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Abstract

We prove that atomic decomposition for the Hardy spaces h1 and H1 is valid for noncommutative mar-
tingales. We also establish that the conditioned Hardy spaces of noncommutative martingales hp and bmo
form interpolation scales with respect to both complex and real interpolations.
© 2009 Elsevier Inc. All rights reserved.
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0. Introduction

Atomic decomposition plays a fundamental role in the classical martingale theory and har-
monic analysis. For instance, atomic decomposition is a powerful tool for dealing with duality
theorems, interpolation theorems and some fundamental inequalities both in martingale theory
and harmonic analysis. Atoms for martingales are usually defined in terms of stopping times.
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Unfortunately, the concept of stopping times is, up to now, not well defined in the generic non-
commutative setting (there are some works on this topic, see [1] and references therein). We note,
however, that atoms can be defined without help of stopping times. Let us recall this in classical
martingale theory. Given a probability space (Ω, F ,μ), let (Fn)n�1 be an increasing filtration of
σ -subalgebras of F such that F = σ(

⋃
n Fn) and let (En)n�1 denote the corresponding family

of conditional expectations. An F -measurable function a ∈ L2 is said to be an atom if there exist
n ∈ N and A ∈ Fn such that

(i) En(a) = 0;
(ii) {a �= 0} ⊂ A;

(iii) ‖a‖2 � μ(A)−1/2.

Such atoms are called simple atoms by Weisz [21] and are extensively studied by him (see [20]
and [21]). Let us point out that atomic decomposition was first introduced in harmonic analysis
by Coifman [3]. It is Herz [4] who initiated atomic decomposition for martingale theory. Re-
call that we denote by H1(Ω) the space of martingales f with respect to (Fn)n�1 such that the
quadratic variation S(f ) = (

∑
n |dfn|2)1/2 belongs to L1(Ω), and by h1(Ω) the space of mar-

tingales f such that the conditioned quadratic variation s(f ) = (
∑

n En−1|dfn|2)1/2 belongs to
L1(Ω). We say that a martingale f = (fn)n�1 is predictable in L1 if there exists an adapted
sequence (λn)n�0 of non-decreasing, non-negative functions such that |fn| � λn−1 for all n � 1
and such that supn λn ∈ L1(Ω). We denote by P1(Ω) the space of all predictable martingales. In
a disguised form in the proof of Theorem A∞ in [4], Herz establishes an atomic description of
P1(Ω). Since P1(Ω) = H1(Ω) for regular martingales, this gives an atomic decomposition of
H1(Ω) in the regular case. Such a decomposition is still valid in the general case but for h1(Ω)

instead of H1(Ω), as shown by Weisz [20].
In this paper, we will present the noncommutative version of atoms and prove that atomic

decomposition for the Hardy spaces of noncommutative martingales is valid for these atoms.
Since there are two kinds of Hardy spaces, i.e., the column and row Hardy spaces in the noncom-
mutative setting, we need to define the corresponding two type atoms. This is a main difference
from the commutative case, but can be done by considering the right and left supports of mar-
tingales as being operators on Hilbert spaces. Roughly speaking, replacing the supports of atoms
in the above (ii) by the right (resp. left) supports we obtain the concept of noncommutative right
(resp. left) atoms, which are proved to be suitable for the column (resp. row) Hardy spaces.
On the other hand, due to the noncommutativity some basic constructions based on stopping
times for classical martingales are not valid in the noncommutative setting, our approach to the
atomic decomposition for the conditioned Hardy spaces of noncommutative martingales is via
the h1 −bmo duality. Recall that the duality equality (h1)

∗ = bmo was established independently
by [8] and [13]. However, this method does not give an explicit atomic decomposition.

The other main result of this paper concerns the interpolation of the conditioned Hardy
spaces hp . Such kind of interpolation results involving Hardy spaces of noncommutative mar-
tingales first appear in Musat’s paper [11] for the spaces Hp . We will present an extension of
these results to the conditioned case. Note that our method is much simpler and more elementary
than Musat’s arguments. It seems that even in the commutative case, our method is simpler than
all existing approaches to the interpolation of Hardy spaces of martingales. The main idea is in-
spired by an equivalent quasinorm for hp , 0 < p � 2 introduced by Herz [5] in the commutative
case. We translate this quasinorm to the noncommutative setting to obtain a new characteriza-
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tion of hp , 0 < p � 2, which is more convenient for interpolation. By this way we show that
(bmo,h1)1/p = hp for any 1 < p < ∞.

The study of the Hardy spaces of noncommutative martingales Hp and hp in the discrete case
is the starting point for the development of an Hp-theory for continuous time. In a forthcoming
paper by Marius Junge and the third named author, it appears that the spaces hp are much easier
to be handled than Hp . It seems that their use is unavoidable for problems on the spaces Hp at
the continuous time.

The remainder of this paper is divided into four sections. In Section 1 we present some
preliminaries and notation on the noncommutative Lp-spaces and various Hardy spaces of non-
commutative martingales. The atomic decomposition of the conditioned Hardy space h1(M) is
presented in Section 2, from which we deduce the atomic decomposition of the Hardy space
H1(M) by Davis’ decomposition. In Section 3 we define an equivalent quasinorm for hp(M),
0 < p � 2, and discuss the description of the dual space of hp(M), 0 < p � 1. Finally, using the
results of Section 3, the interpolation results between bmo and h1 are proved in Section 4.

Any notation and terminology not otherwise explained, are as used in [18] for theory of
von Neumann algebras, and in [15] for noncommutative Lp-spaces. Also, we refer to a recent
book by Xu [24] for an up-to-date exposition of theory of noncommutative martingales.

1. Preliminaries and notations

Throughout this paper, M will always denote a von Neumann algebra with a normal faithful
normalized trace τ . For each 0 < p � ∞, let Lp(M, τ ) or simply Lp(M) be the associated
noncommutative Lp-spaces. We refer to [15] for more details and historical references on these
spaces.

For x ∈ Lp(M) we denote by r(x) and l(x) the right and left supports of x, respectively.
Recall that if x = u|x| is the polar decomposition of x, then r(x) = u∗u and l(x) = uu∗. r(x)

(resp. l(x)) is also the least projection e such that xe = x (resp. ex = x). If x is selfadjoint,
r(x) = l(x).

Let us now recall the general setup for noncommutative martingales. In the sequel, we always
denote by (Mn)n�1 an increasing sequence of von Neumann subalgebras of M such that the
union of Mn’s is w∗-dense in M and En the conditional expectation of M with respect to Mn.

