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SUMMARY

Transfer RNA (tRNA) fragmentation in response to
stress conditions has been described inmany organ-
isms. tRNA fragments have been found in associa-
tion with small interfering RNA (siRNA) components,
but the biological role of these interactions remains
unclear. We report here that the tRNA methyltrans-
ferase Dnmt2 is essential for efficient Dicer-2
(Dcr-2) function in Drosophila. Using small RNA
(sRNA) sequencing, we confirmed that Dnmt2 limits
the extent of tRNA fragmentation during the heat-
shock response. tRNAs as well as tRNA fragments
serve as Dcr-2 substrates, and Dcr-2 degrades
tRNA-derived sequences, especially under heat-
shock conditions. tRNA-derived RNAs are able to
inhibit Dcr-2 activity on long double-stranded RNAs
(dsRNAs). Consequently, heat-shocked Dnmt2
mutant animals accumulate dsRNAs, produce fewer
siRNAs, and show misregulation of siRNA pathway-
dependent genes. These results reveal the impact
of tRNA fragmentation on siRNA pathways and impli-
cate tRNA modifications in the regulation of sRNA
homeostasis during the heat-shock response.
INTRODUCTION

Transfer RNA (tRNA) fragmentation contributes to conserved

stress-response mechanisms (Thompson and Parker, 2009),

but the exact nature of tRNA fragment-mediated effects is poorly

understood. tRNAs represent the most abundant class of small

RNAs (sRNAs; 4%–10%of all RNAs). If tRNA-derived sequences

relay stress responses, their fragmentation process must be

tightly controlled to avoid constant stress signaling. The associ-

ation of tRNA fragments with siRNA pathway components

(Czech et al., 2008; Ghildiyal et al., 2008; Okamura et al.,

2008b; Cole et al., 2009) indicated crosstalk between tRNA frag-

ment production and siRNA pathway function. Dcr-2 and Ago-2

are important siRNA pathway components in flies, and their
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molecular function in RNA-induced silencing complexes (RISC)

is well defined (Saito and Siomi, 2010). However, the impact of

siRNA pathways on gene expression, especially under stress

conditions and in the presence of stress-induced tRNA frag-

ments, is less well understood.

Recent work has linked Dnmt2 mutations to decreased tRNA

stability during stress and certain developmental conditions

(Schaefer et al., 2010; Tuorto et al., 2012), underscoring the

importance of cytosine-5-tRNA methylation for correct RNA

metabolism. Dnmt2 enzymes are highly conserved RNA cyto-

sine-5-methyltransferases that modify the anti-codon loop of

tRNAs (Goll et al., 2006; Schaefer et al., 2010), but the signifi-

cance of Dnmt2-mediated tRNA methylation and stability has

remained unclear.

Although an impact of tRNA fragments on protein synthesis

has been established (Yamasaki et al., 2009; Ivanov et al.,

2011; Sobala and Hutvagner, 2013), other tRNA-mediated func-

tions remain to be explored. Interestingly, tRNA fragments can

affect the efficiency of sRNA silencing pathways in human cells

(Haussecker et al., 2010), raising the possibility that tRNA-

derived RNAs play as yet unidentified roles in posttranscriptional

gene silencing (Pederson, 2010; Hurto, 2011; Durdevic and

Schaefer, 2013).

We report here that siRNA pathways inDrosophila can be tran-

siently affected by heat-shock-induced tRNA fragmentation.

Under these conditions, Dnmt2 mutant flies showed a stronger

and more prolonged inhibition of siRNA pathway activity.

Increased tRNA fragmentation in Dnmt2 mutants after heat

shock and the promiscuous loading of tRNA fragments into

Dcr-2 complexes blocked Dcr-2 processing of long dsRNAs, re-

sulting in the misregulation of siRNA pathway-controlled gene

expression. Our findings reveal that correct tRNA methylation

contributes to the control of siRNA pathway components during

the heat shock response.
RESULTS

tRNA Fragmentation Is Specifically Affected in Dnmt2

Mutants
To globally quantify the extent of Dnmt2-dependent RNA frag-

mentation, we heat shocked adult male flies, extracted sRNAs
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Figure 1. RNA Fragmentation Patterns in

Dnmt2 Mutant Flies Indicate Specificity for

tRNA

(A) Northern blot (15 mg RNA) for 50-fragments (<70

nt) of tRNAAsp
GTC before and after heat shock

(37�C, 1 hr) of control (D2+/�) and Dnmt2 mutant

(D2�/�) male flies, followed by 2 days of recovery

(R). AC, cleavage in the anti-codon; smaller tRNA-

derived fragments are marked by black arrow-

head.

(B) Presentation of tRNA-derived reads (normal-

ized to the total read number of individual experi-

ments; see Tables S1, S2, S3, and S4) after sRNA

(25–70 nt) sequencing of a heat-shock experiment

as in (A).

(C) Overview of sRNA sequencing data from a

heat-shock experiment as in (A). Percentages of

mapped reads from individual experiments are

displayed as pie charts and color-coded for rRNA,

mRNA, tRNA, and RNAs from other sources (i.e.,

microbes).

See also Figure S1 and Tables S1, S2, S3, and S4.
from somatic tissues (Figure 1A), and sequenced complemen-

tary DNA (cDNA) libraries on an Illumina platform. Mapping of

tRNA-derived reads revealed significant Dnmt2-dependent

effects on the fragmentation of various tRNAs (Figures 1B,

S1A, and S1B; Tables S1, S2, and S3), including known Dnmt2

substrates (tRNAAsp
GTC and tRNAGly

GCC). Analysis of individual

tRNAAsp
GTC halves showed that Dnmt2 mutant tissues accu-

mulated shorter 50 fragments than controls after heat shock

(Figure S1C; Table S4), indicating that tRNA cleavage-site

accessibility or further processing of tRNA fragments was

Dnmt2 dependent.

