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ReviewAntibiofilm Approaches:
Prevention of Catheter Colonization

also be contaminated in their lumenal compartments
where fluid flow from contaminated infusate solutions
can provide microbial pathogens rapid access to the vas-
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Building 1400W culature [10]. In either of these scenarios, establishment

of a catheter-associated biofilm is a natural progressiveCambridge, Massachusetts 02139
step after initial colonization. The contaminating biofilm
then serves as a growing, often antibiotic-resistant reser-
voir that seeds infection throughout the host.Bacteria frequently attach to medical devices such as

Consequently, catheter-related bloodstream infectionsintravascular catheters by forming sessile multicellu-
are notoriously difficult to treat via conventional antibi-lar communities known as biofilms, which can be the
otic therapy, with associated mortality rates rangingsource of persistent infections that are recalcitrant to
from 12% to 25% [11, 12]. Indeed, the removal of micro-systemic antibiotic therapy. As a result of this per-
bially contaminated catheters is often the only viablesistence, a number of technologies have been devel-
remedy. These unsatisfying treatment regimens extendoped to prevent catheter-associated biofilm formation.
hospital stays, necessitate active intervention on theWhereas the most straightforward approaches focus
part of healthcare personnel [13], and have driven theon impregnating catheter material with classical anti-
estimated annual domestic healthcare cost associatedmicrobial agents, these approaches are not universally
with complications arising from these catheter-relatedeffective, thereby underscoring the need for more po-
biofilm infections to more than nine billion dollars [11,tent and more sophisticated approaches to the pre-
12, 14]. To address this problem, various technologiesvention of catheter-related biofilm infections.
have been developed, or are being developed, to pre-
vent biofilm formation on medical devices, with each

Introduction effort possessing its own particular constellation of po-
Medical devices such as intravascular and urinary cath- tential pitfalls and advantages. These efforts can be
eters are routinely employed in healthcare settings for broadly classified into two areas: (1) prevention of bio-
a number of purposes, including the infusion of chemo- film formation with bactericidal or bacteriostatic agents,
therapeutic agents, hemodialysis, and the treatment of and (2) prevention of biofilm formation with nonbacteri-
urinary incontinence [1–3]. Although these devices are cidal antibiofilm agents that inhibit the microbial attach-
essential components of the modern-day medical arma- ment process.
ment, they are also highly susceptible to microbial con-
tamination. Microbial pathogens attach to catheter sur-
faces, forming sessile multicellular biofilm communities Current Therapies: Bactericidal
that will often persist in the presence of large doses of and Bacteriostatic Approaches
traditional antimicrobial agents [4]. Conceptually, the simplest method for preventing bacte-

A number of factors conspire to render catheter im- rial colonization and eventual biofilm formation on cath-
plants especially susceptible to microbial contamina- eters is to impregnate the catheter itself with a broad-
tion. First, catheter implantation often compromises the spectrum antimicrobial agent that elutes from the device
skin’s protective barrier, providing a direct route to by- and impairs bacterial growth through traditional bacteri-
pass the body’s first line of immunity. In addition, upon cidal or bacteriostatic mechanisms. Here, the antimicro-
insertion into the host, the outer surface of the catheter bials are used prophylactically, preventing biofilm for-
is quickly covered with host proteins that facilitate mi- mation by eradicating even the first microbial pathogens
crobial attachment [5, 6]. There is also evidence that to contaminate the device. This general approach is
implanted abiotic material itself causes local attenuation also the one that has progressed furthest in clinical
of antimicrobial immune responses, thereby providing development, with some antimicrobial-impregnated de-
a fertile breeding ground for microbial biofilm formation vices currently used in clinical settings [15–20] and oth-
[7]. Finally, patients who possess the greatest need for ers in various stages of development [21–27].
implanted medical devices are often immunocomprom- This approach, however, is not without its technical
ised and are therefore more susceptible to bacterial hurdles. Care must be taken to ensure that impregnation
infection [8]. of the medical device does not alter its desired physico-

The catheters themselves are infected via one of two chemical properties. Catheters have desired degrees
general routes, typically by organisms that comprise the of lubriciousness, persistence length, and compatibility
natural flora surrounding the site of catheter insertion with host tissue that cannot be radically altered without
(Table 1). First, microbes may contaminate the catheter impairing their utility. In addition, each device must be
along its outer surface, and it is believed that this type loaded with enough of the antimicrobial agent in ques-
of infection often occurs during initial insertion of the tion such that the catheter releases its antimicrobial
catheter as microbes track along with the catheter as payload at bactericidal or bacteriostatic concentrations
it tunnels to its appropriate destination [9]. Catheters can for the lifetime of the device.

