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a b s t r a c t

We study the problem of linearizability for two-dimensional systems of ODEs in
a neighborhood of the saddle type singular point with rationally incommensurable
eigenvalues. It is shown that if the linearizing transformation is convergent in one of the
variables, then it is absolutely convergent.
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1. Introduction

In recent years many studies have been devoted to the investigation of the problem of linearizability for plane systems
of ordinary differential equations (see for instance, [1–3] and references therein). In this work we consider real two-
dimensional systems of differential equations

ẋi = λixi + Xi(x1, x2) (i = 1, 2), (1)

where Xi =
∑

∞

p:|p|=2 X
(p)
i xp11 xp22 , p = (p1, p2), pi ∈ Z+, |p| = p1 + p2, λi ∈ R, the ratio λ1/λ2 is irrational and negative,

and it is supposed that the series Xi(x1, x2) are real and convergent in a neighborhood of the origin. Then the origin is a
non-degenerate saddle for (1). Define

δip = λ1p1 + λ2p2 − λi (|p| ≥ 2, i = 1, 2).

Obviously, δip ≠ 0. As is well-known (see e.g. [4,5]), there exists a unique formal change of coordinates

xi = yi + hi(y1, y2) (i = 1, 2), (2)

where hi =
∑

∞

p:|p|=2 h
(p)
i yp11 yp22 , which transforms system (1) into the linear system

ẏi = λiyi (i = 1, 2). (3)

Since λ1/λ2 < 0, there exists a sequence of vectors p(1k), p(2k) such that |p(ik)
| → ∞, |δip(ik) | → 0 for k → ∞. Therefore, for

the system (1) there arises the so-called problem of small denominators, which means that fast decreasing of numbers |δip|
can lead to the divergence of (2).
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By Theorem 4 of [5, Section 4] the transformation (2) is convergent if the eigenvalues λi (i = 1, 2) satisfy the condition
ω which requires that

−

∞−
k=1

2−k lnωk < +∞ ( ωk = min |δip| over p : 2 ≤ |p| ≤ 2k ).

In the present workwe do not require that the conditionω holds, that is, arbitrary ‘‘bad’’ small denominators are acceptable.
For instance, the special transcendental numbers can be chosen as λi, and then a special Brjuno analytic system of the form
(1) with divergent linearizing substitution can be constructed (Theorem 2 of [5, Section 6]). Since we do not impose any
restriction on the small denominators in order to have analytic equivalence of systems (1) and (3) we need some additional
assumptions. In this work we suppose that the transformation (2) is convergent in one of the variables, and prove that this
assumption yields the absolute convergence of the series hi(y1, y2) (i = 1, 2).

2. Preliminary transformations

We show that by a change of the coordinates analytic at the origin we can eliminate in system (1) the terms X (p)
i xp11 xp22

such that p ∈ π1 ∪ π2, where π1 = { p | 0 ≤ p1 < p(0)
1 , 0 ≤ p2 < +∞}, π2 = { p | 0 ≤ p2 < p(0)

2 , 0 ≤ p1 < +∞} (that is,
π1 and π2 are infinite strips from the integer grid of the first quadrant).

Proposition 1. For any p(0)
1 , p(0)

2 ∈ Z+ such that p(0)
1 + p(0)

2 ≥ 2, there exists a convergent substitution (2) with hi =∑
p∈π1∪π2

h(p)
i yp11 yp22 , which transforms (1) into the system

ẏi = λiyi + y
p(0)
1

1 y
p(0)
2

2 Yi(y1, y2), (4)

where Yi =
∑

∞

p1+p2=0 Y
(p)
i yp11 yp22 and Yi are convergent in a neighborhood of the origin (i = 1, 2).

Proof. Differentiation of (2) yields

λi(yi + hi) + Xi(y1 + h1, y2 + h2) = λiyi + y
p(0)
1

1 y
p(0)
2

2 Yi +

2−
j=1

∂hi

∂yj
(λjyj + y

p(0)
1

1 y
p(0)
2

2 Yj).

Equating in this equality the coefficients of yp11 yp22 for p ∈ π1 ∪ π2, we obtain

(λ1p1 + λ2p2 − λi)h
(p1,p2)
i = {Xi(y1 + h1(y1, y2), y2 + h2(y1, y2))}(p1,p2), (5)

where |δip| = |λ1p1 +λ2p2 −λi| ≥ ε > 0 for all admissible p, because for such p either p1 or p2 in δip is bounded. Therefore,

|h(p1,p2)
i | ≤ ε−1

{Xi(y1 +h1, y2 +h2)}
(p1,p2).

