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The plant primary cell wall is a composite material containing stiff cellulose microfibrils that are

embedded within a pectin matrix and crosslinked through a network of hemicellulose polymers. This

microstructure endows the wall with nonlinear anisotropic mechanical properties and allows enzy-

matic regulation of expansive cell growth. We present a mathematical model of hemicellulose crosslink

dynamics in an expanding cell wall incorporating strain-enhanced breakage and enzyme-mediated

crosslink kinetics. The model predicts the characteristic yielding behaviour in the relationship between

stress and strain-rate seen experimentally, and suggests how the effective yield and extensibility of the

wall depend on microstructural parameters and on the action of enzymes of the XTH and expansin

families. The model suggests that the yielding behaviour encapsulated in the classical Lockhart

equation can be explained by the strongly nonlinear dependence of crosslink breakage rate on crosslink

elongation. The model also demonstrates how enzymes that target crosslink binding can be effective in

softening the wall in its pre-yield state, whereas its post-yield extensibility is determined primarily by

the pectin matrix.

& 2012 Elsevier Ltd. Open access under CC BY license.
1. Introduction

Plant cells are surrounded by a tough primary cell wall which
maintains a high internal turgor pressure while allowing signifi-
cant anisotropic expansion. Such growth is driven by irreversible
stretching of the cell wall under the action of the turgor pressure,
with the growth rate being dependent on the mechanical proper-
ties of the cell wall. The plant primary cell wall is a composite
material containing stiff cellulose microfibrils (CMF), embedded
within a pectin matrix and linked through a network of
ical Sciences, University of

UK. Tel.: þ44 115 951 3866;

on),

 BY license.
hemicellulose crosslinks (Carpita and Gibeaut, 1993; Cosgrove,
2005). This structure exhibits mechanical anisotropy because the
CMF are typically orientated in a preferred direction, making the
wall much less extensible in a direction parallel to the CMF than
perpendicular to them (Baskin, 2005; Suslov and Verbelen, 2006;
Van Sandt et al., 2007). Stresses acting perpendicular to the CMF
(and in the plane of the wall) are shared between the hemicellu-
lose network and the pectin matrix, with some authors suggesting
the former are dominant in some circumstances (Van Sandt et al.,
2007; Vissenberg et al., 2000). During growth, it is thought that
new wall material is continually deposited on the inner face of the
wall to maintain its integrity (Cosgrove, 2005; Vissenberg et al.,
2000). To understand plant cell growth and its regulation, we must
therefore determine how the properties of this evolving composite
structure relate to the macroscale mechanical properties of the
cell wall (see Burgert and Fratzl, 2007; Cosgrove, 2000; Geitmann,
2010; Geitmann and Ortega, 2009 for recent reviews).
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Many researchers have followed Lockhart (1965) in modelling
the cell wall at the macroscopic level as an anisotropic Bingham
material, displaying a yield stress Y below which no irreversible
deformation occurs and an extensibility F which determines how
the cell (or tissue) elongation rate relates to the driving stress,
provided this stress exceeds Y. To illustrate, consider an isolated
circular cylindrical cell of length ‘ðtnÞ and radius R at time tn

having CMF oriented in a hoop-like manner orthogonal to the axis
of the cell, preventing radial expansion. The turgor pressure P,
acting on the flat end-plates of the cell, generates a force pR2P

that is balanced by the axial stress resultant (or tension) Sn in the
curved cell wall (distributed around the cell perimeter 2pR), so
that Sn

¼ 1
2RP; the hoop stress resultant RP is borne by the CMF.

The Lockhart (1965) equation describing the expansion of the cell
may then be written as

1

‘
d‘
dtn
¼

0 ðSnoYÞ,

FðSn
�YÞ ðSn4YÞ,

(
ð1Þ

Experimental studies have found that the Lockhart equation (1) is
a reasonably good description of plant cell-wall mechanics when
water fluxes needed to maintain cell turgor are not rate-limiting
(see for example, Green et al., 1971). Variants of (1) can be used to
describe the elongation of sections of cell wall, whole cells or
multicellular tissues, making it a natural building block in
integrative multiscale models of plant growth and development
(Chavarrı́a-Krauser et al., 2005; Chickarmane et al., 2010; Mirabet
et al., 2011). Note that instead of using Sn, (1) may be expressed
in terms of turgor pressure P or the extensional stress Sn=h

(where h is the cell wall thickness), with the definition of
extensibility and yield being adapted accordingly by incorporat-
ing appropriate geometrical factors, indicating the importance of
cell and tissue geometry in determining plant growth rate. The
Lockhart equation (1) can be interpreted in two equivalent ways,
making it a particularly powerful tool in describing plant growth:
it may be read from left to right as growth rate being determined
by the internal stresses within the plant tissue, modulated by cell
and tissue properties; equivalently it can be read from right to left
as a statement of the constitutive properties of cell wall or plant
tissue, describing how material stress is related to strain rate.

A number of previous studies have addressed the relationship
between the empirical parameters F and Y and the cell wall’s
microstructure, and the broader applicability of (1). For example,
Ortega and co-workers showed how strain-hardening may arise
via recruitment of hemicellulose crosslinks (as reviewed in
Geitmann and Ortega, 2009). Dyson and Jensen (2010) derived a
version of (1) from a continuum mechanics model of the wall of
the elongating cell, treating the wall as a thin sheet of viscous
fibre-reinforced fluid. Their model demonstrates explicitly how,
when the CMF are orientated perpendicular to the axis of the cell,
the extensibility is determined by a viscosity that characterises
the pectin matrix (and the embedded CMF and hemicellulose
crosslinks). Similar conclusions about the importance of the
properties of the pectin–hemicellulose matrix have been reached
in Carpita and Gibeaut (1993) and Dumais et al. (2006). When the
CMF are not oriented perpendicular to the cell axis, the fibres may
reorient passively as the cell elongates (following the so-called
‘multi-net model’ Preston, 1982), in which case more complex
expressions of the form:

Sn
¼ f ðan,‘Þ, an �

1

‘
d‘
dtn

ð2Þ

can arise; f is a nonlinear function of the cell length ‘ and the
elongation rate an. (Here we adopt the convention common in the
continuum mechanics literature and write stress as a function of
strain or strain-rate.) Such a function was derived in Dyson and
Jensen (2010) to show how growth may be suppressed by fibre
reorientation, and alternative functions may be used to mimic
viscoelastic behaviour (Geitmann and Ortega, 2009), as is neces-
sary to model the rapid response of a cell to a sudden change in its
external loading. Note that in the case of the classical Lockhart
equation (1), f is independent of ‘ and is linear in an when an40,
such that the ‘effective extensibility’ Fn

eff , defined here by

Fn

eff �
dSn

dan

� ��1

ð3Þ

takes the values Fn

eff ¼ 0 in the pre-yield state (SnoY) or Fn

eff ¼F
in the post-yield state (Sn4Y).

