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Abstract 

In this study, cellulose nanocrystals (CNC) were synthesized by acid hydrolysis of microcrystalline cellulose (MCC) powder. 
The morphology of MCC and CNC was examined using energy filtered transmission electron microscopy (EFTEM). Further, 
poly (lactic acid) (PLA)/CNC nanocomposite was prepared using solution casting technique. The thermal properties (i.e., glass 
transition temperature, melting temperature, degree of crystallinity, thermal decomposition) of the PLA/CNC nanocomposites 
were characterized using differential scanning calorimeter (DSC) and thermogravimetry analyzer (TGA).  EFTEM studies 
showed that the CNC exhibited needle-like structure (approximately 10-20 nm in width and 250-300 nm in length), which is a 
typical measurements found in wood based nanocellulose. DSC analysis showed that CNC (up to 5wt%) is capable of acting as 
nucleating agent for PLA. TGA analysis showed that the of decomposition temperatures PLA/CNC nanocomposites were higher 
than that of pure PLA. 
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Nomenclature 

CNC       Cellulose Nanocrystals 
DSC        Differential Scanning Calorimetry 
EFTEM  Energy Filtered Transmission Electron Microscope 
MCC   Microcrystalline Cellulose 
NC  Nanocellulose  
PLA  Poly(Lactic Acid) 

1. Introduction 

Biopolymers have been attracting many researches and development works due to their fascinating properties 
such as biodegradability and biocompatibility. As a result, biopolymers have been regarded as an ideal candidate for 
replacement of conventional petroleum based plastics. Nanoscaled materials which were produced from biological 
origin were found to be suitable as a filler material in polymer matrix.1, 2 

The term nanocellulose is often related to cellulosic materials having at least one dimension in nanometers. In 
nanometer scale, nanocellulose (NC) provides a wide range of possible properties to be explored where some 
material properties are affected by laws of atomic physics rather than following the behaviour of traditional bulk 
materials.3 Nanocellulose (NC) can be further categorized into three subcategories based on cellulose source and on 
the production methods, which are cellulose nanocrystals (CNC), nanofibrillated cellulose and bacterial 
nanocelullose.4 

CNCs are rod-like cellulose crystals with 10-120 nm in width and several hundred nanometers in length. CNCs 
are highly crystalline. Through strong acid hydrolysis, they are produced from biological sources like bleached 
wood pulp, cotton, manila, tunicin, bacteria, etc. Nanocellulose components and most amorphous cellulose from 
source materials were removed in the acid treatment, hence producing high purity cellulose crystals5.  

Nanocellulose had been extensively used as filler to improve strength of materials due to their high aspect ratio6. 
Examples of nanocellulose composites that have been produced are polyurethane/pineapple leaf nanofibrils  
composites7, polyvinyl alcohol/curava nanofibers composites8 and thermoplastic starch/cotton nanofibers 
composites9. Generally, nanocellulose is able to act as value added reinforcement material in polymer matrices due 
to its superior mechanical and thermal properties.10 

Poly (lactic acid) (PLA) is part of the aliphatic polyesters family, usually produced from α-hydroxy acids, consists 
of polyglycolic acid or polymandelic acid. PLA can be produced from renewable resources, has recently gained 
growing attention due to its biodegradability, biocompatibility, transparency, high modulus and strength. PLA is one 
of the most anticipated biopolymer that provides high potential for commercial major scale production of renewable 
packaging. Since then, organic filler materials have been chosen to be added to PLA matrix in order to produce new 
materials. Incorporation of nanocellulose into PLA matrix presents a novel approach in the fabrication of next 
generation polymer materials.11-14 

The objective of this study was to produce CNC using micro-crystalline cellulose (MCC) by acid hydrolysis 
method. PLA/CNC nanocomposites were prepared by solution casting technique. Solution casting method is 
hypothesized to be able to provide more homogenous distribution of CNC in PLA matrix compared to melt 
blending.15 The effects of CNC loading on the thermal properties (i.e., glass transition temperature, melting 
temperature, degree of crystallinity, degradation temperature) of PLA were studied. The ability of CNC as 
nucleating agent for PLA and also its effect on PLA thermal stability were evaluated.  
 

