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a b s t r a c t

The rapidly evolving field of molecular imaging promises important advances in the diagnosis, character-
ization and pharmacological treatment of vascular disease. Magnetic resonance imaging (MRI) provides
a modality that is well suited to vascular imaging as it can provide anatomical, structural and functional
data on the arterial wall. Its capabilities are further enhanced by the use of a range of increasingly sophisti-
cated contrast agents that target specific molecules, cells and biological processes. This article will discuss
one such approach, using microparticles of iron oxide (MPIO).

MPIO have been shown to create highly conspicuous contrast effects on T2
*-weighted MR images.

We have developed a range of novel ligand-conjugated MPIO for molecular MRI of endothelial adhesion
molecules, such as vascular cell adhesion molecule-1 (VCAM-1) and P-selectin expressed in vascular
icroparticles of iron oxide
therosclerosis
hrombosis
ascular inflammation

schemia-reperfusion injury

inflammation, as well as activated platelet thrombosis. This review discusses the application of ligand-
targeted MPIO for in vivo molecular MRI in a diverse range of vascular disease models including acute
vascular inflammation, atherosclerosis, thrombosis, ischemia-reperfusion injury and ischemic stroke. The
exceptionally conspicuous contrast effects of ligand-conjugated MPIO provide a versatile and sensitive
tool for quantitative vascular molecular imaging that could refine diagnosis and measure response to
treatment. The potential for clinical translation of this new class of molecular contrast agent for clinical

imaging of vascular syndromes is discussed.

© 2009 Elsevier Ireland Ltd. 
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. Introduction

In clinical practice, the early identification and characteriza-
ion of atherosclerotic lesions at risk of progressing to cause

yocardial infarction (MI) and ischemic stroke remains challeng-
ng. X-ray arteriography is the standard clinical imaging technique
sed to estimate the degree of luminal stenosis, but detects only
he silhouette of the vessel wall against the lumen and does
ot provide information on plaque composition. More sophis-
icated non-invasive imaging techniques are required that can
ccelerate and refine diagnosis, guide intervention and monitor
esponse to therapies that may stabilize lesions and prevent future
therothrombotic events [1].

Molecular imaging is a rapidly evolving field, which presents
pportunities to shift emphasis from imaging plaque structure to
eporting directly the biological processes of vascular disease at the
olecular and cellular levels [2]. Specific targeting of molecules

s achieved through the development of purpose-built molecular
maging probes, usually consisting of a contrast agent conjugated to
pecific targeting ligands [1]. Advances in nanotechnology have led
o the development of an array of nano- and micrometer-sized par-
icle contrast agents for application in molecular imaging. The most
uccessful approaches have involved the development of molecular
maging agents that can deliver substantial payloads of paramag-
etic gadolinium (Gd) chelates or superparamagnetic iron oxide to
specific molecular target (Fig. 1). Functionalization of the particle

urface with reactive surface groups enables covalent conjugation
f a variety of targeting ligands including antibodies, peptides,
ptamers and small molecule peptidomimetics to the particle sur-
ace.

In atherosclerosis, a diverse range of molecular targets are
xpressed both at the endothelial surface and by cells within
he vessel wall of the artery. Importantly, there is differential
xpression of some of these targets from early lesion formation to
dvanced vulnerable plaques and thrombotic complications [1,3,4].
or instance, early markers of atherogenesis include endothelial cell
dhesion molecules, such as P- and E-selectin, vascular cell adhe-
ion molecule-1 (VCAM-1) and intercellular adhesion molecule-1
ICAM-1), which facilitate mononuclear leukocyte recruitment to
ctivated endothelium and subsequent transmigration into the
ubendothelial space [5–7]. Molecular imaging of endothelial adhe-
ion molecules has been at the forefront of this field, since the
pregulation of these molecules is an early event in a broad range of
ascular diseases including atherosclerosis, ischemia-reperfusion
njury, ischemic stroke and cancer. Furthermore, their endothe-

ial location makes them accessible to blood-borne contrast agents.
owever, one of the challenges for molecular imaging of endovas-
ular targets is to deliver targeted contrast agents in sufficient
ensity to detect molecular expression of relatively low-abundance

ig. 1. MRI relies on the delivery of relatively high payloads of either (A) gadolinium chel
d requires interaction with local water molecules to produce contrast effects. Iron oxi
hells. USPIO: ultrasmall particles of iron oxide; CLIO: cross-linked iron oxide nanopartic
rosis 209 (2010) 18–27 19

targets confined to a two-dimensional endothelial monolayer and
to achieve this under high physiological shear stresses.