A few previous models address the mechanical properties of
the interacting cellulose-hemicellulose network (Kha et al., 2010;
Passioura and Fry, 1992; Veytsman and Cosgrove, 1998).
Passioura and Fry (1992) consider a simple model in which it is
assumed that crosslinks extend as they gradually detach from the
CMF, become progressively load-bearing as the wall stretches
(assuming the number of load-bearing tethers is proportional to
the distance between CMF) and rupture according to a time-
dependent law. Their model assumes uniform properties across
the cell wall, while acknowledging Preston’s (1982) observation
that CMF are carried towards the outer surface of the elongating
cell wall. They assume each bond behaves like a Bingham element
(with a yield stress), and propose a relation between the
macroscopic yield and the molecular yield parameter. The com-
putational WallGen model (Kha et al., 2010) predicts anisotropic
elastic properties from a virtual cell wall assembled from indivi-
dual polymers, but this model does not allow for crosslink
breakage, growth or irreversible viscous deformation of the cell
wall. Veytsman and Cosgrove (1998), developing the concept of
the ‘sticky network’ model (Cosgrove, 2000), use a thermody-
namic formulation to relate the elastic stress in the composite cell
wall to the properties of the CMF and hydrogen bonds between
the CMF and glucan (hemicellulose) molecules, predicting the
existence of an elastic yield stress above which the cell wall will
exhibit creep. However their model captures neither the aniso-
tropic stresses arising in ordered polymer networks (for which
CMF have a predominant orientation, which may be orthogonal to
the direction in which the wall elongates), nor the deposition of
new material into the cell wall, nor viscous stresses associated
with crosslink detachment and reformation.

These previous descriptions of cell-wall mechanics have typi-
cally not considered the role of enzymes. During growth, the cell
wall’s structure is thought to be modified by various remodelling
enzymes, different families of which act on different components
of the cell wall. Pectin methyl esterase (PME) affects the consis-
tency of the pectin ground matrix, removing methyl groups by
breaking ester bonds. This enables pectin to be crosslinked by
calcium ions, stiffening the cell wall and reducing cell expansion
(Boyer, 2009; Derbyshire et al., 2007; Proseus and Boyer, 2006);
recent progress has been made in quantifying PME action in a
chemorheological model of the pectin matrix (Rojas et al., 2011).
Some members of the XTH enzyme family loosen the wall via XEH
(xyloglucan endohydrolase) activity, which involves breaking a
bond between two hemicellulose crosslinks, whereas other mem-
bers of this family carry out XET (xyloglucan endotransglucosy-
lase) action, whereby the crosslink is broken and then one free
end is rejoined to another free crosslink end within the tissue (see
Fig. 1) (Rose et al., 2002). In addition, expansins break the
hydrogen bonds between the CMF and the hemicellulose strands
(McQueen-Mason et al., 1992). The different remodelling
enzymes are therefore likely to affect the macroscale cell-wall
properties, and hence the cell’s growth rate, in different ways.
Hormonal regulation of plant growth is thought to be in part via
regulation of these remodelling enzymes (Catala et al., 1997;
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Fig. 1. Two modes of enzyme action on the hemicellulose crosslinked network.

Under XEH action (with enzyme denoted by a black circle), the hemicellulose

crosslink is broken leaving two free ends. Under XET action the hemicellulose

crosslink is broken, and one of the resulting free ends is joined to a third free end

within the wall.
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Potter and Fry, 1993; Redgwell and Fry, 1993; Smith et al., 1996;
Wu et al., 1994; Xu et al., 1996, 1995; Zurek and Clouse, 1994), so
that determining how the enzymes affect the cell wall’s mechan-
ical properties is vital to gain understanding of the interplay
between growth regulators at different spatial scales. As far as we
are aware, no previous model has considered the role of XTH and
only the model developed in Pietruszka (2011) has included
expansin effects, via a modification of the Lockhart equation
through a time-dependent extensibility.

The relative importance of the different wall components and
remodelling enzymes will vary between plant tissues and
remains a matter of debate. However we focus here on the
hemicellulose crosslinks and the action of XTH and expansin.
Building on previous micromechanical studies (Dyson and Jensen,
2010; Passioura and Fry, 1992), and exploiting some simple ideas
from transient network theory for viscoelastic polymer solutions
(Green and Tobolsky, 1946; Larson, 1988; Yamamoto, 1956) and
gels (Groot et al., 1996), a theory which has previously been
successfully used to describe fibrous biological materials such as
ligaments and tendons (Ciarletta and Amar, 2009), we seek here
to relate crosslink kinetics, mediated by enzyme action, to the
macroscopic mechanical properties of a section of cell wall, which
can then be scaled up to describe the elongation of an individual
cell or a whole tissue. Our model enables us to evaluate the
applicability of the Lockhart equation (1) and suggests how to
parameterize the effects of XTH and expansin enzyme action in
multiscale models of plant growth, which in some circumstances
may require the full machinery of computational mechanics
(Huang et al., 2012). In particular, our model suggests that the
kinetics of strain-enhanced crosslink breakage plays a significant
role in determining the cell wall’s yield stress Y and that enzymes
that target crosslinking may soften the wall in its pre-yield state.
In contrast to previous studies, our model incorporates length-
dependent populations of the hemicelluose crosslinks, it resolves
differences in crosslink populations across the cell wall and it
distinguishes XEH, XET and expansin modes of enzyme action.
Fig. 2. A cross-section of the cell wall, where the CMF are represented as black

circles and lie perpendicular to the page, showing the movement of hemicellulose

crosslinks through the cell wall.
2. A model for the expanding cell wall

In Sections 2.1 and 2.2 we describe a model for the transient
response of a section of cell wall under an imposed force in the
absence of enzyme action, in order to relate crosslink kinetics to
stress relaxation and yield effects in the wall. We then incorpo-
rate XTH enzyme action (Section 2.3), restricting attention to
steady-state configurations. Our model for expansin action is
described in Appendix B. The modelling framework is deliberately
simple, aiming to provide qualitative mechanistic explanations
for observed behaviour in terms of the evolving microstructure.
By addressing a simple geometry we avoid complex tensor
descriptions of cell wall material. Predictions of the model are
reported in Section 3.
2.1. Model derivation: transient evolution

We consider the evolution of a segment of cell wall that
elongates via uniform stretching (Fig. 2). The cell wall contains
CMF that run orthogonal to the cell axis and to the direction of
cell elongation; crosslinks connecting adjacent CMF provide
resistance to elongation. The wall is initially at rest for time
tno0; in tn40 it undergoes steady stretching at a constant rate
an, induced by some externally imposed force. This formulation
allows us to investigate both short-term elastic effects and long-
term viscous effects. We wish to determine the evolution of the
wall microstructure, and particularly the development of stress in
the wall as a result of crosslink extension, breakage and rebind-
ing. The wall strain rate an can be related to the length of the cell
in which the wall segment is embedded via (2)2. We assume that
the wall thickness h is substantially smaller than the cell radius,
allowing the curvature of the cell wall to be neglected. We follow
Dyson and Jensen (2010) in decoupling hoop stresses acting along
CMF, which balance turgor pressure acting normally on a curved
wall, from the axial stress resultant Sn

