,(r) into C™ is surjective.
Let Z be the m X 1 column vector with entries in Z(7) such that (Z | x) = E,, .
Let B(a) = o, aeZy(r) and put y =a — Za|y). Then yec P(s), and
B(y) + D(y | x) =

(2) For each j=1,2,..., 1,{y € D(Ty(r;)) | B(3) + Di(y1); =0y, v 2151}
is dense in Ly(;) by Lemma 2.2 in [7]. Here (y]y); = f,]_ »(t) %(t) de.
Thus the set in the theorem is dense in Ly(J).

Remark. If « << oo, then the set in (2) in the above proposition is always
dense.

Tueorem 3.8. Let T,(Z) be as in Theorem 3.6. Then

(G(T{(2))y ={y, vy + Ay + x*MB} : vy € D,(7) and B is any element
in LN such that (x* | 2 MB — JMB(y)) =0
for all z e D(T (L))
Here ¢ denotes “the closure of.”
If 9(TF (L)) is dense in Ly(I), then Ty(ZL) = TT*(F) and Ty(L) is closed
Proof. Letuswrite T = Ty(%). We will compute (9(T)y** where (9(T))* =
JE(TH. Let b = {b , by} € (Z(T))**. Then for ze Z(T%),
0 = ((J({=, 7= + A%23) [ {81, be}))- (*)

This is true in particular for all € Z(r) with (x'| 2)M = Oy . Let O =
{{x*MB, 0}: B € I,V}. This is finite dimensional and hence closed in Ly(I) X Ly(I).
It follows that

{dby — by, by} € (F(To(r)) N Q1) = (F(To())" @ Q0
so that
{by, by — Ab} e {y, 7y + x*MB): y € Zy(r), Be L}
Thus b; € Zy(7) and b, = b, + Ab, + x*MPB for some f§ € [,V. Returning to (x)
(B(F)* CB(b,) + (x' | 2) MB =0

for all 2 e P(T*). Thus (x* | 2)(MB — MB(b,)) = 0 for all 2z e F(T*). Since
(HTU(L))** = (YT (L)) we have the first part. Assume D(T5(ZL)) is
dense. We may assume that the entries of y; are linearly independent. Thus
G | 2)(MB — MB(y)) = O for all z e (T (Z)) implies that MB = MB(y).
Thus Z(TW(L)) = (Z(T(L)))S, so that Ty(ZL) = TF*(&L).
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Remark. 1f the entries of y,, are linearly independent, then the map y — (¥ | xJ
from Z(T}(F)) into C” is surjective iff Z(T}(Z)) is dense.

Let § — () be a s X 1 (# < o) vector function for 7€/ such that each
;€ Ly(I). Let B be a it X N Hilbert nlatrix, and let A be a bounded linear
aperator in Ly(I) defined on Ly(I). Let &£ be the expression

Pz =z + dz L+ G HIB(2), (3.2}

A

for z € Z,(r). Let Ty(Z) be the operator
T L)z = Lz, Z(T(L)) = Z().

Then by Theorem 3.8, if T%(%) is densely defined, then T(%) = TF*( P}
and Ty(%) is closed.

DrrinrrioN.  The expression & in (3.2) is adjoint to the expression %
defined by (1.1) if

Az = A%z + fMCM* 2 y),  zelyl).

Notice that, since C = C*, 2 is adjoint to & iff & is adjoint to 2.
Let us define the operators V: Zy(r) — LY, V1 @y(r) — LY by
V(y) = B(y) + C*M*(y | x) 53
- )
V(z) = B(2) -+ C1M*(z | )
Then the following is easy to check.

ProPOSITION 3.9. Let & and £ be an adjoint pair. Then
(1) (Zy12)—(v] 22) = FH=) CV(y), v, 52400,
Q) THDOCHD), THDHC L),
P = AINL),  V0) = HTHD).

ProposiTioN 3.10. Let & and £ be an adjoint pair and assume that TF)
and THF) are densely defined. Then the Tiyr)-topology, T(L)-topology, and
T\(P)-topology in D,(7) are all equivalent.