Shapiro et al. showed that microparticles of iron oxide (MPIO)
provide excellent contrast effects [8]. In this paper, we will
focus on the application of ligand-targeted MPIO for molecular
MRI of endothelial adhesion molecules in experimental models
of acute vascular inflammation [9], ischemia-reperfusion injury
[10], atherosclerosis [11] and ischemic stroke [12]. We also high-
light a similar ligand-targeted MPIO strategy for MRI detection
of activated platelet thrombosis. Finally, we discuss the scope for
application of ligand-targeted MPIO in clinical imaging of vascular
syndromes.

2. Molecular imaging modalities

A range of imaging techniques are currently used to
image atherosclerosis including intravascular ultrasound (IVUS),
multiple-row detector computed tomography (MDCT), positron
emission tomography (PET), MRI and optimal coherence tomog-
raphy (OCT) [13]. Of these only nuclear techniques have proven
record in clinical molecular imaging. PET can assess atheroscle-
rotic inflammatory plaque activity using exogenously administered
18Fluorine preparations, such as 2-[18F]fluoro-2-deoxy-d-glucose
(FDG). This glucose analogue accumulates in metabolically active
tissue, yielding a signal that is proportional to glycolytic activ-
ity. It has been shown that inflamed, metabolically active, plaques
may be detectable by 18FDG-PET. Rudd et al. demonstrated the
ability of 18FDG-PET imaging to highlight inflammatory activ-
ity in unstable carotid plaques in patients undergoing carotid
endarterectomy, relative to the contralateral asymptomatic artery
[14]. 18FDG was taken up by atherosclerotic plaque and selec-
tively accumulated in macrophage-rich areas. Indeed, the first
investigations of treatment effects of on plaque activity are begin-
ning to emerge [15]. The advantages of PET are related to its
extreme sensitivity and quantitative outputs. Opportunities to
apply PET in the evaluation of atherosclerosis and its treat-
ment should extend beyond macrophage imaging through the
development of novel ‘radio-ligands’. For example, the develop-
ment of imaging probes that target matrix metalloproteinases
[16], serine proteases [17] and apoptosis [18–20], could allow
the visualization of response to treatment in ‘high risk’ plaques.
While PET has much higher detection sensitivity (picomolar range)
than MRI, and much better tissue penetration than ultrasound or
OCT, the disadvantages of PET are its limited spatial resolution,
ates or (B) iron oxide. Gd chelates decorate the surface of the carriage vehicle since
de particles (size range, ∼10 nm to 5 �m) are typically contained within polymer
les; MPIO: microparticles of iron oxide[4].

expense.
MRI has emerged as a leading non-invasive imaging modality

for assessing vascular pathologies, due to its excellent spatial res-
olution (sub-millimeter) and soft tissue contrast and high signal
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o noise ratio. Using multi-contrast sequences, MRI can differen-
iate atherosclerotic plaque composition, based on differences in
iophysical and biochemical properties such as chemical compo-
ition and concentration, water content, physical state, molecular
otion or diffusion [1]. High resolution MRI can also accurately

uantify plaque components such as fibrous cap thickness and
ize of the lipid core [21,22]. Since MRI does not involve ioniz-
ng radiation, serial imaging can be performed safely over time

ithin the same patient. Furthermore, intravenous Gd-based or
ron oxide-based MRI contrast agents can be used to improve image
ensitivity to enhance differences between healthy and diseased
essels.

. Gadolinium based contrast agents

Gd chelates, such as gadolinium diethylene-triamine-penta-
cetic acid (Gd-DTPA), provide positive signal enhancement on T1
eighted MR images due to their effects on shortening water pro-

on T1 relaxation times. However, Gd chelates have inherently low
ensitivity (micromolar range). For molecular imaging, a number of
trategies have been employed to amplify the Gd contrast effects
nd to deliver sufficient quantities of Gd in vivo in order to detect
iological activity of lesions. A range of nanoparticles carrying sub-
tantial payloads of amphipathic Gd chelates embedded in their
uter membrane have been constructed, including liposomes [23],
erfluorocarbon lipid emulsions [24] and micelles [25,26]. Lipopro-
ein micelles enriched with hydrophobic Gd chelates have also been
eveloped for the detection of macrophages within atheroscle-
otic plaques [27–29]. However, the relaxivity effects achievable
re relatively modest, compared to superparamagnetic particles
f iron oxide (SPIO) [27,30]. A further potential disadvantage of
ydrophobic Gd chelates is the recently observed severe long-
erm toxicity effects (including nephrogenic sclerosing fibrosis:
SF) in patients with impaired renal function [31]. However, it
ay be the case that targeted contrast agents could be used at

ower total Gd-dose, reducing the potential for this type of toxi-
ity.