ðtnÞ that drives elongation
of the cell wall. We wish to relate Sn

ðtnÞ to an.
We introduce a coordinate system ðxn,yn,znÞ with its origin O

fixed to a material point on the outer surface of the cell wall, such
that the wall occupies 0rynrh, the wall stretches in the
xn-direction with strain rate an and the CMF are oriented in the
zn-direction (Fig. 2). Adjacent CMF are connected by crosslinks,
each of which is assumed to lie (at least predominantly) in a plane
zn ¼ constant. We assume the CMF are embedded strongly in the
matrix, i.e. we assume affine deformations of the CMF and
crosslinks. In the neighbourhood (and frame of reference) of O,
the motion of the wall for tn40 can be represented via the
incompressible velocity field:

u¼ anðxn,�yn,0Þ, ð0oynohÞ, ð4Þ

so that stretching of wall material in the xn-direction balances
compression in the yn-direction. (This velocity field is typical of
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extensional flow of a viscous sheet (Howell, 1996): if one assumes
the axial velocity component un relative to O is uniform through
the sheet with elongation rate a, so that @un=@xn ¼ an, then
incompressibility requires that @vn=@yn ¼�an, from which (4)
follows.) The wall does not stretch in the fibre (zn-) direction
and henceforth we need consider only two-dimensional motion
in the ðxn,ynÞ-plane. We assume that, for tn40, new wall material
(a mixture of CMF, hemicellulose and pectin) is continually
deposited on the inner surface of the cell wall at yn ¼ h at a rate
that maintains a constant cell-wall thickness.

As the wall elongates, newly deposited material is carried
through the wall towards its outer surface via (4). The density
of any passive non-diffusing cell-wall component, rðxn,yn,tnÞ,
evolves according to

@r
@tn
þu � rr¼ 0 with rðxn,h,tnÞ ¼ r0, ð5Þ

r0 is the density at which material is deposited. Thus dr=dtn ¼ 0
on the characteristics dxn=dtn ¼ anxn, dyn=dtn ¼�anyn, so that
material initially located at ðxn,ynÞ ¼ ðx0,hÞ at tn ¼ t (for some x0

and tZ0) is convected along xn ¼ x0ea
nðtn�tÞ, yn ¼ he�a

nðtn�tÞ for
tn4t, i.e. r¼ r0 along the streamline xnyn ¼ x0h. It follows that if
rðxn,yn,0Þ ¼ r0 in 0oynoh, then the density remains uniform
throughout the wall thereafter. We can therefore assume that the
densities of CMF, hemicellulose and pectin matrix are homoge-
neous throughout the wall as it stretches, provided the density of
deposition of each material matches its initial density.

Under the flow (4), the CMF remain oriented in the zn-direction
and crosslinks lying in the plane zn ¼ 0 (say) are stretched in the
xn direction but compressed in the yn-direction. Crosslinks
oriented in the yn-direction are therefore mechanically insignif-
icant as tn increases and we need consider only those oriented in
the xn-direction. Suppose such a crosslink has length Li at time
t0Z0, when it lies along yn ¼ yn

i (for some 0oyn

i rh). Under (4),
and provided it does not break, the crosslink length Ln

ðtnÞ evolves
according to

dLn

dtn
¼ anLn on

dyn

dtn
¼�anyn: ð6Þ

Thus Ln
¼ Lie

anðtn�t0Þ on yn ¼ yn

i e�a
nðtn�t0Þ, i.e. Ln

¼ Liy
n

i =yn; the cross-
link elongates as it approaches the outer surface of the wall
(yn-0). Let L0 be the length of crosslinks when unstressed. We
assume for simplicity that at tn ¼ 0 all crosslinks have length L0, as
do all newly deposited crosslinks on yn ¼ h for tn40. Crosslinks
are then immediately load-bearing as they start to stretch with
the wall (in contrast to the model in Passioura and Fry, 1992).

Stretching will promote crosslink breakage, so the number
density of consummated crosslinks (per unit area of cell wall),
nnðyn,tnÞ, will vary with yn but may be assumed uniform in xn,
being given by a Smoluchowski equation (Yamamoto, 1956) of
the form (neglecting Brownian fluctuations)

@nn

@tn
�anyn @nn

@yn
¼�kn

off n
n: ð7Þ

In the absence of enzymes, we assume the breakage rate is

kn

off ¼ k0 exp b2 kðLn
�L0Þ

2

2kbT

 !
, ð8Þ

where kbT is the unit of thermal energy (kB being Boltzmann’s
constant and T absolute temperature), k0 is the breakage rate of
unstressed crosslinks and the breakage rate under force is
enhanced according to the model of Dembo et al. (1988)
(although other models may be considered, and indeed have been
explored in other contexts (Fuller and Leal, 1981; Guy, 2004)). The
energy in a stretched crosslink, 1

2kðL
n
�L0Þ

2, normalised by kbT ,
is modelled by treating each crosslink as a linear spring with
stiffness k. b is an empirical parameter that characterises the
curvature of the potential well in the crosslink’s energy landscape
(discussed further below). We also assume

nnðh,tnÞ ¼ n0, nnðyn,0Þ ¼ n0 ð0oynrhÞ, ð9Þ

implying that new crosslinks are deposited at the inner face of the
wall at constant number density n0, equal to the density prior to
stretching. In practice, crosslink formation can be expected to
occur throughout the wall, which would then demand the use of
an age-structured model. We sidestep this additional complexity
(and the associated closure problem) by decoupling crosslink
breakage and formation, assuming all crosslinks form at the inner
surface of the wall via (9).

The total stress resultant in the wall (in the direction of
elongation) has two components acting in parallel: that generated
by the hemicellulose crosslinks within the cell wall and that due
to the stretching pectin matrix, i.e.

Sn
ðtnÞ ¼

Z h

0
nnðyn,tnÞkðLn

ðyn,tÞ�L0Þ dynþ
an

Fm
, ð10Þ

where Fm is a constant representing the pectin matrix extensi-
bility. Fm may be estimated in terms of the Trouton extensional
viscosity of a sheet of thickness h as 1=Fm ¼ 4mh, where m is the
shear viscosity of the matrix material (modified by the CMF and
hemicellulose volume fractions) (Dyson and Jensen, 2010); we
ignore any yield stress of the matrix in the present study. We
wish to establish how the baseline extensibility Fm is modified by
crosslink kinetics, represented by the integral in (10).

To summarise, Eqs. (6)–(9) describe the number density of
crosslinks as a function of the distance through the cell wall.
Eq. (10) provides the corresponding total stress resultant and
hence characterises the macroscale mechanical behaviour of the
cell wall. We seek the stress resultant Sn in terms of the strain
rate and material parameters.

2.2. Model analysis: transient evolution

It is convenient to nondimensionalise the system using

nn ¼ n0n, yn ¼ hy, yn

i ¼ hyi, Ln
¼ L0L,

tn ¼ t=k0, an ¼ k0a, Sn
¼ ES, kn

off ¼ k0koff ð11Þ

and defining

E � n0kL0h, s� kL2
0

2kbT
, G�

k0

FmE
: ð12Þ

E is a (dimensional) measure of the extensional stiffness of the
wall due to crosslinks while s and G are dimensionless para-
meters. We can then re-express (6)–(9) in dimensionless form as

dL

dt
¼ aL,

dn

dt
¼�n expðb2sðL�1Þ2Þ, ð13aÞ

on dy=dt¼�ay, with

Lð1,tÞ ¼ nð1,tÞ ¼ 1, Lðy,0Þ ¼ nðy,0Þ ¼ 1: ð13bÞ

The dimensionless stress resultant

SðtÞ ¼
Z 1

0
nðy,tÞðL�1Þ dyþGa ð13cÞ

depends on the dimensionless parameters b, which regulates the
enhancement of crosslink breakage rate under applied strain, G,
the relative extensibility of crosslinks to matrix and a, the strain
rate scaled on the crosslink breakage rate.

