Nonexistence of Ovoids in $\Omega^+(10, 3)$.

ERNEST SHULT

Department of Mathematics, Kansas State University,
Manhattan, Kansas 66502

Communicated by William M. Kantor

Received January 11, 1988

1. INTRODUCTION

An ovoid in a nondegenerate polar space is a collection \mathcal{O} of points which meets each maximal singular subspace at a single point. (For a survey of the existence and non-existence theorems for polar ovoids see Kantor [1, 2] and Thas [5].) An ovoid of the quadric Q of type $\Omega^+(2n, q)$ must contain $1 + q^{n-1}$ points, and conversely any collection of pairwise non-collinear points of Q of this cardinality constitutes an avoid. Such ovoids are known to exist for $n \leq 4$, but the existence or non-existence of these ovoids in dimension 10 or higher is unknown for any q except 2. In [2] W. M. Kantor proves that $\Omega^+(2n, 2)$, $n \geq 5$, has no ovoids. If \mathcal{O} is an ovoid of the quadric Q of type $\Omega^+(2n, q)$, and s is a point of the quadric not on \mathcal{O}, then the set $((s^{-1} \cap \mathcal{O}) + s)/s$ is an ovoid of the quadric induced on s^{-1}/s of type $\Omega^+(2n-2, q)$. Thus the nonexistence of an ovoid for $\Omega^+(10, q)$ would, for any fixed q, imply the nonexistence of an ovoid in any quadric of type $\Omega^+(2n, q)$ for all $n \geq 5$. In this note we show the nonexistence of an ovoid in $\Omega^+(10, 3)$, thereby eliminating ovoids for all $\Omega^+(2n, 3)$, $n \geq 5$.

This proof depends strongly on the very short supply of ovoids of the quadric of type $\Omega^+(8, 3)$. There is essentially only one.

PROPOSITION (Patterson [3]). If \mathcal{O} is an ovoid of a quadric Q of type $\Omega^+(8, 3)$ then \mathcal{O} is unique up to semi-isometry.

Remark. Patterson’s result is phrased in terms of 4-by-4 Kerdock sets over $GF(3)$, which are in 1-1 correspondence with spreads of the $\Omega^+(8, 3)$ polar space, which are in turn in 1-1 correspondence with ovoids of the same polar space via triality.

We give here presentations of representative ovoids of each of the two isometry classes—referred to here as classes I and II. For this purpose, let
e_1, \ldots, e_8 be an orthonormal basis for the vector space V over $GF(3)$. Thus V has an inner product $(,)$, where $(e_i, e_j) = \delta_{ij}$. We take the liberty of also representing these vectors $\sum \alpha_i e_i$ by 8-tuples $(\alpha_1, \alpha_2, \ldots, \alpha_8)$. This inner product $(,)$ makes V into a nondegenerate space of type $\Omega^+(8, 3)$, and is derived from the quadratic form $Q: (\alpha_1, \ldots, \alpha_8) \rightarrow \sum \alpha_i^2$.

Presentation of an Ovoid of Class I. Impose on $I = \{1, 2, \ldots, 7\}$ the structure of a Fano plane (I, \mathcal{L}) with line set $\mathcal{L} = \{ [1, 2, 4], [2, 3, 5], [3, 4, 6], \ldots, [7, 1, 3] \}$. The points of O are the 28 singular 1-spaces generated by vectors v of the form $\pm e_i \pm e_j \pm e_k$, where $[i, j, k]$ is in \mathcal{L}. All 1-spaces of this ovoid are perpendicular to the vector e_8 of norm $(e_8, e_8) = 1$.

Presentation of an Ovoid of Class II. O consists of the 28 singular 1-spaces $\langle v \rangle$, where v is any vector of shape $(1^6, 0^2)$—i.e., it has six of its 8-tuple entries equal to $+1$ and two of them equal to 0. All of these vectors are perpendicular to the vector $j = (1, \ldots, 1)$ of norm -1.