This is a nontrivial demand that has been addressed
through different approaches with varying degrees of1Correspondence: pdanese@microbia.com
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success. For example, the polyurethane walls of one by Darouiche and colleagues, CVCs impregnated with
a combination of silver-sulfadiazine and chlorhexidinecommercially available central-venous catheter (CVC)
were less effective at preventing catheter-related blood-are impregnated with minocycline and rifampin in an
stream infections than similar antibiotic-impregnatedeffort to ward off microbial contamination [20]. Although
devices [20]. In addition, although some small clinicalthe device is clearly effective when compared to un-
studies have shown that silver-oxide-coated catheterscoated catheters, reducing the frequency of catheter
are associated with a reduction in catheter-associatedcolonization in one study from 26% to 8% and signifi-
urinary tract infections (CAUTI) in certain patient sub-cantly reducing the frequency of catheter-related blood-
groups [38], a larger trial [16] was unable to documentstream infections [28], the device is still not universally
a statistically significant reduction in the frequency ofeffective at preventing catheter contamination. One ad-
CAUTI when comparing silver-impregnated versus un-ditional concern is that the prophylactic use of antibiot-
impregnated urinary catheters.ics in this setting provides a potential mechanism for

One explanation for the lack of consistent demonstra-increasing the overall proportion of antibiotic-resistant
tion of efficacy is that the current designs of antiseptic-microbes in the nosocomial environment. While there
coated devices such as the silver-sulfadiazine/chlorhex-has been little examination of the spread of antibiotic-
idine CVC do not deliver an appropriate sustained anti-resistant microbes as a result of the commercially avail-
microbial dose for the lifetime of the device. At least twoable antibiotic-impregnated catheters, the phenomenon
approaches have been devised to address this concern.has been observed when other topical antibiotics are

In the first approach, Raad and colleagues [39, 40]employed to prevent bacterial contamination of CVCs
have described an electrochemical method whereby aand other implants [26, 29].
silver iontophoretic catheter releases silver ions nearIn a departure from the impregnation approach, DiTi-
the proximal region of a vascular catheter when con-zio and colleagues have described a method by which
nected to a low-current power source. This electro-ciprofloxacin was loaded into a liposomal hydrogel,
chemical approach should provide a more sustainablewhich was then crosslinked to the external (nonlumenal)
source of silver ions, preventing microbes that aresurface of Foley catheters [23]. These antibiotic-loaded
attached to the distal catheter surface from contaminat-hydrogels were capable of releasing bactericidal doses
ing the proximal catheter region and the vasculature forover 7 days in vitro, but were less effective in a rabbit
longer periods. This device has been studied in vitroanimal model, delaying the average onset of bacteriuria
and in vivo and appears to be broad spectrum in its

by only 1.8 days [25].
efficacy. Although these initial studies are promising,

Other studies have described silicone catheters de-
the device has not yet been examined in the clinic.

signed with distinct inner and outer surfaces that sand- The second approach focuses on the use of covalent
wich a minocycline/rifampin reservoir capable of releas- surface modification in an attempt to render catheter
ing an effective antimicrobial dose for almost one year surfaces inhospitable to bacterial colonization. Many of
[27]. This particular catheter design, however, has only these covalent-modification technologies can be viewed
been examined in vitro. as an attempt to permanently affix an antimicrobial agent

Although a number of other antibiotics, including ra- to the catheter surface, thereby circumventing the draw-
moplanin, dicloxacillin, clindamycin, and triclosan [21, backs associated with the transient efficacy of antimi-
22, 30], have been examined for their effectiveness at crobial compounds that elute from other catheters [41].
preventing catheter colonization, the general approach For example, silicone rubber surfaces have been func-
of antimicrobial impregnation of catheters is not solely tionalized with 3-(trimethoxysilyl)-propyldimethylocta-
restricted classical antibiotics. There are many exam- decylammonium chloride (QAS), whose antimicrobial
ples of nonspecific antiseptics used for this purpose as activity is similar to the membrane-disruptive function
well, including silver sulfadiazine, nitrofurazone, chlor- of soluble quaternary ammonium species [41]. Whereas
hexidine, and the quaternary ammonium species ben- biofilm-inhibitory effects are observed in vitro, the anti-
zalkonium chloride [31–34]. Like the antibiotic-based microbial effects of QAS-coated silicone is not broad
approaches, the general goal is to harness the broad- spectrum, displaying only a modest reduction in the
spectrum antimicrobial effects of these antiseptics to viability of attached gram-negative organisms and
prevent the colonization of and eventual biofilm forma- showing limited efficacy when rigorously examined in
tion on catheters. One of the theoretical advantages of vivo [41]. These observations are not unexpected in light
these approaches is that the nonspecific antiseptics of the surface alterations that take place on all implanted
reach beyond the prokaryotic realm and may help to medical devices in vivo. Once implanted in human tis-
prevent fungal biofilm contamination of medical devices sue, medical devices are quickly coated with extracellu-
as well [35]. lar matrix proteins and other host-derived biopolymers