A sequence x = (xn) in L1(M) is called a noncommutative martingale with respect to
(Mn)n�1 if En(xn+1) = xn for every n � 1.

If in addition, all xn’s are in Lp(M) for some 1 � p � ∞, x is called an Lp-martingale. In
this case we set

‖x‖p = sup
n�1

‖xn‖p.

If ‖x‖p < ∞, then x is called a bounded Lp-martingale.
Let x = (xn) be a noncommutative martingale with respect to (Mn)n�1. Define dxn =

xn − xn−1 for n � 1 with the usual convention that x0 = 0. The sequence dx = (dxn) is called
the martingale difference sequence of x. x is called a finite martingale if there exists N such that
dxn = 0 for all n � N . In the sequel, for any operator x ∈ L1(M) we denote xn = En(x) for
n � 1.
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Let us now recall the definitions of the square functions and Hardy spaces for noncommuta-
tive martingales. Following [14], we introduce the column and row versions of square functions
relative to a (finite) martingale x = (xn):

Sc,n(x) =
(

n∑
k=1

|dxk|2
)1/2

, Sc(x) =
( ∞∑

k=1

|dxk|2
)1/2

;

and

Sr,n(x) =
(

n∑
k=1

∣∣dx∗
k

∣∣2

)1/2

, Sr(x) =
( ∞∑

k=1

∣∣dx∗
k

∣∣2

)1/2

.

Let 1 � p < ∞. Define Hc
p(M) (resp. Hr

p(M)) as the completion of all finite Lp-martingales
under the norm ‖x‖Hc

p
= ‖Sc(x)‖p (resp. ‖x‖Hr

p
= ‖Sr(x)‖p). The Hardy space of noncommu-

tative martingales is defined as follows: if 1 � p < 2,

Hp(M) = Hc
p(M) + Hr

p(M)

equipped with the norm

‖x‖Hp
= inf

{‖y‖Hc
p

+ ‖z‖Hr
p

}
,

where the infimum is taken over all y ∈ Hc
p(M) and z ∈ Hr

p(M) such that x = y + z. For
2 � p < ∞,

Hp(M) = Hc
p(M) ∩ Hr

p(M)

equipped with the norm

‖x‖Hp
= max

{‖x‖Hc
p
,‖x‖Hr

p

}
.

The reason that Hp(M) is defined differently according to 1 � p < 2 or 2 � p � ∞ is presented
in [14]. In that paper Pisier and Xu prove the noncommutative Burkholder–Gundy inequalities
which imply that Hp(M) = Lp(M) with equivalent norms for 1 < p < ∞.

We now consider the conditioned version of Hp developed in [10]. Let x = (xn)n�1 be a finite
martingale in L2(M). We set

sc,n(x) =
(

n∑
k=1

Ek−1|dxk|2
)1/2

, sc(x) =
( ∞∑

k=1

Ek−1|dxk|2
)1/2

;

and

sr,n(x) =
(

n∑
Ek−1

∣∣dx∗
k

∣∣2

)1/2

, sr (x) =
( ∞∑

Ek−1
∣∣dx∗

k

∣∣2

)1/2

.

k=1 k=1
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These will be called the column and row conditioned square functions, respectively. Let 0 <

p < ∞. Define hc
p(M) (resp. hr

p(M)) as the completion of all finite L∞-martingales under
the (quasi)norm ‖x‖hc

p
= ‖sc(x)‖p (resp. ‖x‖hr

p
= ‖sr (x)‖p). For p = ∞, we define hc∞(M)

(resp. hr∞(M)) as the Banach space of the L∞(M)-martingales x such that
∑

k�1 Ek−1|dxk|2
(respectively

∑
k�1 Ek−1|dx∗

k |2) converge for the weak operator topology.
We also need �p(Lp(M)), the space of all sequences a = (an)n�1 in Lp(M) such that

‖a‖�p(Lp(M)) =
( ∑

n�1

‖an‖p
p

)1/p

< ∞ if 0 < p < ∞,

and

‖a‖�∞(L∞(M)) = sup
n

‖an‖∞ if p = ∞.

Let hd
p(M) be the subspace of �p(Lp(M)) consisting of all martingale difference sequences.

We define the conditioned version of martingale Hardy spaces as follows: if 0 < p < 2,

hp(M) = hd
p(M) + hc

p(M) + hr
p(M)

equipped with the (quasi)norm

‖x‖hp = inf
{‖w‖hd

p
+ ‖y‖hc

p
+ ‖z‖hr

p

}
,

where the infimum is taken over all w ∈ hd
p(M), y ∈ hc

p(M) and z ∈ hr
p(M) such that x =

w + y + z. For 2 � p < ∞,

hp(M) = hd
p(M) ∩ hc

p(M) ∩ hr
p(M)

equipped with the norm

‖x‖hp = max
{‖x‖hd

p
,‖x‖hc

p
,‖x‖hr

p

}
.

The noncommutative Burkholder inequalities proved in [10] state that

hp(M) = Lp(M) (1.1)

with equivalent norms for all 1 < p < ∞.
In the sequel, (Mn)n�1 will be a filtration of von Neumann subalgebras of M. All martin-

gales will be with respect to this filtration.

2. Atomic decompositions

Let us now introduce the concept of noncommutative atoms.

Definition 2.1. a ∈ L2(M) is said to be a (1,2)c-atom with respect to (Mn)n�1, if there exist
n � 1 and a projection e ∈ Mn such that
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(i) En(a) = 0;
(ii) r(a) � e;

(iii) ‖a‖2 � τ(e)−1/2.

Replacing (ii) by (ii)′ l(a) � e, we get the notion of a (1,2)r -atom.

Here, (1,2)c-atoms and (1,2)r -atoms are noncommutative analogues of (1,2)-atoms for
classical martingales. In a later remark we will discuss the noncommutative analogue of (p,2)-
atoms. These atoms satisfy the following useful estimates.

Proposition 2.2. If a is a (1,2)c-atom then

‖a‖Hc
1
� 1 and ‖a‖hc

1
� 1.

The similar inequalities hold for (1,2)r -atoms.

Proof. Let e be a projection associated with a satisfying (i)–(iii) of Definition 2.1. Let ak =
Ek(a). Observe that ak = 0 for k � n, so dak = 0 for k � n. For k � n + 1 we have

e|dak|2 = [
Ek

(
ea∗) − Ek−1

(
ea∗)]dak = |dak|2

= da∗
k

[
Ek(ae) − Ek−1(ae)

] = |dak|2e.

This gives

e|dak|2 = |dak|2 = |dak|2e

for any k � 1. Hence, we obtain

eSc(a) = Sc(a) = Sc(a)e.