Both of these ovoids possess ovals—i.e., sets of all (four) singular 1-spaces of a non-degenerate 3-space. The ovoids do not belong to the same isometry class because of the differing norms of the 1-space O^\perp in each case.

2. Grammians and Switching Classes of Graphs

Let \mathcal{G} be the set of all graphs which have the vertex set $V = \{1, 2, \ldots, n\}$ and let Γ be a member of \mathcal{G}. We can obtain from Γ a new graph Γ' by erasing all edges of Γ on vertex i, and joining i to each vertex k not previously joined to i in Γ. This operation is called **switching at vertex i**, and performing it induces a permutation δ_i of the graphs of \mathcal{G}. Clearly $E = \langle \delta_1, \ldots, \delta_n \rangle$ induces an elementary 2-group of order 2^{n-1} acting on \mathcal{G}. The E-orbits on \mathcal{G} are called the **switching classes** of graphs, and are in 1–1 correspondence with 2-graphs of n vertices (see Seidel [4]).

For any ovoid O of a quadric in $\Omega^+(2n, 3)$, and any subset \mathcal{P} of O, one may choose representative vectors v_1, \ldots, v_m, of the 1-spaces $\langle v_i \rangle$ of \mathcal{P}, and form the m-by-m Gram matrix G with (i, j)th entry, $(v_i, v_j) = +1$ or -1. This matrix in turn may be represented by a graph, also denoted \mathcal{G}, with vertex set $\{1, 2, \ldots, m\}$ and adjacency defined by declaring i and j to be adjacent if and only if $(v_i, v_j) = -1$. Replacing the ith vector v_i by $-v_i$ yields a new Gram matrix whose graph is obtained from G by “switching” at the vertex i.
In the ovoid \mathcal{O} of class I presented above, the four vectors
\[v_1 = e_1 + e_2 + e_4, \quad v_2 = e_1 - e_2 - e_4, \quad v_3 = -e_1 + e_2 - e_4, \quad v_4 = -e_1 - e_2 + e_4 \]
generate 1-spaces of \mathcal{O} and have Gram matrix $I - J$ whose associated graph belongs to the switching class of eight members with representative graphs

\[K_4 = \begin{array}{ccc}
(1), & (2), & (3), & (4)
\end{array} \]

Since $\sum v_i = 0$, $\langle v_1 \rangle, \ldots, \langle v_4 \rangle$ form an oval in \mathcal{O}.

We denote the above switching class of 4-vertex graphs by the symbol \mathcal{H}. In the language of 2-graphs, the set T of triples of vertices which make up the 2-graph are those which bear 1 or 3 edges. A 4-set is called \textit{homogeneous} if all of its 3-subsets belong to T. The class of graphs \mathcal{H} are the homogeneous 4-sets.

Now let \mathcal{O} be any ovoid of a polar space of type $\Omega^+(2n, 3)$. We call a 4-subset of \mathcal{O} an \mathcal{H}-set if and only if the (-1)-graph representing its Gram matrix belongs to the switching class \mathcal{H}. Similarly a 4-subset of \mathcal{O} is called an \mathcal{H}'-set if its (-1)-graph belongs to the switching class \mathcal{H}' consisting of the eight graphs of these types:

\[\mathcal{H}': 4\text{-}coclique, \quad \text{rectangle}, \quad \text{3-claw} \]

Let \mathcal{O} be any ovoid (of any $\Omega^+(2n, 3)$-quadric for the moment) and let $\mathcal{G}(\mathcal{O})$ be its associated switching class of graphs. The associated 3-subsets are of two types: (T) those whose 3-by-3 Gram matrix has its (-1)-graph in the switching class of graphs having an odd number of edges (these are the triplets of the associated 2-graph); and (T') those whose associated switching class consists of a 3-coclique and the 2-claw. The class of all 3-subsets of \mathcal{O} of type (T) (resp. (T')) is denoted \mathcal{I} (resp. \mathcal{I}').