If each crosslink molecule is modelled as a Gaussian chain of
Nk links each of length b, for which stiffness arises from a change
in entropy on elongation, then s¼ 3L2

0=2/L2S0 where the average
squared end-to-end distance in the unstressed configuration is



R.J. Dyson et al. / Journal of Theoretical Biology 307 (2012) 125–136 129
/L2S0 ¼Nkb2 (Larson, 1988). Estimating L0 as (/L2S0)1/2, s is
therefore likely to be of order unity and we can therefore set s¼ 1
without loss of generality. We estimate b by comparing the
average CMF spacing (10–20 nm Jarvis, 2009), which provides
an estimate of L0, with the length Lmax of fully stretched cross-
links (reported as up to 400 nm; Burgert and Fratzl, 2007;
McCann et al., 1990, 1992). Thus to allow crosslinks to extend
significantly before they break, we widen the potential well in (8)
by taking b51. More precisely, we can identify the ratio
Lmax =L0 ¼ Oð1=bÞ, i.e. the breakage rate in (13a) rises steeply
when L¼Oð1=bÞ.

The solution of (13) involves two groups of crosslinks: those
present at t¼0 in 0ryr1; and those deposited on y¼1 in t40
(see regions A and B in Fig. 3). Each crosslink in the former group
lies on a characteristic y¼ yie

�at , parameterized by its initial
position 0oyir1, satisfying (from (13a))

dn

dL
¼�

n

aL
expðb2

ðL�1Þ2Þ: ð14Þ

For this group, in 0oyoe�at , it follows (using (13b)2) that

n¼ exp �
Gð1=LÞ

a

� �
, L¼ eat , ð15Þ

where

GðyÞ �

Z 1

y

expðb2
½ð1=zÞ�1�2Þ

z
dz: ð16Þ

The other group of crosslinks, deposited on y¼1 for t40, satisfy
(14) and (13b)1 so that

n¼ exp �
Gð1=LÞ

a

� �
, L¼ 1=y ð17Þ

in the expanding domain e�at ryr1. Partitioning the integral in
(13c) over regions A and B, the stress resultant is therefore given by

SðtÞ ¼ exp �
Gðe�atÞ

a

� �
ð1�e�atÞþ

Z 1

e�at

exp �
GðyÞ

a

� �
1

y
�1

� �
dyþGa:

ð18Þ

The first term in (18) describes the contribution from crosslinks
that were present at t¼0 and the second from those that formed
on y¼1 in t40; the third term represents the pectin matrix. At
large times, the crosslinks initially present are subject to large
stretching (promoting breakage) and are ultimately confined to an
exponentially narrowing region near the outer surface of the cell
wall (region A, Fig. 3); while this group of crosslinks plays an
Fig. 3. A schematic characteristics diagram displaying the two different regimes:

the evolution of the initial wall configuration (region A) and the evolution of

crosslinks deposited on y¼1 during the motion (region B). The shaded region

illustrates the scission layer arising when b51.
important role in the initial build-up of stress in the wall, it has a
negligible contribution at large times (because highly elongated
crosslinks break almost surely via (8)), and the stress resultant
approaches its steady-state limit:

S1 ¼
Z 1

0
exp �

GðyÞ

a

� �
1

y
�1

� �
dyþGa: ð19Þ

Fig. 4(a) illustrates typical steady-state crosslink distributions
satisfying (17). These can be understood by examining the limit
b51, when (16) may be approximated by

GðyÞ �
logð1=yÞ, b5yr1,

ðy2=2b2
Þeb

2=y2
, 0oy5b,

(
ð20Þ

as illustrated in Fig. 4(b). It follows that n(y) is exponentially
small for 0oy5b and that n� y1=a outside this ‘scission layer,’ as
illustrated in Fig. 4(a). The threshold strain rate aT ¼ 1 therefore
distinguishes two types of behaviour (Fig. 4a): under rapid
stretching (abaT , e.g. a¼ 100 in Fig. 4a), crosslinks remain intact
(n� 1) outside the scission layer; under weak stretching (a5aT ,
e.g. a¼ 0:1 in Fig. 4b), crosslinks are localised near the inner
surface of the wall at y¼1, breaking before they are carried
towards the outer surface of the wall by the stretching flow. The
Fig. 4. (a) Crosslink density n(y) (solid) for a¼ 0:1, 1, 10, 100 and b¼ 0:1, with no

enzyme, satisfying (17) in 0oyr1. Dashed lines show the approximation

n� y1=a . For aZ1, n(y) falls rapidly to zero within the scission layer near y¼0.

(b) G(y) (solid) compared to asymptotic limits (20) (dashed, dot-dashed) for

b¼ 0:01, 0.03, 0.1.
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stress resultant (18) will therefore reach its large-time limit (19)
when the crosslinks that are initially present in the wall (region A
in Fig. 3) are confined within the scission layer, i.e. for
tbð1=aÞlogð1=bÞ, i.e. the steady state equilibrates quicker under
large strain rates. This behaviour is illustrated via simulations in
Section 3.
Fig. 5. The distribution of stress due to cross-links across the cell wall (note

logarithmic scale for y) for b¼ 0:1, for a¼ 1;3,10;100, with no enzyme.
2.3. Incorporating XTH enzyme action

To describe XET and XEH actions we now restrict attention to
steady-state crosslink distributions, writing n¼ nðyÞ. Since the
wall is thin, we assume for simplicity that enzymes are able to
diffuse sufficiently fast that their action can be taken to be
spatially homogeneous through the wall.

We incorporate additional enzyme-mediated breakage and
reformation by replacing (7) (expressed in dimensional variables)
with

�anyn dnn

dyn
¼�kn

off n
n�k0ðgXEHþgXETÞn

n, ð0rynohÞ ð21aÞ

subject to

nnðhÞ ¼ n0þ
k0gXETntot

anh
, ntot �

Z h

0
nnðynÞ dyn: ð21bÞ

The non-negative factors gXET, gXEH represent respectively the
action of XET and XEH in enhancing bond breakage. (Enzyme-
mediated bond breakage is here described with linear additive
terms; we find qualitatively similar behaviour using instead
terms of the form kn

off ðgXEHþgXETÞ.) We assume that every cross-
link that is broken under XET enzyme action is immediately
reformed at its unstressed length and that reformed crosslinks are
deposited at the inner surface of the wall. The precise form of the
boundary condition (21b) is justified in Appendix A.

We nondimensionalise (21) as in (11), recovering

�ay
dn

dy
¼�expðb2

ðy�1�1Þ2Þn�ðgXEHþgXETÞn, ð22aÞ

nð1Þ ¼ 1þ
gXET

a

Z 1

0
n dy: ð22bÞ

It follows that

n¼
yðgXEHþgXETÞ=a

1�A
exp �

GðyÞ

a

� �
, ð23aÞ

(assuming 0rAo1) where G(y) is given in (16) and

A¼
gXET

a

Z 1

0
exp �

GðyÞ

a

� �
yðgXEHþgXETÞ=a dy: ð23bÞ

Eq. (23) reduces to (17) when gXET ¼ gXEH ¼ 0. Using (23), the
steady-state stress resultant becomes

S1 ¼
1

1�A

Z 1

0
exp �

GðyÞ

a

� �
yðgXEHþgXETÞ=a 1

y
�1

� �
dyþGa: ð24Þ

Numerical predictions of S1 versus a are given in Section
3 below.