Consequently, the noncommutative Hölder inequality implies

‖a‖Hc
1
= τ

[
eSc(a)

]
�

∥∥Sc(a)
∥∥

2‖e‖2 = ‖a‖2‖e‖2 � 1.

Since e ∈ Mn, for k � n + 1 we have

eEk−1
(|dak|2

) = Ek−1
(
e|dak|2

) = Ek−1
(|dak|2

)
= Ek−1

(|dak|2e
) = Ek−1

(|dak|2
)
e.

Thus, we deduce

‖a‖hc
1
� 1. �

Now, atomic Hardy spaces are defined as follows.
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Definition 2.3. We define hc,at
1 (M) as the Banach space of all x ∈ L1(M) which admit a decom-

position

x =
∑

k

λkak

with for each k, ak a (1,2)c-atom or an element in L1(M1) of norm � 1, and λk ∈ C satisfying∑
k |λk| < ∞. We equip this space with the norm

‖x‖hc,at
1

= inf
∑

k

|λk|,

where the infimum is taken over all decompositions of x described above.
Similarly, we define hr,at

1 (M) and ‖ · ‖hr,at
1

.

It is easy to see that hc,at
1 (M) is a Banach space. By Proposition 2.2 we have the contractive

inclusion hc,at
1 (M) ⊂ hc

1(M). The following theorem shows that these two spaces coincide. That
establishes the atomic decomposition of the conditioned Hardy space hc

1(M). This is the main
result of this section.

Theorem 2.4. We have

hc
1(M) = hc,at

1 (M) with equivalent norms.

More precisely, if x ∈ hc
1(M)

1√
2
‖x‖hc,at

1
� ‖x‖hc

1
� ‖x‖hc,at

1
.

Similarly, hr
1(M) = hr,at

1 (M) with the same equivalence constants.

We will show the remaining inclusion hc
1(M) ⊂ hc,at

1 (M) by duality. Recall that the dual
space of hc

1(M) is the space bmoc(M) defined as follows (we refer to [8] and [13] for details).
Let

bmoc(M) =
{
x ∈ L2(M): sup

n�1

∥∥En|x − xn|2
∥∥∞ < ∞

}

and equip bmoc(M) with the norm

‖x‖bmoc = max
(∥∥E1(x)

∥∥∞, sup
n�1

∥∥En|x − xn|2
∥∥1/2

∞
)
.

This is a Banach space. Similarly, we define the row version bmor (M). Since xn = En(x), we
have

En|x − xn|2 = En|x|2 − |xn|2 � En|x|2.
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Thus the contractivity of the conditional expectation yields

‖x‖bmoc � ‖x‖∞. (2.1)

We will describe the dual space of hc,at
1 (M) as a noncommutative Lipschitz space defined as

follows. We set

Λc(M) = {
x ∈ L2(M): ‖x‖Λc < ∞}

with

‖x‖Λc = max
(∥∥E1(x)

∥∥∞, sup
n�1

sup
e∈Pn

τ (e)−1/2τ
(
e|x − xn|2

)1/2
)
,

where Pn denotes the lattice of projections of Mn. Similarly, we define

Λr(M) = {
x ∈ L2(M): x∗ ∈ Λc(M)

}
equipped with the norm

‖x‖Λr = ∥∥x∗∥∥
Λc .

The relation between Lipschitz space and bmo space can be stated as follows.

Proposition 2.5. We have bmoc(M) = Λc(M) and bmor (M) = Λr(M) isometrically.

Proof. Let x ∈ bmoc(M). It is obvious that by the noncommutative Hölder inequality we have,
for all n � 1,

sup
e∈Pn

τ (e)−1/2τ
(
e|x − xn|2

)1/2 �
∥∥En|x − xn|2

∥∥1/2
∞ .

To prove the reverse inclusion, by duality we can write

∥∥En|x − xn|2
∥∥∞ = sup

‖y‖1�1, y∈L+
1 (Mn)

∣∣τ(
y|x − xn|2

)∣∣
= sup

e∈Pn

τ (e)−1τ
(
e|x − xn|2

)
,

where the last equality comes from the density of linear combinations of mutually disjoint pro-
jections in L1(Mn). Thus ‖x‖Λc = ‖x‖bmoc , and the same holds for the row spaces. �

We now turn to the duality between the conditioned atomic space hc,at
1 (M) and the Lipschitz

space Λc(M).

Theorem 2.6. We have h
c,at

(M)∗ = Λc(M) isometrically. More precisely,
1
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(i) Every x ∈ Λc(M) defines a continuous linear functional on hc,at
1 (M) by

ϕx(y) = τ
(
x∗y

)
, ∀y ∈ L2(M). (2.2)

(ii) Conversely, each ϕ ∈ hc,at
1 (M)∗ is given as (2.2) by some x ∈ Λc(M).

Similarly, hr,at
1 (M)∗ = Λr(M) isometrically.

Remark 2.7. Remark that we have defined the duality bracket (2.2) for operators in L2(M).
This is sufficient for L2(M) is dense in hc,at

1 (M). The latter density easily follows from the
decomposition L2(M) = L0

2(M) ⊕ L2(M1), where L0
2(M) = {x ∈ L2(M): E1(x) = 0}.

Proof of Theorem 2.6. We first show Λc(M) ⊂ h
c,at
1 (M)∗. In fact we will not need this inclu-

sion for the proof of Theorem 2.4, however we include the proof for the sake of completeness.
Let x ∈ Λc(M). For any (1,2)c-atom a associated with a projection e satisfying (i)–(iii) of
Definition 2.1, by the noncommutative Hölder inequality we have

∣∣τ(
x∗a

)∣∣ = ∣∣τ(
(x − xn)

∗ae
)∣∣

�
∥∥e(x − xn)

∗∥∥
2‖a‖2

� τ(e)−1/2[τ(
e|x − xn|2

)]1/2

� ‖x‖Λc .

On the other hand, for any a ∈ L1(M1) with ‖a‖1 � 1 we have∣∣τ(
x∗a

)∣∣ = ∣∣τ(
E1(x)∗a

)∣∣ �
∥∥E1(x)

∥∥∞‖a‖1 � ‖x‖Λc .

Thus, we deduce that ∣∣τ(
x∗y

)∣∣ � ‖x‖Λc‖y‖hc,at
1

for all y ∈ L2(M). Hence, ϕx extends to a continuous functional on hc,at
1 (M) of norm less than

or equal to ‖x‖Λc .
Conversely, let ϕ ∈ hc,at

1 (M)∗. As explained in the previous remark, L2(M) ⊂ hc,at
1 (M) so

by the Riesz representation theorem there exists x ∈ L2(M) such that

ϕ(y) = τ
(
x∗y

)
, ∀y ∈ L2(M).