It turns out in the next section that for an ovoid \mathcal{O} of class I above, every \mathcal{H}-set is an oval in \mathcal{O}, and that any \mathcal{H}'-set generates a 4-subspace with a nontrivial radical and that this property can be used to distinguish class I from class II.
3. Important Properties of the Classical Ovoids of $\Omega^+(8,3)$

The Weyl group $W(E_7)$ acts on the lattice A^* generated by the system of 28 equiangular lines $\{\langle u+v \rangle | u, v \in A, the E_7$-lattice, $(u, v) = -1 \}$. The ovoid O of class I is just the system of singular 1-spaces generated by the images of these 56 norm 3 vectors $u+v$ under the morphism $A^* \to A^*/3A^*$.

In its action on the 2-graph, $W(E_7) \cong Sp(6,2)$ is doubly transitive, and the homogeneous 4-sets form the 315 blocks of a block design with parameters $(28, 4, 5)$. Similarly, the images of these homogeneous 4-sets, form a system of 315 ovals in O, all conjugate to the oval $\{ \langle v_1 \rangle, ..., \langle v_4 \rangle \}$ above.

Lemma 1.1. (i) If O is an ovoid of class I, then any 3-subset belongs to \mathcal{J} and only if the oval of the 3-space it generates lies within O. (In particular, this means that if u_1, u_2, and u_3 are any three vectors of the ambient space which generate 1-spaces of O and which pair-wise have inner product -1, then the oval of the 3-space $\langle u_1, u_2, u_3 \rangle$ lies in O—i.e., $\langle -\sum u_i = u_4 \rangle$ lies in O. Similarly if $(u_1, u_2) = (u_1, u_3) = -1$ and $(u_2, u_3) = 1$, then the fourth member of the oval of $\langle u_1, u_2, u_3 \rangle$ (namely $\langle u_4 \rangle$ where $u_4 = -u_1 + u_2 + u_3$), does not lie in O).

(ii) If O is an ovoid belonging to class II then any 3-subset belongs to T' if and only the oval of the 3-space it generates lies within O. (This means that given the two sets of hypotheses on the inner products among u_1, u_2, and u_3 in (i) above, the conclusions whether $\langle u_4 \rangle$ lies in O are to be transposed.)

Proof. (i) We may assume O is the ovoid of class I presented in the previous section. A typical 3-subset of \mathcal{J} may be represented by vectors v_1, v_2, and v_3 with pair-wise inner products -1. By the 2-transitivity of $W(E_7)$ on O, one may assume $v_1 = e_1 + e_2 + e_4$ and $v_2 = e_1 - e_2 - e_4$. Clearly, if v_3 is in $\langle e_1, e_2, e_4 \rangle$ we obtain the oval given above just before the definition of switching class \mathcal{K}. Thus we may assume v_3 lies in $\langle e_i, e_j, e_k \rangle$, where $[i, j, k] \cap [1, 2, 4] = 1$. Applying the appropriate isometries one may assume $v_3 = e_1 + e_5 + e_6$. Then $-\sum v_i = v_4 = e_1 - e_5 - e_6$ generates an element of O.

If the 3-set is in T', it can be represented by vectors u_1, u_2, and u_3, where we may assume $u_1 = v_1$ and $u_2 = v_2$ as in the previous paragraph and as $(u_3, u_1) = -1$, $(u_3, u_2) = 1$, and vectors $\{e_1 \pm e_2 \pm e_4\}$ form a homogenous 4-set, $u_3 \in \langle e_i, e_j, e_k \rangle$, where $[i, j, k] \cap [1, 2, 4] \neq \{1\}$. Applying appropriate isometries, without loss, $u_3 = -2 + e_3 + e_5$. The fourth singular 1-space of $\langle u_1, u_2, u_3 \rangle$ is generated by $u_4 = -u_1 + u_2 + u_3 = e_3 + e_4 + e_5$ and so is not in O.