. Nano- and micrometer-sized particles of iron oxide

Superparamagnetic iron oxide-based agents consist of a core of
ron oxides, surrounded by a dextran or polymer coat. Iron oxide
gents, shorten T2 and T2

* relaxation times, creating hypointense
reas that appear black on the MR image on T2- and T2

*-weighted
R images. Iron oxide agents include ultrasmall superparam-

gnetic particles of iron oxide (USPIO) (20–50 nm diameter),
uperparamagnetic particles of iron oxide (SPIO) (60 to approx-
mately 250 nm) and micrometer-sized particles of iron oxide
MPIO) (0.9–8 �m). Iron oxide agents have superior sensitivity in

R contrast, compared to Gd [32,33]. In particular, MPIO convey
payload of iron oxide (typically 0.1–1.6 pg iron/MPIO parti-

le), which is orders of magnitude greater than that contained in
anometer-sized particles [8]. The effects of MPIO on local mag-
etic field homogeneity and detectable contrast extend a distance
p to 50 times the physical diameter of the microparticle, known
s a contrast “blooming effect” [34]. MPIO have been shown to be
seful for cellular MRI, enabling in vivo detection of single cells [35]
nd cell tracking [8] using only a small number of MPIO.

For molecular imaging of endovascular targets, MPIO offer a
umber of important attributes. First, the relatively large size

nd incompressible nature of MPIO, makes them less suscepti-
le to non-specific vascular egress or uptake by endothelial cells
han nanometer-sized particles [36], thus they can retain speci-
city for endothelial molecular targets. Secondly, unbound MPIO
ave been shown to clear rapidly from the blood (blood half-life
rosis 209 (2010) 18–27

<2 min in rats), thus minimising background blood phase contrast
[37]. Conversely, USPIO have a long blood half-life (up to 24 h),
which for MRI of endothelial molecular targets, may cause high
background contrast for an extended period, making it difficult to
distinguish specific contrast effects from normal tissue heterogene-
ity and other susceptibility artefacts. However, “positive” contrast
MRI sequences are being developed to generate MR signal enhance-
ment from regions containing iron oxide particles [38,39]. Thirdly,
due to the contrast “blooming effect” of MPIO, a small number
of MPIO can create potent hypointense contrast effects on T2

*-
weighted images, thereby greatly enhancing sensitivity, especially
for low-abundance endothelial molecular targets. MPIO contrast
effects may be readily distinguished on T2

*-weighted images using
in vivo gradient-echo MRI. MPIO have been demonstrated to pro-
vide a platform for quantitative molecular imaging of vascular
endothelial targets, whereby the extent of contrast effects may
directly report specific molecular endothelial expression [9–11].

Recently, SPIO with optimised high relaxation properties
have been developed for quantitative in vivo MRI of lipoprotein
metabolism [40] and ultra-sensitive detection of bacteria [41]. Cor-
mode et al. have demonstrated that iron oxide nanocrystals can be
used instead of Gd to label high density lipoprotein (HDL) particles
for molecular imaging of macrophage expression in atherosclerosis
[42]. Whilst effective for the applications reported, the small size of
these particles is likely to be limiting to their application in molec-
ular endothelial imaging, where the delivery of sufficient contrast
volume is challenging, on the ‘planar’ target that is on the surface
of the blood vessel wall.

5. Targeted micrometer-sized particles of iron oxide

The targeting of MPIO to specific molecules may be accom-
plished by the conjugation of ligands to functional groups on the
surface of the microparticle. MPIO are commercially available with
a variety of reactive surface groups including carboxylic acid, amine
and p-toluene sulphydryl (tosyl) groups. These functionalized MPIO
offer opportunities to covalently conjugate a range of targeting
ligands including monoclonal antibodies or their immunospecific
fragments F(ab), aptamers or small peptides generated by phage
display or small molecule screens. Phage display provides a pow-
erful method for the production of novel antibody or peptide
ligands from libraries of bacteriophage (viruses that infect bacterial
cells) using standard recombinant DNA technology. Functionalized
MPIO therefore provide a versatile platform that can be readily
adapted for molecular imaging of a variety of endovascular molec-
ular targets in experimental, pre-clinical investigations of vascular
inflammatory diseases. In Table 1, applications of targeted and
non-targeted MPIO for molecular and cellular imaging of vascular
syndromes are listed.