Fix n � 1 and let e ∈ Pn. We set

ye = (x − xn)e

‖(x − xn)e‖2τ(e)1/2
.

It is clear that ye is a (1,2)c-atom with the associated projection e. Then

‖ϕ‖ �
∣∣ϕ(ye)

∣∣ = ∣∣τ(
(x − xn)

∗ye

)∣∣ = 1
1/2

[
τ
(
e|x − xn|2

)]1/2
.

τ(e)
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On the other hand, let y ∈ L1(M1),‖y‖1 � 1 be such that ‖E1(x)‖∞ = |τ(x∗y)|. Then
‖E1(x)‖∞ � ‖ϕ‖. Combining these estimates we obtain ‖x‖Λc � ‖ϕ‖. This ends the proof of the
duality (hc,at

1 (M))∗ = Λc(M). Passing to adjoints yields the duality (hr,at
1 (M))∗ = Λr(M). �

We can now prove the reverse inclusion of Theorem 2.4.

Proof of Theorem 2.4. By Proposition 2.2 we already know that hc,at
1 (M) ⊂ hc

1(M). Com-
bining Proposition 2.5 and Theorem 2.6 we obtain that (hc,at

1 (M))∗ = bmoc(M) with equal
norms. The duality between hc

1(M) and bmoc(M) proved in [8] and [13] then yields that
(hc,at

1 (M))∗ = (hc
1(M))∗ with the following equivalence constants

1√
2
‖ϕx‖(hc

1)
∗ � ‖x‖bmoc = ‖ϕx‖(hc,at

1 )∗ � ‖ϕx‖(hc
1)

∗ .

This ends the proof of Theorem 2.4. �
We can generalize this decomposition to the whole space h1(M). To this end we need the

following definition.

Definition 2.8. We set

hat
1 (M) = hd

1(M) + hc,at
1 (M) + hr,at

1 (M),

equipped with the sum norm

‖x‖hat
1

= inf
{‖w‖hd

1
+ ‖y‖hc,at

1
+ ‖z‖hr,at

1

}
,

where the infimum is taken over all w ∈ hd
1(M), y ∈ hc,at

1 (M), and z ∈ hr,at
1 (M) such that x =

w + y + z.

Thus Theorem 2.4 clearly implies the following.

Theorem 2.9. We have

h1(M) = hat
1 (M) with equivalent norms.

More precisely, if x ∈ h1(M)

1√
2
‖x‖hat

1
� ‖x‖h1 � ‖x‖hat

1
.

The noncommutative Davis’ decomposition presented in [13] states that H1(M) = h1(M).
Thus Theorem 2.9 yields that H1(M) = hat

1 (M), which means that we can decompose any
martingale in H1(M) in an atomic part and a diagonal part. This is the atomic decomposition
for the Hardy space of noncommutative martingales.
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3. An equivalent quasinorm for hp , 0 < p � 2

In the commutative case Herz described in [5] an equivalent quasinorm for hp , 0 < p � 2.
This section is devoted to determining a noncommutative analogue of this. This characterization
of hp will be useful in the sequel. Indeed, this will imply an interpolation result in the next
section. To define equivalent quasinorms of ‖ · ‖hc

p
and ‖ · ‖hr

p
for 0 < p � 2 we introduce the

index class W which consists of sequences {wn}n∈N such that {w2/p−1
n }n∈N is non-decreasing

with each wn ∈ L+
1 (Mn) invertible with bounded inverse and ‖wn‖1 � 1.

For an L2-martingale x we set

Nc
p(x) = inf

W

[
τ

( ∑
n�0

w
1−2/p
n |dxn+1|2

)]1/2

and

Nr
p(x) = inf

W

[
τ

( ∑
n�0

w
1−2/p
n

∣∣dx∗
n+1

∣∣2
)]1/2

.

We need the following well-known lemma, and include a proof for the convenience of the
reader (see Lemma 1 of [19] for the case f (t) = tp).

Lemma 3.1. Let f be a function in C1(R+) and x, y ∈ M+. Then

τ
(
f (x + y) − f (x)

) = τ

( 1∫
0

f ′(x + ty)y dt

)
.

Proof. Note that considering f − f (0), we may assume that f (0) = 0. We set ϕf (t) =
τ(f (x + ty)), for t ∈ [0,1]. Then

ϕ′
f (t) = τ

(
f ′(x + ty)y

)
, ∀t ∈ [0,1]. (3.1)

Indeed, the tracial property of τ implies this equality for t = 0 and f (t) = tn, n ∈ N, and we can
extend this result for all f polynomials by linearity. A translation argument gives (3.1) for all f

polynomials. Finally, we generalize for all f by approximation. Indeed, we can approximate f ′
by a sequence (pn)n�1 of polynomials, uniformly on the compact set K = [0,‖x‖∞ + ‖y‖∞].
Then the sequence of polynomials (qn) defined by qn(s) = ∫ s

0 pn(t) dt for each n � 1 converges
uniformly to f on K . Since (ϕ′

qn
) converges to ϕ′

f uniformly on [0,1] (by the derivation theo-
rem), we get (3.1) by the finiteness of the trace.

Now writing ϕf (1) − ϕf (0) = ∫ 1
0 ϕ′

f (t) dt we obtain the desired result. �
Proposition 3.2. For 0 < p � 2 and x ∈ L2(M) we have

(
p

2

)1/2

Nc
p(x) � ‖x‖hc

p
� Nc

p(x). (3.2)

A similar statement holds for hr (M) and Nr .
p p
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Proof. Note that

Nc
p(x) = inf

W

[
τ

( ∑
n�0

w
1−2/p
n En|dxn+1|2

)]1/2

= inf
W

[
τ

( ∑
n�0

w
1−2/p
n

(
sc,n+1(x)2 − sc,n(x)2))]1/2

.

Let x ∈ L2(M) with ‖x‖hc
p

< 1. By approximation we can assume that x ∈ L∞(M) and sc,n(x)

is invertible with bounded inverse for every n � 1. Then {sc,n+1(x)p} ∈ W ; so

Nc
p(x) �

[
τ

( ∑
n�0

sc,n+1(x)p−2(sc,n+1(x)2 − sc,n(x)2))]1/2

.