(ii) The ovoid of Presentation 2 is isometric to that which would appear for Presentation 1 if the quadratic form Q were replaced by $-Q$. In
terms of the graph-theoretic descriptions it is as if we had made "adjacency" = "inner product + 1," and accordingly replaced each relevant graph by its complement. The results of (i) then give the conclusions of (ii).

Remark. Note that in case (ii) the 4-sets comprising the ovals in \(O \) are those whose Gram matrices have their \((-1)\)-graphs in the class \(\mathcal{H}' \).

We may rephrase these results:

Lemma 1.2. Let \(O \) be an ovoid of a polar space of type \(\Omega^+(8, 3) \). Then the following are equivalent:

(i) \(O \) belongs to class I.

(ii) Every \(\mathcal{H}' \)-set of \(O \) is an oval.

(iii) At least one \(\mathcal{H} \)-set is an oval.

(iv) Every \(\mathcal{H}' \)-set generates a 4-space with 1-dimensional radical.

(v) At least one \(\mathcal{H}' \)-set generates a 4-space with 1-dimensional radical.

Proof. We have seen from Lemma 1.1(i) that if \(O \) is in class I then a 3-set belongs to \(J \) or \(J' \) according as the oval of the 3-space it generates belongs to \(O \) or not. Similarly, from part (ii), if \(O \) is in class II, a 3-set belongs to \(J' \) if and only if the oval of the 3-space it generates belongs to \(O \). Together these imply these equivalence of (i) \((O \) belongs to class I) and

(a) For some 3-set in \(J \), the oval of the 3-space it generates belongs to \(O \).

(b) For some 3-set in \(J' \), the 3-space it generates has a point of its oval not in \(O \).*

In case (b) we can assume the 3-set is \(\langle v_1, v_2, v_3 \rangle \), where \((v_1, v_2) = -1 = (v_1, v_3), (v_2, v_3) = 1 \). If \(v_4 = -v_1 + v_2 + v_3 \), then \(\langle v_4 \rangle \) is the fourth point of the oval and does not lie in \(O \). Now suppose \(X \) is an \(\mathcal{H}' \)-set of \(O \) containing \(\langle v_1 \rangle, \langle v_2 \rangle, \langle v_3 \rangle \) with fourth member \(\langle x \rangle \). Then \(x \) can be chosen so that \(\{v_1, v_2, v_3, x\} \) has the same Gram matrix as \(\{v_1, \ldots, v_4\} \). Then \(r = \langle v_4 - x \rangle = \text{Rad}(v_1, \ldots, v_3, x) \). There are, in fact, exactly 10 choices of \(x \), given \(v_1, v_2, \) and \(v_3 \).

We have only to show (v) or (iii) imply (i). Suppose \(Y \) is an \(\mathcal{H}' \)-set in \(O \) and is an oval. Then any 3-subset \(X \) of \(Y \) satisfies the hypothesis of (a), whence (i). Suppose instead \(Y \) is an \(\mathcal{H} \)-set in \(O \) and that \(\langle Y \rangle \) has a 1-dimensional radical \(r \). Choose any 3-subset \(X \) of \(Y \); then \(X \) belongs to \(J' \). Suppose the oval on \(\langle X \rangle \) lies in \(O \). Then the point \(\langle x \rangle \) of \(Y - X \) is perpendicular to some point of \(X \) since the singular points of \(\langle Y \rangle \) form a cone. This contradicts the fact that \(O \) is an ovoid. Thus \(X \) satisfies the hypothesis of (b) and so (i) holds.
Lemma 1.3. \(\mathcal{O} \) is an ovoid of a polar space of type \(\Omega^+(8, 3) \). The following are equivalent:

(i) \(\mathcal{O} \) is in class II.
(ii) Every \(\mathcal{H}' \)-set forms an oval in \(\mathcal{O} \).
(iii) At least one \(\mathcal{H}' \)-set forms an oval in \(\mathcal{O} \).
(iv) Every \(\mathcal{H} \)-set spans a 4-space with a 1-space radical.
(v) At least one \(\mathcal{H} \)-set spans a 4-space with a 1-dimensional radical.