We have applied tosyl-activated MPIO for direct covalent
conjugation of monoclonal antibodies directed against vascular
endothelial adhesion molecules, including P-selectin and VCAM-1,
which are involved in leukocyte recruitment during early vascular
inflammation. Below, we review the application of tosyl-activated
MPIO for in vivo molecular MRI detection of vascular endothe-
lial adhesion molecule upregulation in diverse models of clinically
important vascular pathologies including acute vascular inflam-
mation [9], atherosclerosis [11], ischemia-reperfusion injury [10]
and ischemic stroke [12]. We also highlight the application of simi-

lar cobalt-functionalized MPIO for direct covalent conjugation to
histidine (His) tagged single-chain antibodies, targeted towards
activated platelets in mouse models of atherothrombosis [43,44].
Finally, we discuss the potential clinical translation of ligand-
targeted MPIO as a versatile adjunct in the clinical imaging arena.
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Table 1
Approaches to molecular and cellular imaging of vascular syndromes using microparticles of iron oxide.

Biological process Target MPIO agent MR field strength (T) Disease model

Targeted
Inflammation VCAM-1 VCAM-MPIO (1 �m) 7 T in vivo Acute inflammation [9]

7 T in vivo EAE [88,89]
9.4 T in vivo IRI [10]
7 T in vivo Experimental stroke [12]

P-selectin + VCAM-1 P/V-MPIO (4.5 �m) 11.7 T ex vivo Atherosclerosis [11]
Activated platelets GP IIb/IIIa LIBS-MPIO (1 �m) 9.4 T ex vivo Atherothrombosis [37]

7 T in vivo Infection [90]
1.5 and 3 T ex vivo Human platelets [38]
9.4 T in vivo Thrombosis [38]

Untargeted
Macrophage tracking Macrophages MPIO (0.9 �m) 4.7 T in vivo Cardiac allograft rejection [36]

4.7 T in vivo Heart transplant rejection [91]
Stem cell migration Stem cells 1.5 T in vivo Myocardial infarction [92]

MPIO: microparticles of iron oxide; VCAM-1: vascular cell adhesion molecule-1; IRI: ischemia-reperfusion injury; EAE: experimental allergic encephalomyelitis; LIBS:
ligand-induced binding sites; P/V-MPIO: P-selectin and VCAM-1 antibody-conjugated MPIO.

Fig. 2. Imaging of VCAM-1 in acute inflammation. (A) Confocal microscopy of TNF-� stimulated sEND-1 cells. Green fluorescence reflects VCAM-1 expression on the cell
surface. Prior incubation of VCAM-MPIO with Fc-ICAM-1 had no effect on VCAM-MPIO binding (autofluorescent green spheres), whereas pre-incubation with Fc-VCAM-1
abolished VCAM-MPIO retention, despite demonstrable VCAM-1 surface expression. Graph depicts retained VCAM-MPIO (mean ± S.D.) with and without pre-incubation with
soluble Fc-VCAM-1 or Fc-ICAM-1 (*P < 0.0001). (B) In vivo T2

*-weighted MR coronal images (4 images per brain; resolution ∼90 �m3). Intense low signal areas (highlighted
with red box) on the left side of the brain reflect specific MPIO retention (VCAM-MPIO (row 1) VCAM + P-selectin MPIO (row 2)) on acutely activated vascular endothelium
with almost absent contrast effect in the contralateral hemisphere (green box). No contrast effects were observed with IgG-MPIO control (row 3) or pre-treatment with
VCAM-1 antibody prior to VCAM-MPIO administration, which effectively blocked VCAM-MPIO binding (row 4). Scale bar, 5 mm. (C) Three-dimensional volumetric maps of
VCAM-MPIO contrast effects (red) delineate the architecture of cerebral vasculature in the IL-1�-stimulated hemisphere (left half of top image) with almost total absence
of binding on the contralateral, non-activated side. The midlines are indicated by vertical sections. Pre-administration of VCAM-1 antibody abolished VCAM-MPIO retention
(lower image). Quantitative analyses of MPIO contrast effects found that specific VCAM-MPIO contrast was increased >100-fold, compared with brains without IL-1� injection.
Dual-targeted VCAM + P-selectin MPIO also bound specifically but did not further enhance contrast effects. Substitution of IgG-MPIO (IgG/IL-1�+), sham intracerebral injection
(VCAM/NaCl), no intracerebral injection (VCAM/IL-1�−) and pre-blocking (VCAM/IL-1�+ with block) were not associated with specific contrast effects. Bars indicate mean
values for each group (*P = 0.02) [9].
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Fig. 3. Dual-targeted MPIO binding in mouse atherosclerosis. (A) Dual-ligand MPIO recognizing VCAM-1 and P-selectin showed 7-fold enhanced binding to aortic root plaque
endothelium compared to single-ligand MPIO targeting either VCAM-1 or P-selectin, following left ventricular injection. **P < 0.01; *P < 0.05. (B) Dense dual-targeted MPIO
binding to endothelium overlying atherosclerotic plaque. Scale bar, 20 �m. (C) Ex vivo MRI of aortic roots 30 min after i.v. injection of MPIO. Dual-targeted MPIO binding
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. Molecular imaging of acute vascular inflammation