Applying Lemma 3.1 with f (t) = tp/2, x + y = sc,n+1(x)2 and x = sc,n(x)2 we obtain

τ
(
sc,n+1(x)p − sc,n(x)p

)

= τ

( 1∫
0

p

2

[
sc,n(x)2 + t

(
sc,n+1(x)2 − sc,n(x)2)] p

2 −1[
sc,n+1(x)2 − sc,n(x)2]dt

)

� p

2
τ
(
sc,n+1(x)p−2(sc,n+1(x)2 − sc,n(x)2)),

where we have used the fact that the operator function a 
→ a
p
2 −1 is non-increasing for −1 <

p
2 − 1 � 0. Taking the sum over n leads to

Nc
p(x)2 � 2

p
τ
(
sc(x)p

) = 2

p
.

We turn to the other estimate. Given {wn} ∈ W put

w2/p−1 = lim
n→+∞w

2/p−1
n = sup

n
w

2/p−1
n .

It follows that {w1−2/p
n } decreases to w1−2/p and

τ

( ∑
n�0

w
1−2/p
n |dxn+1|2

)
� τ

(
w1−2/p

∑
n�0

En|dxn+1|2
)

= τ
(
w1−2/psc(x)2).

Since 1 = 1 + 2−p the Hölder inequality gives

p 2 2p
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∥∥sc(x)
∥∥

p
= ∥∥w1/p−1/2w1/2−1/psc(x)

∥∥
p

�
∥∥w1/p−1/2

∥∥
2p/(2−p)

∥∥w1/2−1/psc(x)
∥∥

2

= τ(w)1/p−1/2τ
(
w1−2/psc(x)2)1/2

.

Now τ(w) � 1; so we have

∥∥sc(x)
∥∥

p
�

[
τ

( ∑
n�0

w
1−2/p
n |dxn+1|2

)]1/2

for all {wn} ∈ W . �
Thus the quasinorm Nc

p is equivalent to ‖ · ‖hc
p

on L2(M). So hc
p(M) can also be defined as

the completion of all finite L2-martingales with respect to Nc
p for 0 < p � 2. This new charac-

terization of hc
p(M) yields the following description of its dual space.

Theorem 3.3. Let 0 < p � 2 and q be determined by 1
q

= 1 − 1
p

. Then the
dual space of hc

p(M) coincide with the L2-martingales x for which Mc
q(x) =

supW [τ(
∑

n�0 w
1−2/q
n |dxn+,1|2)]1/2 < ∞. More precisely,

(i) Every L2-martingale x such that Mc
q(x) < ∞ defines a continuous linear functional on

hc
p(M) by

φx(y) = τ
(
yx∗) for y ∈ L2(M).

(ii) Conversely, any continuous linear functional φ on hc
p(M) is given as above by some x such

that Mc
q(x) < ∞.

Similarly, the dual space of hr
p(M) coincide with the L2-martingales x for which Mr

q(x) =
Mc

q(x∗) < ∞.

Proof. Let x be such that Mc
q(x) < ∞. Then x defines a continuous linear functional on hc

p(M)

by φx(y) = τ(yx∗) for y ∈ L2(M). To see this fix {wn} ∈ W . The Cauchy–Schwarz inequality
gives

τ
(
yx∗) =

∑
n�0

τ
((

dyn+1w
1/2−1/p
n

)(
dxn+1w

1/2−1/q
n

)∗)

�
( ∑

n�0

τ
(
w

1−2/p
n |dyn+1|2

))1/2( ∑
n�0

τ
(
w

1−2/q
n |dxn+1|2

))1/2

�
( ∑

n�0

τ
(
w

1−2/p
n |dyn+1|2

))1/2

Mc
q(x).

Taking the infimum over W we obtain τ(yx∗) � Nc(y)Mc(x).
p q
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Conversely, let φ be a continuous linear functional on hc
p(M) of norm � 1. As L2(M) ⊂

hc
p(M), φ induces a continuous linear functional on L2(M). Thus there exists x ∈ L2(M) such

that φ(y) = τ(yx∗) for y ∈ L2(M). By the density of L2(M) in hc
p(M) we have

‖φ‖(hc
p)∗ = sup

y∈L2(M),‖y‖hc
p
�1

∣∣τ(
yx∗)∣∣ � 1.

Thus by Proposition 3.2 we obtain

sup
y∈L2(M),Nc

p(y)�1

∣∣τ(
yx∗)∣∣ � 1. (3.3)

We want to show that Mc
q(x) < ∞. Fix {wn} ∈ W . Let y be the martingale defined by dyn+1 =

dxn+1w
1−2/q
n , ∀n ∈ N. By (3.3) we have

τ(yx∗) = τ

( ∑
n�0

w
1−2/q
n |dxn+1|2

)
� Nc

p(y)

� τ

( ∑
n�0

w
1−2/q
n |dxn+1|2

)1/2

.

Thus

τ

( ∑
n�0

w
1−2/q
n |dxn+1|2

)
� 1, ∀{wn} ∈ W.

Taking the supremum over W we obtain Mc
q(x) � 1.

Passing to adjoints yields the description of the continuous linear functionals on hr
p(M). �

Remark that for −∞ < 1/q � 1/2, Mc
q and Mr

q define two norms. Let Xc
q (resp. Xr

q ) be
the Banach space consisting of the L2-martingales x for which Mc

q(x) (resp. Mr
q(x)) is finite.

Theorem 3.3 shows that (hc
p(M))∗ = Xc

q and (hr
p(M))∗ = Xr

q for 0 < p � 2, 1
q

= 1 − 1
p

.
For −∞ < 1/q � 1/2, note that Mc

q(x) can be rewritten in the following form. Given
{wn}n�0 ∈ W we put

gn = (
w

2/s
n − w

2/s

n−1

)1/2
, ∀n � 1

where 1
s

= 1
2 − 1

q
. It is clear that

{gn}n�1 ∈ G =
{
{hn}n�1; hn ∈ Ls(Mn), τ

(( ∑
n�1

|hn|2
)s/2)

� 1

}
.

Then

Mc
q(x) = sup

G

[
τ

( ∑
|gn|2 En|x − xn|2

)]1/2

.

n�1
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It is now easy to see that the dual form of Junge’s noncommutative Doob maximal inequality
[7] implies that for q � 2, Xc

q = Lc
qmo(M) with equivalent norms, where Lc

qmo(M) is defined
in [13].

Similarly, we have Xr
q = Lr

qmo(M) with equivalent norms.
Thus for 1 � p � 2, Theorem 3.3 gives another proof of the duality obtained in [13] between

hp(M) and Lqmo(M) for 1
p

+ 1
q

= 1. Note that this new proof is much simpler and yields a

better constant for the upper estimate, that is
√

p/2 instead of
√

2.
For 0 < p < 1, Theorem 3.3 leads to a first description of the dual space of hp(M). However,

this description is not satisfactory. Following the classical case, we would like to describe this
dual space as the Lipschitz space Λc

α(M) defined in the previous section as the dual space of
hc,at
p (M). Thus the description of the dual space of hp(M) for 0 < p < 1 is closely related to

the atomic decomposition of hp(M).