Proof. Replacing the quadratic form \(Q \) by \(-Q\) converts a class I ovoid to a class II ovoid and vice versa. This replaces each graph representing a Gram matrix by its complementary graph, and the result is a restatement of Lemma 1.2.

Remark. In an ovoid of class I, there are many more \(\mathcal{H}' \)-sets than \(\mathcal{H} \)-sets. Every 3-set of \(\mathcal{J} \) lies in exactly one \(\mathcal{H} \)-set (namely, the oval of the 3-space it generates); but each 3-set of \(\mathcal{J}' \) lies in 10 \(\mathcal{H}' \)-sets. The situation is reversed for an ovoid of class II: Each subset of \(\mathcal{J}' \) lies in a unique \(\mathcal{H}' \)-set forming an oval, while every 3-subset of \(\mathcal{J} \) lies in 10 \(\mathcal{H} \)-sets.

Let us assume \(\mathcal{O} \) is an ovoid of \(\Omega^+(8, 3) \) of class I. \(W(E_7) \) acts on \(\mathcal{O} \) and permutes the points of the quadric in two orbits: one lying in the 7-space \(\langle \mathcal{O} \rangle \), the other consisting of all singular 1-spaces not in \(\langle \mathcal{O} \rangle \). We refer to the former as Desarguesian points relative to \(\mathcal{O} \), since these induce 6-dimensional ovoids corresponding to Desarguesian translation planes (see Kantor [2]). One notices that the 1-spaces \(r = \text{Rad} \langle p_1, \ldots, p_2 \rangle \), where \(\{p_1, \ldots, p_2\} \) is an \(\mathcal{H}' \)-set, belong to \(\langle \mathcal{O} \rangle \) and so are Desarguesian points. But since \(W(E_7) \) is transitive on this set we have

Lemma 1.4. Suppose \(\mathcal{O} \) is an ovoid of \(\Omega^+(8, 3) \) of class I. Then every Desarguesian point appears as the radical of some 4-space generated by an \(\mathcal{H}' \)-set.

Similarly if \(\mathcal{O} \) is class II, every Desarguesian point appears as the radical of a 4-space generated by an \(\mathcal{H} \)-set.

Finally we need

Lemma 1.5. Suppose \(\mathcal{O} \) is an ovoid of \(\Omega^+(8, 3) \) of class I. If \(p \) is a Desarguesian point of the ambient polar space, then \(p \cap \mathcal{O} \) contains an oval.

Proof. Without loss we may assume \(p = \langle e_1 + e_2 + e_3 \rangle \), since \([1, 2, 3]\) is not a line of the Fano plane. Then the 1-spaces generated by the vectors \(e_4 \pm e_5 \pm e_7 \) form the points of an oval in \(p^\perp \cap \mathcal{O} \).
4. Proof of the Main Result

We begin our proof that no ovoid can exist in a polar space of type \(\Omega^+(10,3) \). Assume, by way of contradiction that \(\mathcal{O} \) is such an ovoid. For each point \(s \) of the quadric not on \(\mathcal{O} \), the set \(\mathcal{O}_s = (s^\perp \cap \mathcal{O}) + s/s \) is an ovoid of the space \(s^\perp/s \) of type \(\Omega^+(8,3) \). Thus \(\mathcal{O}_s \) is either of class I or class II. We let \(S^- \) be all singular 1-spaces \(s \) of the 10-dimensional quadric \(Q \) not on \(\mathcal{O} \) for which \(\mathcal{O}_s \) is class I. Similarly \(S^+ \) denotes the set of all points \(s \) of \(Q - \mathcal{O} \) for which \(\mathcal{O}_s \) is in class II. Replacing the quadratic form \(Q \) by \(-Q\) if necessary, we may assume that \(S^- \) is non-empty.