Acute inflammation of the central nervous system (CNS) is
ssociated with enhanced expression of endothelial adhesion
olecules. Endothelial VCAM-1 and its ligand, �4�1 integrin (also

alled very late antigen-4, VLA-4) are key mediators of leukocyte
ecruitment and lesion development [45]. VCAM-1 is not constitu-
ively expressed on the vascular endothelium but is up-regulated
pon endothelial activation [46]. Furthermore, selective VCAM-1

nhibitors such as natalizumab that bind to the �4 subunit of
4�1 integrin are effective anti-inflammatory agents, for instance

n the treatment of multiple sclerosis [47]. For these reasons,
CAM-1 is an attractive molecular imaging target of acute vascular

nflammation.
VCAM-1 targeted MPIO can conspicuously show upregulation

f VCAM-1 in a mouse model of early cerebral inflammation
y molecular in vivo MRI, at a time when pathology is oth-
rwise undetectable by conventional imaging techniques [9].
PIO (1 �m diameter), with reactive tosyl groups, were cova-

ently conjugated to mouse monoclonal antibodies against VCAM-1
VCAM-MPIO) or IgG isotype negative control. The capacity of
CAM-MPIO constructs for specific and quantitative binding
as tested in vitro using a mouse endothelial cell line (sEND-

), stimulated with graded doses of tumor necrosis factor-�

TNF-�). Differential interference confocal microscopy showed a
NF-� dose-dependent increase in VCAM-MPIO binding, which
o-localized with VCAM-1 immunofluorescence on the endothe-
ial cell surface. Furthermore, VCAM-MPIO binding to stimulated
ells was inhibited when the VCAM-MPIO were pre-incubated
osclerotic plaque. Minimal contrast effects were observed with negative isotype
s through the aortic root [21].

with soluble decoy VCAM-1 (mouse recombinant Fc-VCAM-1)
(Fig. 2A).

For in vivo experiments, pro-inflammatory interleukin 1� (IL-
1�) was stereotactically injected into the left corpus striatum of
NMRI mice to induce acute vascular inflammation. The contralat-
eral hemisphere received no injection and served as an internal
control. VCAM-MPIO or negative control IgG-MPIO (∼4.5 mg/kg
body weight) were intravenously injected 3 h after IL-1� injec-
tion and allowed to circulate for 1.5–2 h prior to MRI. To block
VCAM-1 binding sites, a further group of mice were pre-treated
with VCAM-1 antibody 3 h after IL-1� injection and VCAM-MPIO
administered 15 min later. In vivo MRI was performed at 7 T
using a T2

*-weighted 3D gradient-echo sequence (acquisition
∼1 h; isotropic resolution 88 �m3). VCAM-MPIO produced highly
specific hypointense signal areas in the IL-1� activated hemi-
sphere, which delineated the architecture of activated cerebral
blood vessels, with minimal contrast effects in the contralat-
eral, unstimulated hemisphere (Fig. 2B and C). Mice that received
negative control IgG-MPIO and mice pre-treated with VCAM-1
antibody prior to VCAM-MPIO injection also showed minimal con-
trast effects. The specificity and potency of VCAM-MPIO contrast
effects were derived from a combination of targeted delivery of
MPIO containing a large amount of iron oxide to sites of early
inflammation and rapid clearance of MPIO from the blood which