4. Interpolation of hp spaces

It is a rather easy matter to identify interpolation spaces between commutative or noncom-
mutative Lp-spaces by real or complex method. However, we need more efforts to establish
interpolation results between Hardy spaces of martingales (see [6], and also [23]). Musat [11]
extended Janson and Jones’ interpolation theorem for Hardy spaces of martingales to the non-
commutative setting. She proved in particular that for 1 � q < qθ < ∞

(
B M Oc(M), Hc

q(M)
)

q
qθ

= Hc
qθ

(M). (4.1)

See also [9] for a different proof with better constants. This section is devoted to showing the
analogue of (4.1) in the conditioned case. Our approach is simpler and more elementary than
Musat’s and also valid for her situation.

We refer to [2] for details on interpolation. Recall that the noncommutative Lp-spaces as-
sociated with a semifinite von Neumann algebra form interpolation scales with respect to the
complex method and the real method. More precisely, for 0 < θ < 1, 1 � p0 < p1 � ∞ and
1 � q0, q1, q � ∞ we have

Lp(M) = (
Lp0(M),Lp1(M)

)
θ

(with equal norms) (4.2)

and

Lp,q(M) = (
Lp0,q0(M),Lp1,q1(M)

)
θ,q

(with equivalent norms) (4.3)

where 1
p

= 1−θ
p0

+ θ
p1

, and where Lp,q(M) denotes the noncommutative Lorentz space on
(M, τ ).

We can now state the main result of this section which deals with complex interpolation
between the column spaces bmoc(M) and hc

1(M).

Theorem 4.1. Let 1 < p < ∞. Then, the following holds with equivalent norms

(
bmoc(M),hc

1(M)
)

1
p

= hc
p(M). (4.4)
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Remark 4.2. All spaces considered here are compatible in the sense that they can be embedded in
the ∗-algebra of measurable operators with respect to (M⊗B(�2(N

2)), τ ⊗ Tr). Indeed, for each
1 � p < ∞, hc

p(M) can be identified with a subspace of Lp(M⊗B(�2(N
2))). Recall that hc

p(M)

is also defined as the closure in Lcond
p (M;�c

2) of all finite martingale differences in M. Here

Lcond
p (M;�c

2) is the subspace of Lp(M, �c
2(N

2)) introduced by Junge [7] consisting of all double
indexed sequences (xnk) such that xnk ∈ Lp(Mn) for all k ∈ N. We refer to [14] for details on the
column and row spaces Lp(M, �c

2) and Lp(M, �r
2). Furthermore, by the Hölder inequality and

duality, recalling that the trace is finite, we have, for 1 � p < q < ∞, the continuous inclusions

L∞(M) ⊂ bmoc(M) ⊂ hc
q(M) ⊂ hc

p(M).

The first inclusion is proved by (2.1). The second one comes from the third one by duality.
Indeed, it is proved in [10] that for 1 < p < ∞ and 1

p
+ 1

p′ = 1, we have (hc
p(M))∗ = hc

p′(M),
and, as already mentioned above, we have (hc

1(M))∗ = bmoc(M) (see [13]). Note that L∞(M)

is dense in all spaces above, except bmoc(M). This implies that bmoc(M) and hc
q(M) are dense

in hc
p(M) for 1 � p < q < ∞.

We will need Wolff’s interpolation theorem (see [22]). This result states that given Banach
spaces Ei (i = 1,2,3,4) such that E1 ∩ E4 is dense in both E2 and E3, and

E2 = (E1,E3)θ and E3 = (E2,E4)φ

for some 0 < θ,φ < 1, then

E2 = (E1,E4)ς and E3 = (E1,E4)ξ , (4.5)

where ς = θφ
1−θ+θφ

and ξ = φ
1−θ+θφ

. The main step of the proof of Theorem 4.1 is the following
lemma which is based on the equivalent quasinorm Nc

p of ‖·‖hc
p

described in the previous section.

Lemma 4.3. Let 1 < p < ∞ and 0 < θ < 1. Then, the following holds with equivalent norms

(
hc

1(M),hc
p(M)

)
θ

= hc
q(M), (4.6)

where 1−θ
1 + θ

p
= 1

q
.

Proof. Step 1: We first prove (4.6) in the case 1 < q < p � 2. As explained in Remark 4.2,
hc
p(M) can be identified with a subspace of Lp(M⊗B(�2(N

2))). Thus the interpolation between
noncommutative Lp-spaces in (4.2) gives the inclusion (hc

1(M),hc
p(M))θ ⊂ hc

q(M).
The reverse inclusion needs more efforts. This can be shown using the equivalent quasinorm

Nc
p of ‖ · ‖hc

p
defined previously. Let x be an L2-finite martingale such that ‖x‖hc

q
< 1. By (3.2)

we have

Nc
q(x) = inf

W

[
τ

( ∑
w

1−2/q
n |dxn+1|2

)]1/2

<

(
2

q

)1/2

.

n
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Let {wn} ∈ W be such that

τ

( ∑
n

w
1−2/q
n |dxn+1|2

)
<

2

q
. (4.7)

For ε > 0 and z ∈ S we define

fε(z) = exp
(
ε
(
z2 − θ2))∑

n

dxn+1w
1
2 − 1

q
n w

1−z
1 + z

p
− 1

2
n

= exp
(
ε
(
z2 − θ2))∑

n

dxn+1w
1−(1− 1

p
)z− 1

q
n .

Then fε is continuous on S, analytic on S0 and fε(θ) = x. The term exp(ε(z2 − θ2)) ensure that
fε(it) and fε(1 + it) tend to 0 as t goes to infinity. A direct computation gives for all t ∈ R

τ

( ∑
n

w−1
n

∣∣d(fε)n+1(it)
∣∣2

)
= exp

(−2ε
(
t2 + θ2))τ( ∑

n

w
1−2/q
n |dxn+1|2

)
.

By (4.7) and (3.2) we obtain

∥∥fε(it)
∥∥

hc
1
� exp(ε)

(
2

q

)1/2

.

Similarly,

∥∥fε(1 + it)
∥∥

hc
p

� exp(ε)

(
2

q

)1/2

.