It is again instructive to seek an approximation of (23) when
b51. Motivated by (20) and Fig. 4, we adopt the approximation:

exp �
GðyÞ

a

� �
�

y1=a, Cbryr1,

0, 0oyoCb,

(
ð25Þ

for some constant C ¼ Oð1Þ. It follows from (23b) that

A�
gXET

aþa0
ð1�ðCbÞða0þaÞ=aÞ, a0 � 1þgXETþgXEH ð26Þ
and hence from (23a) that

n�
ðaþa0Þy

a0=aHðy�CbÞ
aþa0�gXETð1�ðCbÞ

ða0þaÞ=aÞ
, ð27Þ

where H is the Heaviside function. Eq. (27) suggests that enzyme-
mediated crosslink breakage increases the threshold strain rate
from aT ¼ 1 (as in Fig. 4(a)) to aT ¼ a0, such that n decays close to
the inner surface of the wall y¼1 for a5aT while n remains
almost uniform across most of the cell wall for abaT . Using (25)
and (27), the steady-state stress resultant (24) can be approxi-
mated by

S1 �
a

aþa0�gXETð1�ðCbÞ
ða0þaÞ=aÞ

aþa0

a0
ð1�ðCbÞa0=aÞ

�

þððCbÞðaþa0Þ=a�1Þ
i
þGa: ð28Þ

Writing L� logð1=CbÞ, (28) can be re-expressed (in the absence of
enzyme) as

S1 � að1�e�L=aÞþ
a

aþ1
ðe�Lðaþ1Þ=a�1ÞþGa: ð29Þ

We test the accuracy of (28) and (29), with and without enzyme
effects respectively, in Section 3 below. An alternative modifica-
tion of the model to simulate the effect of expansins is given in
Appendix B.
3. Results

3.1. Steady elongation

We first consider the steady-state behaviour of the enzyme-
free model (Section 2.2). Fig. 5 illustrates the distribution of stress
within the wall provided by stretched crosslinks. This is given by
nðL�1Þ, i.e. the integrand in (19); recall that the distribution of n

across the wall for b51 is shown in Fig. 4(a). The maximum
stress arises deep within the wall, between the scission layer near
the outer surface (where all crosslinks have broken) and the inner
surface of the wall (where crosslinks are laid down in their
unstressed configuration). For a¼ 1, for example, the rate of
crosslink stretching balances the rate of breakage, allowing cross-
links to share the stress uniformly across much of the wall; for
a41, however, crosslinks are stretched quickly, remaining intact
across much of the wall, breaking only in the scission layer, the
stress being dominated by a small number of highly stretched
crosslinks that are just about to break.

Integrating this stress distribution across the wall gives the
steady-state stress resultant (19), which we plot for G¼ 0 in
Fig. 6(a) and with G¼ 0:01 in Fig. 6(b). Two regimes are evident
that we may identify as pre-yield and post-yield states. At small



Fig. 6. (a,b) Steady-state stress resultant versus strain-rate, given by (19) with (a)

G¼ 0, b¼ 0:01, 0.03, 0.1 (solid) and asymptotic approximations (29) (dotted, with

Cb¼ 0:03786) and (30) (dashed, with L¼ 2:198) and (b) including matrix viscosity

G¼ 0:01, b¼ 0:1; the heavy line in (b) shows Lockhart-type behaviour exhibited

by (31). (c) Effective extensibility Feff versus strain rate a for b¼ 0:001, 0.01, 0.03,

0.1 and G¼ 0.
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strain rates (e.g. ao5), the stress resultant rises steeply with a,
indicating very low effective extensibility Fn

eff (see (3)) corre-
sponding to the pre-yield state. For this range of a, as indicated by
Fig. 4(a), a small increase in strain rate allows more crosslinks to
remain intact within the wall before breakage occurs; the addi-
tional crosslinks elongate as they penetrate the wall, supporting
an increased stress resultant that is distributed across many
crosslinks. For a above unity, there is significant stretching of
crosslinks, enabling a greater stress to be borne (Fig. 5). At larger
strain rates (e.g. a410), almost all crosslinks remain intact until
there is abrupt rupture very close to the outer surface of the wall
(Fig. 4a); in this case a small increase in a leads to only a small
increase in the number of intact crosslinks (the system being
close to saturation) and hence to only a small increase in stress.
The contribution to S1 due to crosslinks therefore reaches a
plateau for large a (Fig. 6a) and the effective extensibility due to
crosslinks in the post-yield state is therefore high, although the
magnitude of S1 is greater than that for smaller a. Increasing b
(i.e. reducing the length to which crosslinks can extend before
they break) leads to a modest reduction in the post-yield stress
resultant but retains the strong saturation effect (Fig. 6a). When
G40 (Fig. 6b), it is evident that the post-yield extensibility is
dominated by the pectin matrix at very large strain rates.

Fig. 6(c) shows how the effective extensibility (3) varies with a
for G¼ 0. Here we plot its dimensionless analogue
Feff ¼ ðE=k0ÞFn

eff . Again it is evident that the wall is very stiff
when a is order unity, but Feff increases by three orders of
magnitude (and the wall softens substantially) as a increases to
100; the extensibility is only weakly sensitive to b when b51.
The model also predicts that the wall is soft for a51, but in this
range the stress is vanishingly small and is not regarded as
physiological.

Because the parameter dependence in (16) and (19) is not
obvious, it is helpful to consider the approximation (29) for S1 in
the limit b-0. Fig. 6(a) shows that (29) captures well the
behaviour of (19) for b¼ 0:1 (for a suitable choice of C). While
in practice b may not be sufficiently small for L to become very
large, further insight arises by considering the limiting form of
(29) for large L. Motivated by the argument of the first exponen-
tial in (29), we set a¼Lx, taking Lb1, x¼Oð1Þ. Then (29)
simplifies at leading order to

S1 �Lxð1�e�1=xþGÞ ¼ að1�e�L=aÞþGa: ð30Þ

This is plotted in Fig. 6(a) for b¼ 0:1, G¼ 0, again showing good
agreement with (19) while being considerably easier to interpret.
In particular, (30) shows how

S1 �
ð1þGÞa, 15a5L
LþGa, abL,

(
ð31Þ

which is plotted using heavy lines in Fig. 6(b). This piecewise
linear approximation captures well the behaviour of S1 for large
and small values of a, and recapitulates the Lockhart equation (1),
bar the difference between zero and small extensibility in the pre-
yielded state.