minimizes background signal. Previously, Gd-based nanoparticles
conjugated to Sialyl Lewisx (sLeX) mimetic moiety (Gd-DTPA-
sLexA) have been reported to detect early endothelial activation
of E-selectin in a rat model of brain inflammation [48]. Detec-
tion of ICAM-1 upregulation has also been reported by ex vivo
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Fig. 4. MRI of activated platelets using MPIO conjugated to single-chain antibodies directed against ligand-induced binding sites (LIBS). (A) (i) Ex vivo MRI of a wire-injured
femoral artery exposed to LIBS-MPIO shows multiple, intensely low signal, lobulated areas at the interface between vessel wall and lumen (arrows). (ii) Three-dimensional
reconstruction shows diffuse and relatively even LIBS-MPIO binding along the luminal surface of the injured femoral artery. (iii) Co-localization of LIBS-MPIO and platelets was
confirmed using immunohistochemistry for CD62 [43]. (B) Confocal microscopy of human platelets immobilized on fibrinogen and detected by immunofluorescence using
CD62 antibody (green) [43]. (i) LIBS-MPIO (red) show specific binding to platelets. (ii) No binding was observed with control-MPIO. (iii) 3D rendering shows multiple LIBS-
MPIO binding to clusters of activated platelets, via GPIIb/IIIa. (C) In vivo T2

*-weighted MRI after carotid artery injury [44]. Transverse sections demonstrate the injured right
carotid artery (red circle), and the non-injured left carotid artery (green circle). Following LIBS-MPIO injection, there is increasing signal drop at 12, 24, and 72 min compared
with preinjection and the non-injured left carotid artery. For control-MPIO, signal intensity is similar at 12, 48, and 72 min in both vessels. (D) Immunohistochemistry of
w t boun
o bindi
r [44].
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all-adherent thrombus in a LIBS-MPIO-injected animal. In the inset, arrows depic
f MPIO bound to wall-adherent thrombosis shows significantly higher LIBS-MPIO
ecombinant urokinase to induce thrombolysis, prior to LIBS-MPIO administration

RI (9.4 T) using antibody-conjugated paramagnetic liposomes
49].

. Molecular imaging of atherosclerosis using
ual-targeted MPIO

In the application described above, MPIO accumulate in cere-
ral venules, where shear stresses and flow rates are relatively

ow. Atherosclerosis, however, is characterized by the accumula-
ion of lipid-rich, fibrous and cellular elements within the wall
f large and medium-sized arteries, including the coronary and
arotid arteries, as well as the aorta and peripheral vessels [50–52].
olecular imaging of the vascular endothelium of large arter-

es presents challenges since the contrast agent has to bind in
ufficient density to a two-dimensional monolayer exposed to
igh physiological shear stress conditions. The dynamics of leuko-
yte binding to activated endothelium are complex and rely on
ultiple receptor-ligand interactions. Initial leukocyte rolling is
ediated by E- and P-selectin whereas firm adhesion to the

ascular wall is mediated via integrin binding with intercellu-
ar adhesion molecule-1 (ICAM-1) and VCAM-1, with the latter

ore important in initiation of atherosclerosis [6,53]. VCAM-1 is
ot constitutively expressed but is upregulated at atherosclerosis-

rone sites even before macroscopic disease is apparent, with
ersistent expression in more advanced atherosclerotic lesions
54,55]. Computed models of adhesion molecule dynamics pre-
ict synergistic roles for selectins and integrins with transition
etween rolling and firm adhesion dependent on the binding affini-
d MPIO on the thrombus surface (thrombus area itself appears red). Quantification
ng compared to control-MPIO or to mice treated with human urokinase or mouse

ties and relative concentrations of receptor-ligand interactions
[56,57].

In order to mimic the in vivo multi-step dynamics of leukocyte
adhesion, we have constructed dual antibody-conjugated MPIO
(4.5 �m diameter) using monoclonal antibodies to P-selectin and
VCAM-1, in a 50:50 combination (PV-MPIO) [11]. As predicted by
computed models, we have demonstrated using in vivo bioassays
that dual-targeted MPIO markedly enhance binding to atheroscle-
rotic plaque endothelium compared to single-ligand MPIO (7-fold
increase in binding compared with P-selectin-MPIO and 6-fold
increase compared with VCAM-MPIO) (Fig. 3A) [11]. The ability
of dual-ligand PV-MPIO to bind to aortic root plaque endothelium
in vivo was then investigated using apo E−/− mice, fed a high fat
diet for 26 weeks. Apo E−/− mice were intravenously injected with
dual-targeted PV-MPIO or negative control IgG-MPIO (30 mg iron
per kg body weight) and allowed to circulate for 30 min. Mice were
terminally anesthetized and the arterial tree perfusion fixed and
embedded in an MR tube for high resolution ex vivo MRI (9.4 T).
MPIO binding was readily distinguished on the arterial endothe-
lium of plaque, providing excellent visualization by MRI (Fig. 3C).
3D reconstruction of segmented images demonstrated specific
PV-MPIO binding localized to atherosclerotic plaque endothelium
throughout the aortic root, with minimal retention of IgG-MPIO

(Fig. 3D). No MPIO binding was observed in atherosclerosis-free
areas of the ascending aorta.