Thus x = fε(θ) ∈ (hc
1(M),hc

p(M))θ and

‖x‖(hc
1(M),hc

p(M))θ � exp(ε)

(
2

q

)1/2

;

whence

‖x‖(hc
1(M),hc

p(M))θ �
(

2

q

)1/2

‖x‖hc
q
.

Step 2: To obtain the general case, we use Wolff’s interpolation theorem mentioned above. Let
us first recall that for 1 < v, s, q < ∞ and 0 < η < 1 such that 1

q
= 1−η

v
+ η

s
, we have with

equivalent norms (
hc
v(M),hc

s (M)
)
η

= hc
q(M). (4.8)

Indeed, by Lemma 6.4 of [10], hc
p(M) is one-complemented in Lcond

p (M;�c
2), for 1 � p < ∞.

On the other hand, for 1 < p < ∞ the space Lcond(M, �c) is complemented in Lp(M, �c(N2))
p 2 2
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via Stein’s projection (Theorem 2.13 of [7]), and the column space Lp(M;�c
2(N

2)) is a one-
complemented subspace of Lp(M⊗B(�2(N

2))). Thus, we conclude from (4.2) that, by comple-
mentation, (4.8) holds.

We turn to the proof of (4.6). Step 1 shows that (4.6) holds in the case 1 < p � 2. Thus it
remains to deal with the case 2 < p < ∞. We divide the proof in two cases.

Case 1: 1 < q < 2 < p < ∞. Let q < s < 2. Note that 1 < q < s < p, so there exist 0 < θ < 1
and 0 < φ < 1 such that 1−θ

1 + θ
s

= 1
q

and 1−φ
q

+ φ
p

= 1
s
. By (4.8) we have

hc
s (M) = (

hc
q(M),hc

p(M)
)
φ
.

Furthermore, recall that 1 < q < s < 2, so Step 1 yields

hc
q(M) = (

hc
1(M),hc

s (M)
)
θ
.

By Wolff’s interpolation theorem (4.5), it follows that

hc
q(M) = (

hc
1(M),hc

p(M)
)
ς
,

where ς = θφ
1−θ+θφ

. A simple computation shows that 1−ς
1 + ς

p
= 1

q
.

Case 2: 2 < q < p < ∞. By a similar argument, we easily deduce this case from the previous
one and (4.8) using Wolff’s theorem.

Note that in both cases, the density assumption of Wolff’s theorem is ensured by Re-
mark 4.2. �
Lemma 4.4. Let 1 < q < p < ∞. Then, the following holds with equivalent norms(

bmoc(M),hc
q(M)

)
q
p

= hc
p(M). (4.9)

Proof. Applying the Duality Theorem 4.5.1 of [2] to (4.6) we obtain (4.9) in the case 1 < q <

p < ∞ with θ = q
p

. Here we used the description of the dual space of hc
p(M) for 1 � p < ∞

mentioned in Remark 4.2. �
Proof of Theorem 4.1. We want to extend (4.9) to the case q = 1. To this aim we again use
Wolff’s interpolation theorem combined with the two previous lemmas. Let 1 < q < p < ∞.
Then there exists 0 < φ < 1 such that 1−φ

1 + φ
p

= 1
q

. We set θ = q
p

. Thus by Lemma 4.4 we have

hc
p(M) = (

bmoc(M),hc
q(M)

)
θ
.

Moreover we deduce from Lemma 4.3 that

hc
q(M) = (

hc
1(M),hc

p(M)
)
φ
.

So Wolff’s result yields

hc
p(M) = (

bmoc(M),hc
1(M)

)
ς
,

where ς = θφ . An easy computation gives ς = 1 , and this ends the proof of (4.4) �
1−θ+θφ p
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The previous results concern the conditioned column Hardy space. We now consider the whole
conditioned Hardy space, and get the analogue result.

Theorem 4.5. Let 1 < p < ∞. Then, the following holds with equivalent norms

(
bmo(M),h1(M)

)
1
p

= hp(M).

The proof of Theorem 4.5 is similar to that of Theorem 4.1. Indeed, we need the analogue of
Lemma 4.3 for hp(M), and the result will follow from the same arguments. By Wolff’s result,
it thus remains to show that (h1(M),hp(M))θ = hq(M) for 1 < p � 2, where 1−θ

1 + θ
p

= 1
q

.
Recall that for 1 � p � 2 the space hp(M) is defined as a sum of three components

hp(M) = hd
p(M) + hc

p(M) + hr
p(M).

We will consider each component, and then will sum the interpolation results. The following
lemma describe the behaviour of complex interpolation with addition.

Lemma 4.6. Let (A0,A1) and (B0,B1) be two compatible couples of Banach spaces. Then for
0 < θ < 1 we have

(A0,A1)θ + (B0,B1)θ ⊂ (A0 + B0,A1 + B1)θ .

This result comes directly from the definition of complex interpolation.

Lemma 4.7. Let 1 � p0 < p1 � ∞, 0 < θ < 1. Then, the following holds with equivalent norms

(
hd
p0

(M),hd
p1

(M)
)
θ

= hd
p(M)

where 1
p

= 1−θ
p0

+ θ
p1

.

Proof. Recall that hd
p(M) consists of martingale difference sequences in �p(Lp(M)). So

hd
p(M) is 2-complemented in �p(Lp(M)) for 1 � p � ∞ via the projection

P :
{

�p(Lp(M)) −→ hd
p(M),

(an)n�1 
−→ (En(an) − En−1(an))n�1.

The fact that �p(Lp(M)) form an interpolation scale with respect to the complex interpolation
yields the required result. �
Proof of Theorem 4.5. The row version of Lemma 4.3 holds true, as well, by considering
the equivalent quasinorm Nr

p of ‖ · ‖hr
p
. The diagonal version is ensured by Lemma 4.7. Thus

Lemma 4.6 yields the nontrivial inclusion hq(M) ⊂ (h1(M),hp(M))θ for 1 < p � 2. On the
other hand, by (1.1) we have hp(M) = Lp(M) for 1 < p < ∞ and (2.1) yields by duality the in-
clusion h1(M) ⊂ L1(M). Hence (4.2) gives the reverse inclusion (h1(M),hp(M))θ ⊂ hq(M)

for 1 < p < ∞. That establishes the analogue of Lemma 4.3 for hp(M), and Theorem 4.5 fol-
lows using duality and Wolff’s interpolation theorem. �
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We now consider the real method of interpolation. We show that the main result of this
section remains true for this method. For 1 < p < ∞ and 1 � r � ∞, similarly to the con-
struction of the space Lcond

p (M;�c
2) in Remark 4.2 we define the column and row subspaces of

Lp,r (M ⊗ B(�2(N
2))), denoted by Lcond

p,r (M;�c
2) and Lcond

p,r (M;�r
2), respectively. Let hc

p,r (M)

be the space of martingales x such that dx ∈ Lcond
p,r (M;�c

2).