In general, these approaches are similar to the antibi- [42]. As such, it is reasonable to propose that covalently
otic-based approaches as far as their development is bound quaternary ammonium functional groups will
concerned, with versions of nitrofurazone-, silver-, chlor- quickly become coated and masked in vivo, neutralizing
hexidine-, and benzalkonium-impregnated catheters their antimicrobial function and leaving a fresh surface
commercially available [31–34]. However, whereas non- that is amenable to bacterial colonization and biofilm
specific antiseptic approaches are conceptually promis- formation. Thus, unless technologies are developed to
ing, the empirical evidence of their efficacy is mixed, enable covalently attached antimicrobial agents to ex-
with even the most promising results [36–38] high- tend physically beyond the outer layers of the host’s
lighting limitations associated with antiseptics used as matrix coating, the elution-based antimicrobial technol-

ogies will likely prove superior.antibiofilm agents on catheters. For example, in a study
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Although antimicrobial-impregnated catheters can re- For gram-positive pathogens like Staphylococcus
aureus and Staphylococcus epidermidis, which are theduce catheter-related infection rates in some instances,

their potency and ability to ward off microbial biofilm predominant contaminants of vascular catheters, a criti-
cal component of the attachment process is the poly-formation as they are currently configured is somewhat

limited. Consequently, future efforts will likely aim to saccharide intercellular adhesin (PIA), whose synthesis
is directed by the ica gene cluster [70, 72]. This polysac-increase the local concentrations and sustained delivery

of the currently employed antimicrobial agents. While charide, which consists of repeated N-succinyl-�-1-6-
glucosamine subunits, is critical to biofilm formationthese efforts should have some degree of success, alter-

native technologies are being developed that should both in vitro as well as in an infected-CVC animal model
[70, 79, 80]. Although previously described anti-infectivecomplement the traditional bactericidal and bacterio-

static approaches. These approaches are nonbacteri- efforts have focused on PIA as an antigen for vaccine-
based therapies [81], the PIA biosynthetic enzymescidal in spirit, focusing rather on methods of preventing

microbial attachment and preventing the phenotypic could serve as useful targets for small molecule antibio-
film agents whose aim is to curb Staphylococcus-hyperresistance changes that accompany biofilm for-

mation. derived catheter infections.
In the case of many gram-negative pathogens, the ad-

hesins that mediate attachment-related virulence func-Potential Future Therapies: Nonbactericidal
Antibiofilm Approaches tions, including biofilm formation, are the surface-exposed

multimeric protein appendages termed Type I and PapThere are a number of studies indicating that microbial
biofilms are able to withstand host immune responses pili [74, 82, 83]. Whereas the specific pilin subunits that

comprise these pili differ slightly among gram-negativeas well as massive doses of a wide spectrum of antimi-
crobial agents, often persisting in the presence of anti- species, the quaternary assembly process appears to

be conserved, involving a periplasmic chaperone, PapD,microbials at concentrations that are 1000-fold more
than would be necessary to eradicate an equivalent free- which is essential for proper pilus assembly [84]. As

such, one possible method for obtaining antibiofilmfloating, or planktonic, population [43–47]. There appear
to be a number of factors that contribute to these hyper- agents would be to target this conserved assembly step.

This notion is bolstered by the fact that the carboxylresistance phenotypes, not the least of which is that
biofilm communities are typically encased in extracellu- terminus of all Type I and Pap pilin subunits bind to an

invariant domain found in all known PapD homologslar biopolymeric “slime” that consists of polysaccharide,
protein, and in some cases, nucleic acid [48–50]. This [85]. Using this information, Svensson et al. have synthe-

sized a series of pyridinone derivatives, termed pilicides,extracellular polymeric material can impede both the
penetration of antimicrobial agents as well as the func- which disrupt the interaction between PapD and pilin

subunits by functioning as mimetics of the pilin carboxyltion of phagocytic immune cells [51–58]. In addition,
biofilm communities are often slow growing and are thus terminus [85]. Although the pilicide mimetics have not

yet been examined in vivo, they may ultimately proveinherently less susceptible to antibiotics that require
rapid cell division for efficacy [59, 60]. Finally, a number useful as targeted antibiofilm agents to prevent gram-

negative biofilm formation.of proteomic- and genomic-based studies comparing
biofilm and planktonic cells have highlighted wholesale In a similar fashion, a recent study has indicated that

lactoferrin, a mammalian protein involved in native im-alterations in the prokaryotic physiological program
when bacteria enter a biofilm mode of growth [61–69]. munity, is able to prevent biofilm formation of Pseudo-

monas aeruginosa through an iron-chelation mecha-It is likely that some of these alterations also contribute
to the hyper-resistance phenotypes described above. nism [86]. The chelation of iron appears to derange the

process of pilus-mediated twitching motility, which itselfGiven this information, one plausible approach to pre-
venting catheter colonization and catheter-related sys- is required for proper biofilm formation in P. aeruginosa