Eq. (31) shows that, in the pre-yield state, S1 rises steeply at a
rate approximately independent of b, consistent with in Fig. 6(a).
Assuming G51, the corresponding (dimensional) effective exten-
sibility due to cross-links Fn

eff (see (3)) can therefore be approxi-
mated as

Fn

eff �
k0

n0kL0h
�

k0

E : ð32Þ

(This corresponds to the minimum Feff � 1 in Fig. 6(c).) Thus low
pre-yield wall extensibility is ensured by slow bond breakage
(low k0) and a high density of stiff crosslinks (large n0 and k0). In
contrast, for large a, (31) shows that the post-yield crosslink
contribution to the stress resultant saturates at a level that
depends weakly (only logarithmically) on b (again evident in
Fig. 6a,c). The transition between these two types of behaviour
takes place for strain rates a of magnitude L ((30) and (31)), i.e. at
a value of a that is only weakly sensitive to b. We can also use
(31) to estimate the magnitude of the yield stress in (1): in
dimensional variables, in the post-yield state we can re-express
(1) as Sn

¼ Yþan=Fn

eff , from which, by comparison with (31), we
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infer

Y � EL, Fn

eff �Fm: ð33Þ

This confirms that the kinetics of crosslink breakage (encom-
passed in L) are central to the origins of yield stress (although Y

depends only weakly on the crosslink extension parameter b),
and that the matrix dominates the post-yield extensibility. Con-
sistent with the Veytsman and Cosgrove (1998) model, the yield
stress increases with increased density and stiffness of crosslinks.

In summary, the transition from a stiff structure at small a
(with small pre-yield Fn

eff , see (32)) to a relatively soft structure at
large a is characteristic of a Bingham material, and suggests how
crosslink stretching and breaking can infer the stretching cell wall
with an effective yield stress. However, as Fig. 6 illustrates, the
predicted yield transition is smoother than suggested by (1) or
(31). Nevertheless, if one adopts the simple Lockhart description,
then to a first approximation for b51 our model predicts that the
matrix viscosity determines the low post-yield effective extensi-
bility and the crosslinks determine the yield stress in (33). We
emphasise however that in practice, given the limitations of the
approximation (30) for realistic parameter values, there are likely
to be contributions of both crosslinks and matrix to Y and F.

3.2. Unsteady effects

The steady-state relationship between S and a in Fig. 6 reflects
predominantly viscous behaviour: the motion is dissipative and
irreversible, relying on a balance between crosslink formation and
breakage. However at early times, before there is substantial bond
breakage, the wall exhibits additional elastic behaviour, as cross-
links present at t¼0 are stretched. This stress relaxation is
captured in (18) and plotted against at (log of the wall stretch)
for constant strain rate a and G¼ 0 in Fig. 7. In this simple
example the wall is initially unstressed. By extending an initially
uniform distribution of crosslinks, the stress resultant rises and in
general overshoots its large-time limit.

For small stretch (at5 logð1=bÞ), we can use (20) in (18) to
show that

S� at�ðatÞ2=a: ð34Þ

Since the Cauchy strain of the elongating wall is given by
eat�1� atþ1

2ðatÞ2, (34) demonstrates initially linearly elastic
Fig. 7. Time-evolution of stress under fixed strain-rate; at is log of the wall stretch

and the wall is initially unstressed, b¼ 0:1, G¼ 0, a ¼1, 5, 10, 50, 100.
behaviour followed by strain softening. Expressing (34) in dimen-
sional terms, we find that the extensional stiffness of the wall at
small strain is (as anticipated) E � n0kL0h. The transient max-
imum stress resultant provides an alternative measure of the cell
wall’s yield stress; the corresponding value of at can be used to
deduce the so-called yield strain (Groot et al., 1996; Moller et al.,
2006). It is evident from Fig. 7 that the yield strain increases with
strain rate for small a but saturates for large a (when at� 3:2 in
this case). Yielding can be identified with breakage of the bonds
that were initially present as they enter the scission layer at the
outer wall (Section 2.2), which occurs when at¼Oðlogð1=bÞÞ
(Fig. 3), consistent (when a is large) with the estimate Y � EL in
(33). The crosslinks can therefore be considered as acting as a
Maxwell viscoelastic element (elastic and viscous units in series),
albeit with nonlinear and strongly coupled components.

3.3. XTH enzyme action

We now consider how the presence of enzymes of the XTH
family affects the steady-state crosslink dynamics, using results of
Section 2.3. Fig. 8(a,b) shows that both XEH and XET action
decrease the stress resultant (24) for a given strain rate, with a
larger effect observed for XEH action since XET action increases
both breakage rate and crosslink formation. The sharp transition
between pre-yield and post-yield states becomes less evident as
the enzyme activity increases because of wall softening in the
pre-yield state. However S1 (with G¼ 0) again saturates for very
large a. To interpret Fig. 8(a,b) in their biological context, one can
imagine a segment of cell wall subject to fixed axial stress S1 � 1,
say, imposed by cell turgor. In the presence of XET enzyme, the
strain rate increases from a� 4 (gXET ¼ 0) to a� 115 (gXET ¼ 100),
enabling rapid cell elongation.

Fig. 8(a,b) also demonstrates the accuracy of the approxima-
tion (28) when b51. Further simplification, assuming Lb1 and
a0 ¼ Oð1Þ, yields the leading-order relation:

S1 �
a
a0
ð1�e�La0=aÞþGa, ð35Þ

when a¼OðLÞ. At this level of approximation, the distinction
between XET and XEH action is not evident (bond breakage being
the dominant effect). Eq. (35) implies

S1 �
ða�1

0 þGÞa, 15a5a0L,

S1 �LþGa, aba0L:

(
ð36Þ

Thus, in this approximation, XTH enzymes do not alter the
maximum stress carried by crosslinks for very large strain rates.
However in the pre-yield range 15a5a0L, the (dimensional)
effective extensibility (3) satisfies

1

Fn

eff

�
E

k0ð1þgXETþgXEHÞ
þ

1

Fm
: ð37Þ

This shows how, under fixed stress S1, the wall can soften in the
presence of XET and XEH action, increasing the small effective
extensibility in the pre-yield state (32) roughly proportionally to
gXETþgXEH so that the expansion rate of the cell increases
accordingly.

When enzyme action is strong (a0b1), the distinction
between XET and XEH action becomes more evident
(Fig. 8(a,b)). We can demonstrate this via an approximation of
(28) valid for a5La0, namely

S1 �
a2

a0ðaþ1þgXEHÞ
þGa, ð38Þ

which is plotted for ðgXEH, gXETÞ ¼ ð100;0Þ and ð0;100Þ and G¼ 0 in
Fig. 8(a,b) respectively. The stress resultant exhibits a transition
between quadratic and linear a-dependence for a¼Oð1þgXEHÞ, as



Fig. 8. The effect of enzyme on the relation between steady-state stress resultant

versus strain rate under (a) XEH, (b) XET and (c) expansin action. (a, b) show (24)

(solid), (28) (dashed) for b¼ 0:1 and G¼ 0 with (a) gXEH ¼ 0, 1, 10, 100 and

gXET ¼ 0, (b) gXET ¼ 0, 1, 10, 100 and gXEH ¼ 0; the dot-dashed curves with

diamonds shows (38). (c) shows (39), computed using (B.7), for b¼ 0:1, G¼ 0,

using g¼0, 1, 10, 100.
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is evident in Fig. 8(a). While the extensibility for large a in (38)
matches that captured in (37) (so that both large-a0 curves have
slope 1=a0 for large a in Fig. 8), bond reformation allows the wall
to sustain larger stress in the XET case.