Here and below we use the notationZi(z1, z2) =
∑

∞

p1+p2=2 |Z (p)
i |zp11 zp22 . The convergence of hi(y) is now easily proved by

the Cauchy majorant method. �

Denote by R the radius of convergence of the series Xi(x1, x2) in the system (1). If (a, a) is a point of absolute convergence
of the series Xi(x1, x2), we can perform the linear change xi = axi to obtain a series with the radius of convergence greater
than 1. Therefore, without loss of generality we can assume that in (1)

Xi =

∞−
p1=2

∞−
p2=0

X (p)
i xp11 xp22 , R > 1 (6)

(the first condition of (6) follows from Proposition 1 if we choose p(0)
1 = 2, p(0)

2 = 0). It follows from (6) that, in particular,

Xi(1, 1) =

∞−
p1=2

∞−
p2=0

|X (p1,p2)
i | < ∞.

Any formal series Z =
∑

∞

p1=2
∑

∞

p2=0 Z
(p)zp11 zp22 can be considered as a series in one variable with the coefficients

depending on the other variable; in such a case we write Z =
∑

∞

p1=2 Z
[p1](z2)z

p1
1 , where Z [p1] =

∑
∞

p2=0 Z
(p1,p2)zp22 .

Lemma 1. Assume that for the system (1) the condition (6) is fulfilled and the substitution (2) transforms (1) into the linear
form (3). Then

∀ p1 ≥ 2 : h[p1]
i (1) =

∞−
p2=0

|h(p1,p2)
i | < +∞.

Proof. The series X and h satisfy the relation

(∂hi/∂y1)λ1y1 + (∂hi/∂y2)λ2y2 − λihi = Xi(y1 + h1, y2 + h2).
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Equating the coefficients of yp11 yp22 for p1 ≥ 2, p2 ≥ 0 we obtain Eq. (5). From (5) it follows that an upper bound for h(p)
i is

given by

|h(p)
i | ≤ |δip|

−1Ψ
(p)
i , (7)

where Ψ
(p1,p2)
i = {Xi(y1 + h1, y2 + h2)}

(p1,p2). Note that the series with non-negative coefficients Ψi(y1, y2) = Xi(y1 +h1(y1, y2), y2 +h2(y1, y2)) converge if |yi +hi(y1, y2)| < R,. From the Taylor expansion we have

Ψi(y1, y2) = Xi(y1, y2) +

∞−
q1+q2=1

∂ |q|Xi(y1, y2)
∂xq11 ∂xq22

hq1
1
hq2

2

q1! q2!
.

We re-expand the obtained series as a series in the variable y1. Taking into account that the expansions of the function
Xi, hi in y1 start from terms of at least the second order, we conclude that Ψ

[p1]
i is a polynomial with positive coefficients

of the functions X [k]
i (y2)(2 ≤ k ≤ p1), the derivatives of these functions up to the order p1 − 1 and the seriesh[2](y2), . . . ,h[p1−1](y2). Using (6) we conclude that the seriesX [p1]

i (1) are convergent; therefore, for y2 = 1 the derivatives
ofX [p1]

i (y2) of any order converge as well.
Going back to inequalities (7) we note that for any fixed p ≥ 2 there exists an εp1 > 0 such that |δip| ≥ εp1 for all p2 ≥ 0.

Therefore, summing up (7) over p2 we obtain
∞−

p2=0

|h(p1,p2)
i | ≤ ε−1

p1

∞−
p2=0

Ψ
(p1,p2)
i or h[p1]

i (1) ≤ ε−1
p1 Ψ

[p1]
i (1).

It remains to show thath[p1]
i (1) < ∞. We show this by induction on p1. For p1 = 2, obviously,h[2]

i (1) ≤ ε−1
2 Ψ

[2]
i (1) =X [2]

i (1) < ∞. Assuming now that the seriesh[k]
i (1) are convergent for k < p1 we obtain that Ψ

[p1]
i (1) is a finite sum of finite

products of finite quantities. Therefore, the seriesh[p1]
i (y2) are convergent for y2 = 1. �

We write the formal series hi of (2) as the series in y1 with coefficients depending on y2 : hi =
∑

∞

p1=2 h
[p1]
i (y2)y

p1
1 . Then,

by Lemma 1 the series h[p1]
i (y2) are convergent for |y2| ≤ 1 and we always can compute their values at y2 = 1.