2. Experimental design 

2.1. Materials 

Poly (lactic acid) PLA, (IngeoTM 3051D) was purchased from NatureWorks LLC®, USA. The specific gravity 
and melt flow index of the PLA are 1.25 and 25 g/10min (2.16 kg load, 210ºC), respectively. The glass transition 
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temperature (Tg) and melting temperature (Tm) of PLA are approximately 60ºC and 155ºC, respectively. PLA pellets 
were dried in an oven at 80ºC for 24h. Microcrystalline cellulose powder (MCC) was supplied by Sigma-Aldrich, 
USA. MCC was used as starting material for the preparation of CNC.  

2.2.  Cellulose nanocrystal synthesis and characterization 

5g MCC powders were acid hydrolyzed for 5h using sulfuric acid (H2SO4) at 60% (w/v). Next, 500ml distilled 
water were added to quench the process. The hydrolyzed cellulose was then centrifuged at 3500 rpm for at least 5 
times wash until the solution turns turbid. The generated aqueous suspension of CNC was ultrasonicated for 5 
minutes before being stored in refrigerator. The morphology of CNC was examined using energy filtered 
transmission electron microscope (EFTEM, Libra 120-Carl Zeiss, USA).     

2.3. PLA/CNC nanocomposites preparation  

Prior to solution casting, CNC were dried for 24 h in ambient temperature. CNC were then dissolved in 
chloroform. At the same time, PLA was dissolved in chloroform in another beaker. After CNC and PLA were 
completely dissolved, both solutions were mixed together and poured onto Petri dishes. The PLA/CNC was then 
dried for 24 h under room temperature. Solution cast film samples of PLA with 1, 2 and 5 wt% CNC contents were 
prepared as described above. Table 1 shows the material designation and composition of PLA/CNC nancomposites. 
Figure 1 shows the CNC extraction process and the solution casting process of PLA/CNC nanocomposites.  
 

Table 1. Material designation and composition for PLA/CNC composites. 
Material designation  Composition 

PLA (wt%) CNC (wt%) 

PLA 100 - 

PLA/CNC-1 99 1 

PLA/CNC-2 98 2 

PLA/CNC-5 95 5 

 

2.4. DSC measurements  

Differential scanning calorimeter (TA instruments, model: DSC 200, USA) was used to evaluate the thermal 
behaviour of PLA/CNC nanocomposites. The specimens were scanned from 30ºC to 190ºC at a heating rate of 
10ºC/min. The glass transition temperature (Tg), melting temperature (Tm) and cold-crystallization temperature (Tcc) 
were determined. The degree of crystanility (χc) of PLA/CNC nanocomposites was calculated using Equation 1. 

 

100%m
c

f PLA

HX WH

       (1) 

 
where χc is degree of crystallinity; ΔHm is the heat of fusion of the sample; ΔHf corresponds to the heat of fusion of 
100% crystalline material, and WPLA is the net weight fraction of the PLA. The heat of fusion of 100% crystalline 
PLA (ΔHf) is approximately 93.6 J/g11. 
 

2.5. TGA measurements 

Thermogravimetric Analyzer (Mettler Toledo, model: TGA/DSC 1, USA) was used to evaluate the thermal 
decomposition of PLA/CNC nanocomposites. The specimens were heated from 30ºC to 600ºC at a heating rate of 
10ºC/min under nitrogen atmosphere.   
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Fig. 1. CNC extraction and solution casting process of PLA/CNC nanocomposites thin film. 

3. Results and discussion 

3.1 Morphological characterization of MCC and CNC 

       Figure 2a shows the TEM micrograph of the MCC powder prior to acid hydrolysis. Most of the MCC powder 
are irregular shaped-like particles consists of up to 200 nm in width and 400 nm in length. From Figure 2b it can be 
seen that the CNC exhibited rod-like structure, at 10-20 nm in width and 250-300 nm in length, which is the typical 
measurements found in wood based nanocellulose.16 When acid hydrolysis takes place, amorphous portions of the 
long chain cellulose are preferably hydrolyzed, while the crystalline regions having higher resistance to acid attack, 
hence producing rod-like particles, CNC in nanoscale region.17 Based on these findings, it is clear that acid 
hydrolysis can effectively reduce a large amount of fiber sizes (from micron-size to nano-size), which is in 
agreement with previous findings by other authors. On top of that, it can be seen that the cellulose rods were 
agglomerated in some places while in some other regions they are separated. Generally, during drying of cellulose, 
molecular contact between CNCs increases due to forces resulting from removal of water and high temperature. 
Hence, drying process of CNCs are regarded as one of the most important and challenging steps in order to fully 
utilise this material in producing reliable products.18 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. TEM micrograph taken from (a) MCC; (b) CNC. 
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3.2. Thermal characterization of PLA/CNC nanocomposites 