3.4. Expansin action

Finally, Fig. 8(c) shows the predicted stress/strain-rate rela-
tionship in the presence of enzymes of the expansin family. Here
the model has been modified to simulate unpeeling of crosslinks
from CMF, allowing stress relaxation in crosslinks by increase of
the crosslinks rest length L0; this results in the stress/strain-rate
relation (19) being modified as

S1 ¼
Z 1

0
exp �

GðyÞ

a

� �
1

y
�f 0

1

y

� �� �
dyþGa, ð39Þ

where f 0ðLÞ (1r f 0rL) represents the increase in the unstressed
length L0 of a crosslink as it elongates. A candidate form of f0 is
provided in Appendix B, with details of the derivation of (39); G in
(39) takes the modified form given in (B.9). The model predicts
broadly similar qualitative behaviour to that exhibited by XTH
enzymes, with the primary effect of enzyme being a reduction in
the pre-yield extensibility.
4. Discussion

The complex and dynamic structure of the plant cell wall
presents significant challenges in constitutive modelling. Here we
have taken a deliberately simple approach in order to understand
how hemicellulose crosslinks contribute to the mechanical prop-
erties of the wall, particularly the regulation provided by enzymes
exhibiting XET and XEH activity. In our model we have assumed
that CMF are oriented perpendicular to the direction in which the
wall is elongating, so neglecting shearing and torsion due to
helical fibre orientations, and that crosslinks are oriented ortho-
gonal to the CMF. We have represented the crosslinks as linear
springs, whereas they are likely to be nonlinear, for example
exhibiting strain-stiffening, and may also interact with the pectin
matrix as they unfold (Abasolo et al., 2009). We have also
assumed that the CMF, wall matrix and crosslinks are laid down
on the inner wall of the cell so as to ensure that the wall thickness
remains constant and the density of each component remains
uniform across the wall; the model can readily be extended to
include a more detailed description of deposition processes, and
could reveal how such metabolic factors might influence cell and
tissue expansion rates. We have also adopted an elementary
model of enzyme-mediated crosslink kinetics, including a simpli-
fying assumption that crosslink formation is confined to the inner
surface of the cell wall. While these assumptions are all open to
debate in particular circumstances, and merit reassessment in
future studies, it is nevertheless useful to explore their conse-
quences. Furthermore, the relatively simple model has enabled us
to derive rationally based analytic expressions for wall properties
that reveal underlying biophysical mechanisms. By developing a
generic model, we provide a framework that could be adapted to
incorporate features appropriate to specific plant organs.

Our model incorporates the extensional flow of the pectin
matrix within the elongating wall, and the associated transport of
CMF and crosslinks with the matrix, such that individual cross-
links elongate as they are driven towards the outer surface of the
cell wall. As a consequence, when the wall is elongating rapidly
the extensional stress is distributed nonuniformly through the
wall, with a maximum close to the outer wall (Fig. 5). This is
consistent with observations (Hejnowicz and Borowska-Wykret,
2005) showing how relaxation of tensile stress (via detachment)
induces buckling of the inner wall of sunflower hypocotyl,
indicating that the outer wall transmits the majority of the tensile
stress in the wall.

Combining our description of crosslink transport through the
wall with a representative model for force-enhanced crosslink
breakage (8), we have derived a relationship between stress and
strain rate in the wall that is strongly nonlinear, recovering the
distinctive yielding behaviour of the Lockhart model (1), as
illustrated in Fig. 6(b). The main origin of nonlinearity is the
assumption that crosslinks stretch by up to a factor 1=b, where
b51, before breaking rapidly (see (8)). The Lockhart equation (1)
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has the advantages of simplicity (being piecewise linear) and
parsimony (being described by just two phenomenological para-
meters, extensibility F and yield Y). The present model suggests
that the relationship between stress and strain rate in the cell
wall may not vary as sharply between pre- and post-yield states
as suggested by the Lockhart equation (Fig. 6b), making it harder
to identify a well-defined yield stress. However to a first
approximation, our model suggests that: (i) the low pre-yield
extensibility is determined by a balance between extension and
slow breakage of crosslinks that have not undergone substantial
stretch (32); (ii) yield arises from elastic stresses in crosslinks that
have reached their maximum extension (33)1; (iii) the wall’s high
post-yield extensibility is determined primarily by the matrix
(33)2.

In addition to demonstrating viscoplastic behaviour character-
istic of a Bingham material over long timescales, our model also
demonstrates how crosslinks contribute to viscoelastic behaviour
of the cell wall over short timescales. For an element of cell wall
initially at rest but then subject to a fixed strain rate, our model
shows (Fig. 7) how the stress exhibits a transient overshoot (as
crosslinks are stretched rapidly) followed by stress relaxation (as
extended crosslinks break). Again assuming b51, we demon-
strate how the wall’s (elastic) extensional stiffness E contributes
in a simple way to the pre-yield extensibility Fn

eff (32) and the
yield stress Y (33)1. (Interestingly, a similar relationship connect-
ing effective viscosity to Youngs modulus and rate of crosslink
dissociation was reported in Rojas et al. (2011) in a model of the
pectin wall of a pollen tube.) Indeed it might be possible to use
the prediction Y=E � logðLmax =CL0Þ to infer molecular properties
of crosslinks from macroscopic measurements. Our model could
be adapted to demonstrate transient creep under a fixed load
but this involves a more complex calculation that we have not
pursued here.

Given the many approximations inherent in the model, and the
difficulty of measuring key parameters, it is fruitful to test the
model at a qualitative than quantitative level. For example, Takeda
et al. (2002) showed how incorporation of whole xyloglucan
molecules into the cell wall of pea stem segments suppressed cell
elongation, whereas incorporation of fragments accelerated it. In
the former case, we can interpret incorporation of xyloglucan as
increasing the number density of crosslinks n0, which increases E
and hence the pre-yield extensibility Fn

eff and yield stress, leading
to growth suppression. In the latter case, incorporation of frag-
ments into existing cross-links can be interpreted as increasing L0,
which provides a mechanism of stress relaxation and hence
accelerated growth. There is significant scope for extending the
model to incorporate the potential regulatory role of the deposi-
tion processes, which would introduce metabolic factors to the
model that are potentially under experimental control.

We have also used our model to investigate the effect of
enzyme action on the cell wall. Both XET and XEH modes of
enzyme action reduce the effective pre-yield extensibility of the
wall, as illustrated by Fig. 8(a,b) and captured approximately by
(37). This behaviour enables the cell wall to elongate much more
rapidly for a given stress. The model suggests that the two modes
of enzyme action can exhibit broadly similar behaviour, suggest-
ing that, at low levels of expression, it may be difficult to identify
phenotypic differences between XET and XEH actions. Differences
between the two modes of enzyme action emerge in model
predictions only when crosslink-breakage rates are elevated sub-
stantially above baseline values by enzyme, in which case XEH
produces larger growth rates for the same imposed stress than
XET ((38), Fig. 8). We emphasise that these predictions are
dependent on numerous assumptions and are at best indicative
of likely behaviour, and substantial further work is required to test
their quantitative accuracy. However qualitative support comes
from experiments in which the locations of XTH enzymes have
been correlated with regions of rapid tissue expansion (Vissenberg
et al., 2000), and studies showing increased elongation rate after
addition of exogenous XTH (Van Sandt et al., 2007). Within a
growing organ, these different modes of enzyme action may have
complementary roles or be upregulated within different growth
regions in order to provide tight control of growth rates.