Let us assume that for y2 = 1 the series hi(y1, 1) =
∑

∞

p1=2 h
[p1]
i (1)yp11 are absolutely convergent in y1. This means that

∃ c, C > 0 : |h[p1]
i (1)| ≤ Ccp1 . (8)

After minor generalization of the theorem on convergence of Dulac’s integrals [6, Section 14] we obtain the following
statement.

Lemma 2. For any absolutely convergent real series
∑

∞

k=2 c
(k)
i yk1 there exists a linearizing substitution

xi = yi +
∞−
k=2

g(k)
i (y2)yk1 (9)

with (perhaps non-analytic) coefficients g(k)
i (y2), satisfying the initial conditions g(k)

i (1) = c(k)
i , which is absolutely convergent

in y1 uniformly over y2 ∈ [−1, 1].

Therefore, if (8) is not fulfilled, then among substitutions (9) there is no substitution of the form (2) having (by Lemma 2)
coefficients which are analytic in y2. Using (8) we apply to the substitution (2) Lemma 2 and obtain that it is analytic in y1
uniformly over y2.

However, for arbitrary real series in y1, y2 the condition (8) of the pointwise convergence and even the stronger
assumption of convergence of the series in y1 uniformly over y2 do not guarantee the absolute convergence of the series
in both variables, as is shown in the following statement.

Proposition 2. For any divergent real series
∑

∞

k=1 akz
k it is possible to construct a series

f (u, v) =

∞−
k=1

mk−
m=k

f (k,m)ukvm, f (k,k)
= ak,

which is, obviously, divergent (because the series
∑

∞

k=1 f
(k,k)(uv)k is divergent); however if we write down f as a series in u

with the polynomial coefficients in v, that is, f =
∑

∞

k=1 f
[k](v)uk, where f [k]

= vk

ak + f (k,k+1)v + · · · + f (k,mk)vmk


, then

|f [k](v)| ≤ 1 for |v| ≤ 1.

Proof. Wemake a suitable choice of degreesmk and coefficients f (k,k+j) (1 ≤ j < mk) as follows.
For k ≥ 1 such that |ak| ≤ 1, we let mk = 0. Then |f [k](v)| = |akvk

| ≤ 1 for |v| ≤ 1. Now, for k ≥ 1 such that |ak| > 1,
we define Ik = [−|3ak|−1, |3ak|−1

] and consider on [−1, 1] the continuous function
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g(v) = { 3a2k |v| for v ∈ Ik, |ak| for v ∈ [−1, 1] \ Ik }.

By the Weierstrass theorem there is a polynomial Gk(v) of degree mk ≥ 1 such that |g(v) − Gk(v)| ≤ 1/2 for |v| ≤ 1.
Since g(0) = 0, we see that |Gk(0)| < 1/2. Let

Fk(v) = Gk(v) − Gk(0), f [k](v) = vk(ak − sign ak Fk(v)),

that is,
∑mk

j=1 f
(k,j)vj

= −sign ak Fk(v).

We show that the polynomial f [k](v) has the required property. Since

|g(v) − Fk(v)| ≤ |g(v) − Gk(v)| + |Gk(0)| ≤ 1,

we obtain |Fk(v)| ≤ g(v) + 1. By the definition, |f [k](v)| = |vk
| ||ak| − Fk(v)|.

If v ∈ [−1, 1] \ Ik, then |ak| = g(v) and |f [k](v)| ≤ |g(v) − Fk(v)| ≤ 1. If v ∈ Ik, g(v) ≤ |ak|,

|f [k](v)| ≤ |3ak|−k(|ak| + (g(v) + 1)) ≤ |3ak|1−k(1/3 + 1/3 + |3ak|−1) ≤ 1,

because k ≥ 1 and ak > 1.
Thus, |f [k](v)| ≤ 1 for all v ∈ [−1, 1]. Therefore,we have constructed the series f with polynomial coefficients in v, which

is absolutely convergent in u for |u| < 1 uniformly over v ∈ [−1, 1], but it is divergent as a series in two variables. �

3. Convergence of the linearization

We have seen that for arbitrary series the condition (8) does not guarantee the analyticity of the series. However, if (8)
holds not for an arbitrary series, but for the coefficients hi(y) of the linearizing transformation (2), then the transformation
(2) is analytic in a neighborhood of the origin.