Proof. We shall only show that the T\(r)-topology and T3(%#)-topology are
equivalent because the rest follows easily. Note first that the map y — MB(y)
from the Hilbert space &,(7) with the *-inner product into the Euclidean
space C™ is a bounded linear operator, and the map o — yfx from the Euclidean
space C™ into Ly(I) is also a bounded operator. Therefore the map 3 — x*A7B{(y)
trom the Hilbert space 2,(r) with the T'y(r)-topology into L,(I} is a bounded
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linear operator. Hence there exists a constant K, << co such that || x"MB(y)|| <
Ky |}T1(T) for every y € Z,(r). Thus

[ Lyl <yl + 114yl + | X' MB(y)l|
< K1yl

for some constant K, < co. Thus
[y lire = Uy P+ 1Ly I < (14 Ko |y iz -

Hence the identity operator from the Hilbert space &;(7) with the *-inner
product to the Hilbert space Z(r) with the T}(#)-norm is continuous. Therefore
by the closed graph theorem, the two topologies must be equivalent. This
completes the proof.

Let % and .2 be the same as in (1.1) and (3.2) (need not be an adjoint pair).
Then we define “minimal” operators Ty(%) and T (&) by

T(&%) = T{(£), TWL) = T}(&).

Then, if % and Z are an adjoint pair and if T}(%) and TF(Z) are densely
defined, we have the following four closed operators satisfying

Ty&) C Ty(£)
N
"

Ty&) C T(2)

where <> means one is adjoint to the other.

PropostTION 3.11. Let & and £ be an adjoint pair and assume that Ty(Z)
and To(F) are densely defined. Then

(1) Fe(@(Ty(L)YI2(TLL))* iff there exists a o€ l,N such that F(y) =
V() for all y € Zy(7).

() Fe(D(TADL)|D(T\L))* iff there exists a o€ LY such that F(y) =
ot () for all y € Zy().

(3) V defines an isomorphism from the Hilbert space Z(1) © D(T (L))
onto I,"V.

(4) V defines an isomorphism from the Hilbert space Zy(r) © D(T(L))
onto L,N.

Proof. (1) Assume F(y) = afV(y) for all y € (7). Then F is the pointwise
limit of r-continuous functionals on the Hilbert space Zy(r). Thus by the
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Banach-Steinhaus closure theorem F is a r-continuous functional. Clearly
F annihilates G(T(F)). Thus F e (D(T(L))|2(T(L)))*. The converse is
clear. (2) can be proved in a similar way. (3) and (4) follow easily from Proposi-
tion 3.7.

The main purpose of this paper is to find all the closed operators including
symmetric ones between Ty(Z) and T(Z).

PrOPOSITION 3.12. Let & and P be an adjoint pair and let T(F) and
T(P) be densely defined. Then

(1) A Lnear operator T between TW(L) and T\(F) is closed iff there exists
am X N (m << N) Hilbert matrix P such that

D(T) = {y € Zi(r): PCV(y) = Opxaj-

(2) A4 lLnear operator T between T(Z) and T(P) is closed iff there exists
a it X N (s < N) Hilbert matrix P such that

U T) = {z€ Dy(r): PCV(2) = Olpsa-
Proof. (1) Assume T is closed. Then " = T**, Thus for every z e Z(T%)
0 — (Zy|2) — (v] 2) = (P(=)* CV(5).

Let G = {(I(2))*: 2€ Z(T*)}. This is a closed subspace of (V). Let m
denote its dimension. Let {p;: | <j < m} be an orthonormal basis for G.
Here each p; is 1 X N. Let P denote the m X N matrix whose jth row is p; .
Clearly, P is a Hilbert matrix and PCV(y) = O,y . Conversely, if y e @4(7)
and PCV(y) = Opxy , then 0 = (P | 2) — (v | L=) for all ze P(T*). This
proves that Z(T) = {ye Zy(7): PCV(y) = O,q). The converse of (1) is

clear. This proves (1). (2) can be proved in a siniilar way.

DerintTioN. If D is a N X d (d << N < o) Hilbert matrix, then (D}
will denote the closure of the linear span of {d;: 1 < j < d} where each 4 is
the jth column of D (thus <D} C L¥). ((D))* will denote the crthogonal com-
pliment of (D} in LY. If d < oo, then the rank of D, denoted by p(D), is the
maximum number of linearly independent columns of D.