Theorem 4.8. Let 1 < p < ∞ and 1 � r � ∞. Then, the following holds with equivalent norms(
bmoc(M),hc

1(M)
)

1
p

,r
= hc

p,r (M). (4.10)

This result is a corollary of Theorem 4.1.

Proof. By a discussion similar to that at the beginning of Step 2 in the proof of Lemma 4.3, using
(4.3) we can show that for 1 < v, s, q < ∞, 1 � r � ∞ and 0 < η < 1 such that 1

q
= 1−η

v
+ η

s
,

we have with equivalent norms (
hc
v(M),hc

s (M)
)
η,r

= hc
q,r (M). (4.11)

We deduce (4.10) from (4.4) using the reiteration theorem on real and complex interpolations.
Let 1 < p < ∞. Consider 1 < p0 < p < p1 < ∞. There exists 0 < η < 1 such that

1

p
= 1 − η

p0
+ η

p1
.

By Theorem 4.7.2 of [2] we obtain(
bmoc(M),hc

1(M)
)

1
p

,r
= ((

bmoc(M),hc
1(M)

)
1

p0

,
(
bmoc(M),hc

1(M)
)

1
p1

)
η,r

.

Then (4.4) yields (
bmoc(M),hc

1(M)
)

1
p

,r
= (

hc
p0

(M),hc
p1

(M)
)
η,r

.

An application of (4.11) gives(
bmoc(M),hc

1(M)
)

1
p

,r
= hc

p,r (M).

This ends the proof of (4.10). �
Remark 4.9. Musat’s result is a corollary of Theorem 4.1. By Davis’ decomposition proved
in [13] we have Hc

p(M) = hc
p(M) + hd

p(M) for 1 � p < 2. So we can show the analogue

of (4.6) for 1 < p < 2 as follows, for 0 < θ < 1 and 1−θ
1 + θ

p
= 1

q

Hc
q(M) = hc

q(M) + hd
q(M)

= (
hc

1(M),hc
p(M)

)
θ
+ (

hd
1(M),hd

p(M)
)
θ

by Lemmas 4.3 and 4.7

⊂ (
hc

1(M) + hd
1(M),hc

p(M) + hd
p(M)

)
θ

by Lemma 4.6

= (
Hc(M), Hc

p(M)
)

.
1 θ
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On the other hand, recall that for 1 � p < ∞, Hc
p(M) can be identified with the space of all

Lp-martingales x such that dx ∈ Lp(M;�c
2). Thus, we can consider Hc

p(M) as a subspace of
Lp(M⊗B(�2)) and the reverse inclusion follows. Then the same arguments, using duality and
Wolff’s theorem, yield Theorem 3.1 of [11]. Alternately, we can find Musat’s result by defining
an equivalent quasinorm for ‖ · ‖Hc

p(M),0 < p � 2 similar to Nc
p , as follows

Ñc
p(x) = inf

W

[
τ

( ∑
n

w
1−2/p
n |dxn|2

)]1/2

≈ ‖x‖Hc
p(M).

Then all the previous proofs can be adapted to obtain the analogue results for Hc
p(M).
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Appendix A

In Section 2 we established the existence of an atomic decomposition for h1(M). The prob-
lem of explicitly constructing this decomposition remains open. One encounters some substantial
difficulties in trying to adapt the classical atomic construction, which used stopping times, to the
noncommutative setting. Note that explicit decompositions of martingales have already been
constructed to establish weak-type inequalities [16,17] and a noncommutative analogue of the
Gundy’s decomposition [12]. In these works, Cuculescu’s projections played an important role
and provide a good substitute for stopping times, which are a key tool for all these decompo-
sitions in the classical case. However, these projections do not seem to be powerful enough for
the noncommutative atomic decomposition and for the noncommutative Davis’ decomposition
(see [13]).

Problem 1. Find a constructive proof of Theorem 2.4 or Theorem 2.9.

Problem 2. Construct an explicit Davis’ decomposition H1(M) = hc
1(M) + hr

1(M) + hd
1(M).

It is also interesting to discuss the case of hp for 0 < p < 1. We define the noncommutative
analogue of (p,2)-atoms as follows.

Definition. Let 0 < p � 1. a ∈ L2(M) is said to be a (p,2)c-atom with respect to (Mn)n�1, if
there exist n � 1 and a projection e ∈ Mn such that

(i) En(a) = 0;
(ii) r(a) � e;

(iii) ‖a‖2 � τ(e)1/2−1/p .

Replacing (ii) by (ii)′ l(a) � e, we get the notion of a (p,2)r -atom.
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We define hc,at
p (M) and hr,at

p (M) as in Definition 2.3. As for p = 1, we have hc,at
p (M) ⊂

hc
p(M) contractively.

On the other hand, we can describe the dual space of hc,at
p (M) as a Lipschitz space. For α � 0,

we set

Λc
α(M) = {

x ∈ L2(M): ‖x‖Λc
α

< ∞}
with

‖x‖Λc
α

= sup
n�1

sup
e∈Pn

τ (e)−1/2−ατ
(
e|x − xn|2

)1/2
.

By a slight modification of the proof of Theorem 2.6 (by setting ye = (x−xn)e

‖(x−xn)e‖2τ(e)1/p−1/2 ) we

can show that (hc,at
p (M))∗ = Λc

α(M) for 0 < p � 1, with α = 1/p − 1.
At the time of this writing we do not know if hc,at

p (M) coincides with hc
p(M). The problem of

the atomic decomposition of hp(M) for 0 < p < 1 is entirely open, and is related to Problem 1.

Problem 3. Does one have hc
p(M) = hc,at

p (M) for 0 < p < 1?

Problem 4. Can we describe the dual space of hc
p(M) as a Lipschitz space for 0 < p < 1?

Another perspective of research concerns the interpolation results obtained in Section 4. Re-
call that we define hc∞(M) (resp. hr∞(M)) as the Banach space of the L∞(M)-martingales
x such that

∑
k�1 Ek−1|dxk|2 (respectively

∑
k�1 Ek−1|dx∗

k |2) converge for the weak operator

topology. We set h∞(M) = hc∞(M) ∩ hr∞(M) ∩ hd∞(M). At the time of this writing we do not
know if the interpolation result (4.4) remains true if we replace bmo(M) by h∞(M).

Problem 5. Does one have (hc∞(M),hc
1(M)) 1

p
= hc

p(M) for 1 < p < ∞?
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