Theorem 1. Assume that the normalizing substitution (2) transforms the system (1) satisfying (6) into the linear system (3) and
for (2) the condition (8) is fulfilled. Then the transformation (2) converges for any rationally incommensurable λ1 and λ2.

Proof. Consider the inequality (7) from Lemma 1. The quantity δip is different from zero and for a fixed p1δip is a linear
function in p2 with λ2 ≠ 0. Hence, there exists an index p(i)

1 ≥ 0 such that δi(p1,p
(i)
1 )

δi(p1,p
(i)
1 +1) < 0. Then, |δi(p1,p(i)

1 )
| +

|δi(p1,p
(i)
1 +1)| = |λ2| and |δi(p1,p

(i)
1 )

| ≠ |δi(p1,p
(i)
1 +1)| (otherwise there exists an index p such that δip = 0).

Assume, for instance, that |δi(p1,p
(i)
1 )

| < |δi(p1,p
(i)
1 +1)|. Then,

|δi(p1,p
(i)
1 )

| < |λ2|/2 = ε, ∀ p2 ≠ p(i)
1 : |δi(p1,p2)| > ε.

From the condition (8), ∀ p1 ≥ 2 :

h(p1,p
(i)
1 )

i +
∑

p2≠p(i)
1

h(p1,p2)
i

 ≤ Ccp1 ; therefore,

|h(p1,p2)
i | ≤ Ccp1 +


−

p2≠p(i)
1

h(p1,p2)
i

 ≤ Ccp1 +

−
p2≠p(i)

1

|h(p1,p2)
i |.

Hence, from (7) we obtain

|h(p1,p2)
i | < ε−1Ψ

(p1,p2)
i (p2 ≠ p(i)

1 ), |h
(p1,p

(i)
1 )

i | < Ccp1 + ε−1
−

p2≠p(i)
1

Ψ
(p1,p2)
i .

For any p1 ≥ 2 we sum up over all p2 ≥ 0 and obtain
∞−

p2=0

|h(p1,p2)
i | < Ccp1 + 2ε−1

−
p2≠p(i)

1

Ψ
(p1,p2)
i ≤ Ccp1 + 2ε−1

∞−
p2=0

Ψ
(p1,p2)
i ,

or, equivalently,h[p1]
i (1) < Ccp1 + 2ε−1Ψ

[p1]
i (1). It is proved in Lemma 1 that Ψ

[p1]
i (1) are finite numbers. Multiplying the

latter inequalities by yp11 and summing up over all p1 ≥ 2 and i = 1, 2 we obtain the majorant inequality

h1(y1, 1) +h2(y1, 1) ≺ Θ(y1) + 2ε−1(Ψ1(y1, 1) + Ψ2(y1, 1)), (10)

where Θ(y1) = 2C
∑

∞

p1=2 c
p1yp11 is the convergent series.
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By (6) the series Xi(x1, x2) are convergent for |x1|, |x2| < R, where R > 1. Therefore, for small y1, ηΞi(y1, η) =Xi(y1 + η, 1 + η) are analytic functions of y1, η and their expansions start from the terms of at least the second order.
Let η =h1(y1, 1) +h2(y1, 1); then Ψi(y1, 1) ≺ Xi(y1 + η, 1 + η). Thus, (10) yields the majorant inequality

η ≺ Θ(y1) + 2ε−1(Ξ1(y1, η) + Ξ2(y1, η)).

Replacing now the symbol ofmajorant by the symbol of equality and η byη,we obtain the equationΦ(y1,η) = 0, where
Φ(y1,η) = 0 is an analytic function. It is obvious that the equation Φ(y1,η) = 0 satisfies the Implicit Function Theorem.
Hence it has an analytic solutionη(y1) which majorizes the series η =h1(y1, 1) +h2(y1, 1).

Thus, the serieshi(y1, 1) =
∑

∞

p1=2 y
p1
1

∑
∞

p1=2 |h(p1,p2)
i | are convergent yielding that the series hi(y1, y2) are absolutely

convergent for |y1| ≤ y∗

1 and |y2| ≤ 1. �
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