TuroreM 3.13. Let & and £ be the same as in (1.1) and (3.2) (need not be
an adjoint pair), and assume Ty(L) and Ty(L) are densely defined. Lei T and T
denote the operators defined by

Ty = gy’ @(T) = {y € @1(7'): PCV(y) == Om\q_},
To = Pz, HT) = {z e Dy(r): PCV(2) = Opa}-
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Here P is a m X N (m < N) Hilbert matrix such that PP* = I, if m = o,
and p(P) =m if m < co. P is a i X N (i < N) Hilbert matrix such that
PP* = I, if it = o0, and p(P*) = i if #ii < co. Then the following statements
are equivalent:

1) T =71
2 T*=T.
(3) LN = (CP*> @ (P*) (orthogonal), ¥ and P are an adjoint pair.
@) LN =(P*y @ {CP*> (orthogonal), ¥ and & are an adjoint pair.

Proof. We prove (1)< (3) only because the rest can be proved easily.
Assume (1). Since T C Ty(&), TH (&) C Ty(P). Thus ry -+~ A%y — ry + Ay +
¢! MB(y) for all y with V() = 0. This implies that .2 is adjoint to % because
V-40) is dense in Ly(I). Let us write LY = (CP*> @ (P¥> where the direct
sum is orthogonal. Here P, is a # X N (st < N) Hilbert matrix such that
PP} =1, if it = o0, and p(Py)! = st if i < 0. Then G(T) = V-Y((CP*H)*) =
V(PE), so that D(T*) = VY(CP¥)). Hence T = T* implies that
(PFy = (P*>. Thus LN = (CP*> @ <P*, (3) = (1) can be shown easily.

Remark. Since V and V restricted to F(Ty(ZL)) © Y(T(Z)) and
WT(L)) © D(T(P)) are isomorphisms onto LY, (3) implies that N = m + 7

and
dim(Ty(L)[T) = m,  dim(Ty(L)/T*) =

where we have identified the operators as their graphs.

Suppose that the maximal operator T3(%) is closed and has a closed sym-
metric restriction T of the type T C Ty(%). This implies that T5(%) is densely
defined and TH(F) C T C T* C T(&). Thus £ is adjoint itself. This means
that I is sufficient in describing the symmetric restrictions of Ty(Z). We have
the following

THEOREM 3.14. Let the & in (1.1) be adjoint to itself and TF(L) be densely
defined. Let T denote the operator (closed) defined by

Ty = Ly,  DT)={yeDy(r): PCV(y) = Opscs}.

Here P is a m X N (m < N) Hilbert mairix such that PP* = I, if m = oo,
and p(P"y = m if m << co. Then the following statements are equivalent:

(1) T is a symmetric restriction of Ty(F).
(2) There exists a m X m (M < m < N) Hilbert matrix D such that

LN = (CP*y @ {(DP)*) (orthogonal).

In particular, Z(T*) = {y € Zy(r): DPCV(y) = Ozp}-
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Proof. Let P be the it X N ( < N) Hilbert matrix such that LV —
(CP O {P*> where the direct sum is orthogonal. Furthermore, PP =]
if # = oo, and p(PY) = if # << 0. Then by Theorem 3.13, Z(T#) =
I-1((<CP*»)") where we take ¥ = I". Assume (). Then 7'C T so that

PP C VH(CP)),

This implies that (P*; C (P*) and so 7 < m and F = DP for some 1 X m
Hilbert matrix D satisfying the condition in the theorem. This proves that
(1) = (2). (2) = (1) is easy. The last part of the theorem is clear. This com-
pletes the proof.

If we allow D in the above theorem to be a nonsingular square Hilbert
matrix, then we get all possible self-adjoint restrictions of T5(%#). More precisely

TreoreM 3.15. Let % and T be the same as in Theorem 3.14. Then T is
self-adjoint iff LY = (CP*) @ {P*) where the direct sum is orthogonal.

Remark. In the above theorem we did not assume that the deficiency indices
of TH(¥) are equal. However the existence of such a Hilbert matrix satisfving
the above is equivalent to the fact that the deficiency indices are equal. This
theorem also implies that if 2 in (1.1) generates a self-adjoint restriction,
then r also generates a self-adjoint operator.

Remark. 1f we wish to construct a nonsymmetric operator, then we simply
delete some row vectors of P which defines the symmetric operator T in
Theorem 3.14.