Let \(s \in S^- \). Then for a Desarguesian point \(\langle r, s \rangle/s \) of \(s^\perp/s \) with respect to the class I ovoid \(\mathcal{O}_s \), Lemma 1.4 says that \(\langle r, s \rangle/s \) is the radical of a 4-space generated by four ovoid points, \(\langle p_1, s \rangle/s, ..., \langle p_4, s \rangle/s \) forming an \(\mathcal{H}' \)-set of \(\mathcal{O}_s \). We may assume that \(\{p_1, ..., p_4\} \) is an \(\mathcal{H}' \)-set of \(\mathcal{O} \cap s^\perp \). We may also take \(r = \text{Rad}(p_1, ..., p_4) \).

Then \(\langle p_1, r \rangle/r, ..., \langle p_4, r \rangle/r \) is an \(\mathcal{H}' \)-set of \(\mathcal{O}_r \) forming an oval. It thus follows from Lemma 1.3(iii) that \(\mathcal{O}_r \) is a type II ovoid of \(\Omega^+(8,3) \) or \(\mathcal{O} \cap s^\perp \) and so \(r \) lies in \(S^+ \).

Now choose any 1-space \(s' \) of the isotropic 2-subspace \(\langle r, s \rangle \) of the \(\Omega^+(10,3) \)-space \(V \) so that \(s' \neq r \). Then \(\{\langle p_1, s' \rangle/s', ..., \langle p_4, s' \rangle/s'\} \) is an \(\mathcal{H}' \)-set of \(\mathcal{O}_{s'} \) which generates a 4-space with non-trivial radical \(\langle r, s' \rangle/s' \). Hence, by Lemma 1.3 (equivalence of (i) and (v)), \(s' \in S^- \).

Now by Lemma 1.5, since \(\langle r, s \rangle/s \) is a Desarguesian point of \(s^\perp/s \) with respect to \(\mathcal{O}_s \), there exists an oval \(\langle q_1, s \rangle/s, ..., \langle q_4, s \rangle/s \) in \(\mathcal{O}_s \cap \langle r, s \rangle/s \). We may choose the 1-spaces \(q_1, ..., q_4 \) so that they form an \(\mathcal{H} \)-set of \(\mathcal{O} \) lying in \(\mathcal{O} \cap \langle r, s \rangle^\perp \). Being an oval of \(s^\perp/s \) we know

\[
\text{Rad}(q_1, q_2, q_3, q_4) \subseteq s.
\]

But from the second paragraph above, if \(s' \) is a 1-subspace of \(\langle r, s \rangle \) distinct from \(r \), then \(s' \in S^- \). Then as \(\{q_1, ..., q_4\} \) is an \(\mathcal{H} \)-set, also \(\langle q_1, s' \rangle/s', ..., \langle q_4, s' \rangle/s' \) is an \(\mathcal{H} \)-set of \(\mathcal{O}_{s'} \). Since \(\mathcal{O}_{s'} \) is type I, this \(\mathcal{H} \)-set must form an oval there (Lemma 1.2). Hence

\[
\text{Rad}(q_1, ..., q_4) \subseteq s'.
\]

Taking \(s' \neq s \), we see

\[
\text{Rad}(q_1, ..., q_4) = 0,
\]

so \(\{q_1, ..., q_4\} \) is a bonafide oval of \(\mathcal{O} \). But then \(\langle q_1, r \rangle/r, ..., \langle q_4, r \rangle/r \) is an oval of \(\mathcal{O}_r \) whose elements form an \(\mathcal{H} \)-set. By Lemma 1.2 (equivalence of (i) and (iii)), we have \(r \in S^- \).

We now have a contradiction since \(r \) cannot belong to both \(S^- \) and \(S^+ \).
REFERENCES