We had purposely used relatively large MPIO (4.5 �m diame-
ter) to target endothelial adhesion molecule expression in aortic
atherosclerotic plaques because of their presumed superior con-
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Fig. 5. (A) Histological section depicting the considerably smaller size of MPIO (1 �m diameter) (black arrow) bound to endothelium overlying aortic root plaque, compared
to adjacent red blood cells (red arrows). (B) In vivo biodistribution studies show that MPIO retention by the lungs is minimal, while MPIO uptake by the spleen and liver is
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apid [43]. (C) Schematic representation of the biological handling properties of biod
ndothelial system is advantageous for in vivo imaging, where background blood M
he dextran coat and iron via normal iron handling pathways is required.

rast effects [8]. However, the dual-ligand conjugation protocol
ould be applied to smaller 1 �m diameter MPIO, which we now
ppreciate may be less buoyant in the circulation that these larger
PIO and therefore may exhibit effective contrast binding at lower

oses. Similar dual-targeted microbubbles conjugated with Sialyl
ewisx and ICAM-1 antibody have also been developed for molec-
lar ultrasound imaging, although in that case, binding efficiency
as increased only marginally by the combination. We speculate

hat this was due to stearic limitations resulting from the size mis-
atch of the glycoprotein and antibody ligands [58]. Several iron

xide nanoparticle agents conjugated to novel VCAM-1 internalis-
ng peptides, identified by phage display have also been reported.
hese peptides bind specifically to activated endothelium and are
nternalized by cells expressing VCAM-1, allowing progressive con-
entration by endothelial cells [59,60].

. Molecular imaging of ischemia-reperfusion injury

Vascular inflammation is a key feature following ischemia-
eperfusion injury (IRI) [61] in acute vascular syndromes such
s myocardial infarction [62–64], stroke [65,66], cardiac surgery
67] and organ transplantation [68]. The upregulation of endothe-

ial adhesion molecule expression persists after the ischemic
vent itself has resolved and therefore may provide a functional
mprint of a prior ischemic insult [69]. We have recently shown
hat VCAM-MPIO (1 �m diameter) can detect VCAM-1 expres-
ion in a mouse model of unilateral renal IRI [10,70]. We also
able MPIO. Efficient removal of contrast agent from the circulation via the reticulo-
ay otherwise obscure specifically bound contrast. Disintegration and dispersal of

identified in vitro using TNF-� stimulated cells that VCAM-MPIO
binding correlates with both VCAM-1 protein and mRNA levels,
as determined by western blotting and RT-PCR respectively [10].
For in vivo studies, IRI was induced in male C57BL/6 mice by
clamping the left renal pedicle for 30 min, while the contralat-
eral pedicle was exposed but not instrumented [71]. After 16–18 h
reperfusion, mice were intravenously injected with VCAM-MPIO
or irrelevant control IgG-MPIO (4.5 mg iron per kg). A further
group of mice were pre-treated with VCAM-1 antibody 15 min
prior to VCAM-MPIO injection to block VCAM-1 binding sites. In
vivo MRI (9.4 T) was performed for 90 min post-contrast injection
using a double-gated 3D gradient-echo sequence, optimized to
provide both bright blood and T2

*-weighted contrast (resolution
100 �m3). Significant VCAM-MPIO binding was observed in both
the medulla and cortex of IRI kidneys compared with irrelevant
control IgG-MPIO. Pre-treatment of mice with VCAM-1 antibody
prior to VCAM-MPIO administration abolished retention of VCAM-
MPIO.

Recently, Hoyte et al. have demonstrated that VCAM-MPIO can
detect unilateral cerebral ischemia in a mouse model of experi-
mental stroke [12]. Barber et al. have also reported molecular MRI
of transient middle cerebral artery brain ischemia using Gd-DTPA-

sLexA, targeting both P- and E-selectin, but identified limitations in
contrast sensitivity [72]. Targeted ultrasound microbubbles, tar-
geting P-selectin and ICAM-1 have been developed and applied
to image mouse renal [73,74] and myocardial IRI [75,76]. Cur-
rent clinical imaging techniques are hampered by an inability to



eroscle

d
d
t
t
i

9
a

t
a
s
a
a
[
n
w
b
s
t
c
f
t
o
a
a
c
v
t
m
t
c
h
fi

1

a
s
s
m
c
o
u
o
b
[
d
c
r
m

u
n
c
e
s
t
b
t
s
t
M

[

[

[

[

[

[

[

[

[

[

M.A. McAteer et al. / Ath

efine the extent and distribution of ischemia in acute vascular syn-
romes. The ability of our ligand-targeted MPIO approach to depict
he volume of endothelial inflammation following IRI, in relation
o the vasculature, may aid accelerated diagnosis of parenchymal
schemia and potentially, guide targeted interventions.