4, ExAMPLES

We shall give examples of self-adjoint operators in the case when the number «
of intervals is infinite, and N— = N+ = N = . Let T be the same as in
Theorem 3.15. We shall show in the following examples how to construct
the corresponding operators B, ¥ and o X oo unitary matrix C and o X «
matrix P. These will be dependent on the direct sum expression 7.

Bxavters i, For each jeN, 7y = —/, te]; = (4, b),
o)) = —u'()) if tel.
For each je N, let
B/(3) = (@5(b,—) — y(a Y — M2
= (7p(by—) — U ylar )/ —
=D Y B =BG, B

i=1
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As a special case, take M =0, 4 = 4%, and

P :511-,5@(9, ) (18] =1,0¢R)
Then

T
PC=5:(D(=6,1) and  yes(T)
“ I

iff y € Z,(7) and, for each je N,

0(e7% — &MY y(b—) — e"iy(at))
= (& — W Piy(b—) — ¢ y(a+)).
ExampLE ii. For eachje N, let
7y = i) p:3) () + Oy, tel; = (a;, b)),
(m)®) = (my)(e) i tel;.

Here for each j e N, p; is a continuously differentiable complex-valued function
of ¢ € I; such that p;? is real-valued, and p,(t) # O for every t € I; except at a; ,
and p;(a;) = 0. ¢; is a continuous complex-valued function of ¢ € I; . We assume
further that sign p;%(b;) << 0 if j is odd, sign p;%(b;) > 0 if j is even, and that

(rif 18) — (F17:8) = [ 189 = g (b;—) p*(b) f(b;—)

for every f, g € Zy(r;). Thus N;~ 4+ N;+ =1 for every je N (see [8]). Because
of the condition on the sign of p;(b,),

N-=N;j+=0 if jiseven,
N =N;- =1 if jisodd
(see [6]). Thus Y5 ) N~ = 3,5 Njt = +o0, and
B(y) = (—2AB)Py(b—)  if jis odd,
= (p4(6))'? y(b;—) if jiseven.

C=@E, B) = BO)BOL)

As a special case, take M = 0, 4 = A4* and let Z(T) be the set of all y € Zy(r)
such that

9(_1’25—1(]721—1))1/2 Y(byja—) = (ng(sz))uz (bai—)

for every j& N where 6 is a given nonreal complex number with | 6| = 1.



GENERATED OPERATORS 465

ExamprE iii. In this example, the order of the differential expression can
“blow up.”
For each j € N, let 7,; denote the formally self-adjoint differential expression:

5y = —(pud) + gy, t€ly = (ay, by).
Here p,; and g,; are real-valued continuous functions of t€l,;, p,; is con-
tinuously differentiable on I,; such that p,(¢) 5= O for every #el,; except at
t = a,;, and poi(as;) = 0. We further assume that
[ 1 2@zt = lim (p,()(() #'(2) — 5'(5) 5(2)) = O

for every y, 2 € Z4(ry;). Thus the deficiency indices {N3;, N} of the minimal
closed symmetric differential operator Ty(ry;) associated with r,; are {1, 1}
(see, Lee [B]). Let ¢,; and ¥,; be functions in &Z(ry;) such that 7oy, = —uicbs; ,
Tatbas = o, U oy [l = [l oy | = 1/(2!7%). Put

b= 5153

where (v | 2), = (v 2) 4 (= | 72). Thus for every 3, 2 € Z(r;)

(roy 1 2) — (¥ | mo2) = {¥ | a5 = By(z) Cy;By ()

where
C-;J' = ‘—-1 0)
: NEVRE Y

Suppose that 7, ; (Fe€N) is a formally self-adjoint differential expression in
I,;; such that the deficiency indices of the minimal symmetric operator
To(7a;-1) are {0,0}. Thus Ny ; = N, = 0, and the leading coefficient of
Ty5_1 must vanish at the end points of I,; , . We note that there is no restriction
on the size of the order of r,;_; . Finally let

() = (7252 3)(8) it tely,
= (p25")() + qui(t)y if tel,;.
In this case

BG) = B/O) B =D ]

As a specific example, take P = @T 6, 1)(P¢R, 18] =1), M =0. Then
yeZ(T)iff ye (r) and
O{3(Ba;—) ba(Bas) — ' (b2s—) Faibas)}
= —{3(bo—) P2i(bas) — ¥'(bos — 1) s}

for every je N.
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