In our model we have considered crosslinks to be either bound
or unbound, whereas crosslinks may progressively unpeel from
CMF as the CMF move apart (Jarvis, 2009), providing an alter-
native mechanism for stress relaxation in the wall. By promoting
unpeeling, expansins are believed to soften the wall, hence
effectively increasing the unstressed length of each crosslink. As
illustrated in Fig. 8(c), our model predicts that expansin action
broadly mirrors XTH action, by increasing the pre-yield extensi-
bility. It would also be possible to consider the action of PME on
the matrix extensibility G and matrix yield, although we have not
pursued this here.

At a conceptual level, our overall approach follows ideas
proposed by Passioura and Fry (1992), but our implementation
is more systematic. By tracking the evolution of crosslinks as they
move through the elongating wall, we can resolve intramural
stress inhomogeneities. We also provide detailed candidate
mechanisms for the origins of the wall’s material properties in
terms of molecular binding kinetics, rather than an empirical
microscopic yield parameter. From a modelling perspective, it is
also more systematic to have constitutive equations that are not
explicit functions of time (as in Passioura and Fry, 1992), instead
allowing time-dependence to emerge naturally by analysing
transport along characteristics. An important area that we do
not address directly here is the role of PME in controlling stiffness
through its action on the pectin matrix (Boyer, 2009), and it will
be interesting in future models to assess the role of calcium
crosslinking (following for example Rojas et al., 2011) alongside
the hemicellulose crosslinking considered here. It will also be
important to embed models of pectin and hemicellulose cross-
linking into constitutive models that account for reorientation of
microfibrils (Dyson and Jensen, 2010) to understand fully how the
composition of the cell wall determines its mechanical properties.

In conclusion, our microstructural model has shown how yield
in the expanding plant cell wall can be explained in terms of the
evolving cell wall microstructure. Our model suggests that the
nonlinearity inherent in the Lockhart equation can be traced to
the mechanochemical kinetics underpinning crosslink breakage.
We believe this model will provide a useful bridge in under-
standing the action of enzymes on growth regulation at the scale
of complete plant tissues and organs.
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Appendix A. The XET boundary condition

To incorporate the effect of XET and XEH enzymes, (7)
(expressed in dimensional variables) is initially replaced with

�anyn dnn

dyn
¼
�kn

off n
n�k0ðgXEHþgXETÞn

n ð0rynoh�dhÞ,

ðk0=dhÞgXET

R h
0 nn dyn ðh�dhoynohÞ:

8<
: ðA:1Þ
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Every crosslink that is broken under XET enzyme action is
immediately reformed at its unstressed length; to allow analytical
progress, we assume that crosslinks are reformed within a thin
layer of width dh on the inner surface of the cell wall. Then,
integrating (A.1) between yn ¼ h�dh (where nn ¼ n0þN0, say) and
yn ¼ h (where nn ¼ n0), we find

�

Z n0

n0þN0

dnn ¼
k0gXET

andh

Z h

0
nn dyn

Z h

h�dh

dy0

y0
: ðA:2Þ

Taking the limit dh-0, (A.1) reduces to the modified Smolu-
chowski equation (21).
Appendix B. Simulating the action of expansin

Expansins are believed to target the hydrogen bonds that
connect hemicellulose crosslinks to CMF (Burgert and Fratzl,
2007). The ‘molecular velcro’ hypothesis (Jarvis, 2009) suggests
that crosslinks may unpeel from CMF, without completely dis-
rupting the bond but leading to stress relaxation in individual
crosslinks. In our model of a crosslink as a linear spring, we can
simulate unpeeling by increasing the spring’s unstressed length in
response to stretch. We briefly investigate the consequence of this
within the context of our simplified structural model.

We define Ln

0 to be a variable representing the evolving
unstressed length of a crosslink. One possible model for expansin
action is based on the assumption that the unpeeling rate is
proportional to the force exerted by the extended bond, i.e.

dLn

0

dtn
¼ gn

EXPðL
n
�Ln

0Þ, ðB:1Þ

where gn
EXP is a rate constant dependent on expansin concentra-

tion. Nondimensionalising as in (11), but now scaling lengths on
L, the length of unstressed bonds deposited on the inner surface
of the cell wall, the model equations for steady elongation (13)
become

dL

dt
¼ aL,

dL0

dt
¼ gðL�L0Þ, ðB:2Þ

where g ¼ gn
EXP=kn

0, with

dn

dt
¼�n expðb2sðL�L0Þ

2
Þ, ðB:3Þ

on dy=dt¼�ay, with

SðtÞ ¼
Z 1

0
nðy,tÞðL�L0Þ dyþGa: ðB:4Þ

Thus, as in (14),

dn

dL
¼�

n

aL
expðb2

ðL�L0Þ
2
Þ ðB:5Þ

and

dL0

dL
¼

g

aL
ðL�L0Þ ðB:6Þ

with L¼ 1=y. Given that L0 ¼ 1 when L¼1, it follows from (B.6)
that

L0 ¼ f 0ðLÞ �
gL

aþg
þ 1�

g

gþa

� �
L�g=a: ðB:7Þ

This particular functional form is a consequence of our choice of
unpeeling kinetics model (B.1), and other functions f0 satisfying
1r f 0rL would emerge from different assumptions on unpeeling
kinetics.

We can then integrate (B.5), expressed as

dn

dL
¼�

n

aL
exp b2 L�f 0ðLÞ

� �2
� �

, ðB:8Þ
by redefining G in (16) as

GðyÞ �

Z 1

y

exp b2
ð1=zÞ�f 0ð1=zÞ
	 
2� �

z
dz, ðB:9Þ

to give (17) as before, with (19) becoming (39). Graphs of S1,
taking f0 as defined in (B.7), are plotted versus a in Fig. 8(c) for
increasing values of g.
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J.W.C., Mouille, G., Pauly, M., Höfte, H., et al., 2009. Pectin may hinder the
unfolding of xyloglucan chains during cell deformation: implications of the
mechanical performance of arabidopsis hypocotyls with pectin alterations.
Mol. Plant 2, 990.

Baskin, T.I., 2005. Anisotropic expansion of the plant cell wall. Ann. Rev. Cell Dev.
Biol. 21, 203–222.

Boyer, J., 2009. Evans review: cell wall biosynthesis and the molecular mechanism
of plant enlargement. Funct. Plant Biol. 36, 383–394.

Burgert, I., Fratzl, P., 2007. Mechanics of the expanding cell wall. Expanding Cell,
191–215.

Carpita, N.C., Gibeaut, D.M., 1993. Structural models of primary-cell walls in
flowering plants - consistency of molecular-structure with the physical-
properties of the walls during growth. Plant J. 3, 1–30.

Catala, C., Rose, J.K.C., Bennett, A.B., 1997. Auxin regulation and spatial localization
of an endo-1,4-beta-D-glucanase and a xyloglucan endotransglycosylase in
expanding tomato hypocotyls. Plant J. 12, 417–426.
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