[73]. Although the effects of lactoferrin on biofilm forma-temic infections is to develop diffusible catheter-impreg-
nated antibiofilm compounds that render pathogenic tion in other species have not been described, this pro-

tein or other synthetic iron chelators may also holdmicrobes incapable of attaching to the catheter surface.
Medical devices impregnated with such compounds promise as general antibiofilm agents.

The adhesion process can also be impaired by com-would abolish the biofilm reservoir that normally seeds
persistent systemic infections, rendering invading bac- pounds that generally perturb the physico-chemical ad-

hesive forces needed for biofilm attachment. With thisteria susceptible both to the host’s immune system and
to traditional antimicrobial therapies. While efforts to sentiment in mind, some recent studies have described

biosurfactants, including surfactin from Bacillus subtilisdevelop these technologies are still in their early stages,
a number of approaches hold promise. [87] and surfactants from two Lactobacillus species [88,

89], that inhibit biofilm formation in vitro. While surfactinGenetic studies aimed at identifying the molecular
components critical to biofilm formation indicate that has only been examined for antibiofilm effects against

gram-negative organisms in vitro [87], one surfactantbiofilm formation is a regulated process, with specific
adhesins mediating cellular attachment to abiotic sur- from Lactobacillus fermentum was effective at inhibiting

Staphylococcal colonization of silicone catheter mate-faces [70–76] and other genetic elements controlling the
overall microscopic architecture of the biofilm [77, 78]. rial in a rat model [89]. Although the lability of these

biosurfactants may interfere with their efficacy in appliedAccordingly, one general approach for generating anti-
biofilm agents is to identify compounds that impair the settings, these compounds may ultimately help in the

design of synthetic surfactants that are less prone toproduction or proper assembly of these adhesins.
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Figure 1. Fluorescence Micrograph of a Staphylococcus aureus Biofilm Formed on an Implanted Silicone Catheter after 4 Days of Growth
In Vivo

biological turnover and are therefore capable of serving ing systems, with the intention of interfering with the
biofilm formation process.as durable antibiofilm agents.

Traditional definitions of bacterial biofilms are based One class of compounds that appears to antagonize
certain quorum-sensing systems is the group of naturallargely on the microscopic structural features of these

communities, which indicate that biofilms often consist halogenated furanones produced by Delisea pulchra
[100–102], a marine alga renowned for its ability to wardof biopolymer-encased microcolonies of cells punctu-

ated by aqueous channels that likely serve to transport off microbial colonization [103]. These naturally pro-
duced furanones are at least partly accountable for thisnutrients and waste to their appropriate destinations
phenomenon, as purified synthetic versions of the fu-(Figure 1) [90]. Given this high degree of microscopic
ranones display antibiofilm effects against B. subtilis,structure, it is not surprising that a number of studies
Escherichia coli, and P. aeruginosa in vitro [100, 102,have documented a role for intercellular signaling mole-
104]. If these compounds are able to exert their antibio-cules in the control of the biofilm formation process [77,
film effects broadly across the prokaryotic spectrum,91–97]. For example, P. aeruginosa biofilms require the
they could ultimately be used to antagonize the biofilmlas quorum-sensing signaling system, which controls the
formation process on implanted medical devices.synthesis of the diffusible intercellular signaling molecule

N-(3-oxododecanoyl)-L-homoserine lactone to establish
appropriate biofilm architecture [77], leading to a sug- Conclusions
gestion that similar mechanisms are employed in other None of the currently available bactericidal-based tech-
gram-negative pathogens [98]. The las system is one of nologies is completely effective at preventing microbial
many bacterial quorum-sensing systems whose roles colonization of medical catheters. It is, of course, possi-
are to control a variety of physiological functions in re- ble and prudent to improve upon the existing bacteri-
sponse to cell density, including, in some instances, cidal technologies by combining them in an effort to
virulence gene expression [99]. Consequently, a number increase the frequency in which catheter-related bacte-
of research efforts have been devoted to identifying and rial infections are prevented. For example, combinatorial

approaches using antiseptic- and antibiotic-impregnatedexamining compounds that interfere with these signal-
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tients with catheter-related infections. Clin. Microbiol. Infect.catheters should provide better protection against micro-
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