3.2.1. Differential Scanning Calorimetry (DSC) 

Thermal characteristics (e.g. Tg, Tc, Tm) of PLA and PLA/CNC nanocomposites are summarized in Table 3. 
Based on Table 3, no significant changes of glass transition temperature of the PLA and PLA/CNC nanocomposites 
were observed. Glass transition temperature (Tg) is commonly identified as a complex phenomenon that relies on 
several factors such as intermolecular interaction, chain flexibility and molecular weight of the material itself.19 It is 
expected that the Tgof PLA is not much affected by the addition of CNC. Similar findings were reported by Liu et 
al20 where they incorporated 2.5 to 5.0 wt% of flax cellulose into PLA. The Tg of PLA/flax cellulose is similar to 
that of pure PLA. 

It should be mentioned that cold-crystallization temperature (Tcc) of PLA and PLA/CNC nanocomposites is 
hardly observable. This indicates that the material is highly crystalline after the solution casting technique. From 
Table 3, it can be seen that the degree of crystallization (Xc) of PLA was affected by the CNC loading. At 5 wt% 
CNCs, higher crystallinity (34.5%) were obtained compared to neat PLA (30.9%), which could be due to presence 
of CNCs that accelerates the crystallization of PLA. This phenomenon can be ascribed to the anchoring effect of the 
cellulosic nanofillers, likely to be acting as a nucleating agent.21-22 According to Du et al23, cellulose in PLA can act 
as heterogeneous nucleus and promote PLA chains crystallization at lower temperature. Nevertheless, it can be seen 
that the χc of PLA/CNC-1 and PLA/CNC-2 is slightly lower than that of PLA. This can be due to insufficient amount 
of nanofillers to act as nucleating agent24. 

 

Table 2. Thermal characteristics of PLA and PLA/CNC nanocomposites. 

Materials designation Thermal characteristics 
Tg Tm ∆Hm χc 

(°C) (°C) (J/g) (%) 
PLA 58.5 149.9 29.1 30.9 
PLA/CNC-1 59.1 151.8 23.3 27.7 
PLA/CNC-2 59.4 149.7 21.2 29.1 
PLA/CNC-5 58.1 144.4 23.0 34.5 

3.2.2. Thermogravimetric Analysis (TGA) 

TGA is an important analysis used to investigate thermal decomposition of polymeric materials. The weight loss of 
a substance due to formation of volatile product after degradation is monitored as a function of temperature or time. 
The TGA results of PLA and PLA/CNC nanocomposites are summarized in Table 4. Note that T10 is the 
corresponding temperature at which weight loss of material is 10%. The Td referred to end decomposition 
temperature whereas Tmax is the temperature taken from DTG curves (maximum peak). From Table 4, it can be seen 
that the T10 and Td of PLA was increased as the increasing loading of CNC. This indicates that CNC increases the 
thermal stability of PLA and slows down the rate of thermal degradation.25 Similar finding was reported by Mandal 
and Chakrabarty26 on the polyvinyl alcohol/nanocellulose composites. 

 Table 3. TGA results for PLA and PLA/CNC composites. 

Material designation T10 
(°C) 

Td 
(°C) 

Tmax 
(°C) 

PLA 324.0 353.0 338.0 
PLA/CNC-1 328.0 361.0 349.0 
PLA/CNC-2 332.0 373.0 358.7 
PLA/CNC-5 332.0 376.0 358.9 
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4. Conclusions 

     Cellulose nanocrystals (CNC) were successfully synthesized by acid hydrolysis of microcrystalline cellulose 
(MCC) powder. Most of the MCC powder are irregular shaped-like particles consists of up to 400 nm in length and 
200 nm in diameter. On the other hand, the synthesized CNC exhibited rod-like structure (approximately 8 nm in 
width and 250nm in length) which is the typical measurements found in wood based nanocellulose. Adding CNC 
into PLA did not change the Tg and Tm, however, it is worth to note that the CNC is able to act as nucleating agent 
for PLA (at 5wt% CNC loading). Besides that, presence of CNC also favours improvements in the thermal stability 
of PLA. 
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