. Molecular imaging of thrombus using MPIO targeted to
ctivated platelets

Activated platelets are known to be involved both in the initia-
ion of atherosclerosis and in advanced atherosclerotic events, such
s plaque rupture and thrombus formation [77,78,79]. The platelet-
pecific glycoprotein GP IIb/IIIa receptor (CD41/CD61, also known
s �IIb�3 integrin) mediates the final common pathway of platelet
ggregation via fibrinogen and is key to thrombus formation
80]. Recently, a single-chain antibody that specifically recog-
izes ligand-induced binding sites (LIBS) on GP IIb/IIIa receptors,
hich become exposed only upon activation by receptor-ligand

inding, has been developed [81–83] The LIBS antibody has been
hown to bind only to activated platelets, e.g. when adherent
o damaged endothelium, and does not to bind to non-activated
irculating platelets. von zur Muhlen et al. recently applied cobalt-
unctionalized MPIO (1 �m diameter) conjugated to the histidine
ag of LIBS single-chain antibodies (LIBS-MPIO) for the detection
f activated platelets in a mouse model of endovascular platelet
ggregation using ex vivo MRI (11.7 T) (Fig. 4A) [43]. LIBS-MPIO
gent have also been applied in a mouse model of wall-adherent,
arotid thrombosis for the detection of platelet-rich thrombi by in
ivo MRI (Fig. 4C) [44]. LIBS-MPIO reliably tracked a reduction in
hrombus size in response to pharmacological thrombolysis treat-

ent with urokinase (Fig. 4D). LIBS-MPIO have also been used
o detect human platelet aggregates in explanted symptomatic
arotid artery plaque specimens by ex vivo MRI (9.4 T) [44] and
uman platelet-rich clots in vitro using clinically relevant magnetic
eld strengths (3 T) [84].

0. Clinical translation of MPIO

For clinical purposes, the commercial MPIO that we have used
re non-biodegradable, due to their polyurethane coat, and are not
uitable for human applications. However, for clinical translation, it
hould be feasible to synthesize biodegradable MPIO with suitable
odification of the surface coat, similar to the iron oxide containing

ontrast media that are already in clinical use [85]. In fact, the devel-
pment of biodegradable MPIO suitable for clinical use is already
nderway [86–89]. Our ligand-targeted MPIO approach has focused
n the use of monoclonal antibodies. Potential immunogenicity can
e attenuated by the use of modified or “humanized” antibodies
90] and single-chain antibodies [43,82]. However, antibody pro-
uction on a scale required for clinical application is also relatively
omplex and expensive. Sugar-based ligands, such as sLeX, have
ecently been applied to develop novel glyconanoparticles [91], and
ay prove useful ligands for clinical application.
For our in vivo imaging studies, the dose of iron that we have

sed (4.5 mg iron/kg body weight) has been well tolerated, with
o animals showing any short-term ill effects. This iron dose
losely reflects the dose of USPIO (2.6 mg iron/kg body weight) used
xtensively for human oncological MRI [92]. Further dose-ranging
tudies will determine whether the iron dose can be reduced fur-
her. Importantly, MPIO, which are considerably smaller than red

lood cells (Fig. 5A), do not induce any evidence of hemorrhage or
issue infarction due to small vessel ‘plugging’ [11] and are rapidly
equestered by the liver and spleen (Fig. 5B) [43]. Another impor-
ant advantage of the MPIO approach is the ability to relate specific

PIO binding to the blood vessel architecture [10]. The anatomical
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distribution together with the degree and timing of contrast bind-
ing may add further functional specificity for vascular pathological
processes under evaluation.

11. Conclusions

In summary, we have developed a new approach to molec-
ular imaging of endovascular targets using ligand-conjugated
MPIO, which we have applied in a diverse range of vascular syn-
dromes including acute brain inflammation, atherosclerosis, renal
ischemia-reperfusion injury, ischemic stroke and thrombus forma-
tion. The versatility of functionalized MPIO and the potency of the
contrast effects in detecting relatively low-abundance endothe-
lial molecular targets, offers a potentially valuable platform for
accelerating diagnosis and guiding specific treatment of vascular
inflammatory diseases.
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