Ribosomal RNA fragmentation was not significantly changed

in Dnmt2 mutants after heat shock (Figures 1C, S1D, and S1E).

Also, most messenger RNA (mRNA) fragments were derived

from exons of large genes (Figures S1F and S1G) and no signif-

icant differences were detectable between genotypes (Fig-

ure S1H). These results indicate that Dnmt2 function specifically

affected tRNA stability during the heat-shock response.

Dicer-2 Cleaves tRNA Sequences into sRNAs
Angiogenin-dependent tRNA cleavage has been shown in

mammalian cells (Yamasaki et al., 2009), but the responsible en-

zymes inDrosophila remain to be identified. Importantly, DICER-

dependent tRNA cleavage has also been observed in mammals

(Babiarz et al., 2008; Cole et al., 2009), suggesting that Dicer pro-

teins accept tRNAs as substrates. RNA immunoprecipitations

confirmed the association of Dcr-2 with tRNA fragments in

Drosophila S2 cells (Figure 2A). In vitro cleavage assays using

purified tRNAs and ovary protein extracts showed that Dcr-2

activity contributed to tRNA fragmentation (Figure 2B). Fragmen-

tation was enhanced in heat-shocked extracts, indicating stress-

induced changes in Dcr-2 activity. tRNA cleavage could be

partially blocked by RNase inhibitors (Figure 2B), suggesting

also the presence of stress-induced but Dcr-2-independent

nuclease activities. Of note, overexpression of Dcr-2 in S2 cells

also caused tRNA fragmentation (Figure 2C), indicating that
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changes in Dcr-2 protein concentration supported Dcr-2-medi-

ated tRNA cleavage.

Purified Dcr-2 has been shown to cleave noncanonical sub-

strates such as pre-microRNAs (pre-miRNAs) (Cenik et al.,

2011). To analyze whether Dcr-2 was also able to cleave tRNA

fragments, S2 cell protein extracts were incubated with tRNAAsp
GTC fragments (nt 1–38). This revealed the production of distinct

sRNAs (Figure S2A), specifically in heat-shockedprotein extracts,

which was dependent on Dcr-2 but not on Dcr-1 (Figures S2B–

S2D). RNAi-mediated depletion of annotated Drosophila nucle-

asesconfirmed thespecificity forDcr-2 (FigureS2E). Furthermore,

extracts fromwild-typeovaries, but not catalytically inactiveDcr-2

mutant ovaries, degraded tRNA halves (Figures 2D and S2F).

This confirmed that Dcr-2 accepted tRNA-derived sequences,

especially if provided in excess,which indicates thatDcr-2, tRNAs

and their fragments interact under specific conditions.

Dcr-2 Activity on Long dsRNA Is Inhibited by tRNA
Fragments
Dcr-2 processes long dsRNA originating from self-complemen-

tary transcripts, convergent mRNAs, and mobile elements (Car-

thew and Sontheimer, 2009). To analyze Dcr-2 activity, defined

long dsRNAs were incubated with ovary protein extracts and

the production of small RNAs (sRNAs) was monitored in vitro.

sRNAs (21 nt) were produced in a time- and Dcr-2 activity-

dependent manner (Figure 3A). Addition of tRNAAsp
GTC frag-

ments (nt 1–38) resulted in a concentration-dependent loss of

sRNAs (Figure 3B), indicating that tRNA fragments interfered

with Dcr-2 activity. Heat shock of S2 cells reduced Dcr-2 protein

levels transiently and Dcr-2 activity on dsRNA was diminished

(Figures S3A and S3B). Fragmentation of tRNAAsp
GTC into halves

was highest when Dcr-2 activity levels were low (Figure S3C),

indicating that Dcr-2 was not primarily responsible for tRNA frag-

mentation. Instead, these results suggest competition between

dsRNA precursors and tRNA fragments for reduced Dcr-2

protein levels during the heat-shock response.
s



Figure 2. Dcr-2 Processes tRNAs into Halves and siRNA-Sized

Fragments

(A) Northern blot (using 50 probes) for tRNAAsp
GTC and tRNAGly

GCC in Dcr-2-

FLAG complexes after RNA immunoprecipitation. Arrowheads indicate un-

specific tRNA binding (black), tRNA halves (gray), smaller tRNA-derived RNAs

(white). IgG, immunoglobulin G control.

(B) RNA in vitro cleavage assay using wild-type (+) and Dcr-2 catalytic mutant

(�) ovary protein extracts (15 mg) on purified tRNA preparations followed by

northern blotting for tRNAs using 50 probes against tRNAAsp
GTC (upper) and

tRNAGly
GCC (lower). Arrowheads indicate tRNA (black) and tRNA fragmentation

products (gray). HS, heat shock; PE, protein extract; R-Inh, RNase inhibitor.

(C) Northern blot on RNA (15 mg) from S2 cells that express endogenous (�) or

ectopic Dcr-2-FLAG protein (+) using probes against tRNAAsp
GTC and

tRNAGly
GCC.

(D) RNA in vitro cleavage assay using protein extracts as in (B) on tRNAAsp
GTC

oligonucleotides (nt 1–38; 1 mM). Upper part shows SYBR-stained

Urea-PAGE-gel. Lower part shows northern blot using 50 probes against

tRNAAsp
GTC. Arrowheads indicate tRNA (black) and tRNA oligonucleotide

(gray). Mg++, Mg ions.

See also Figure S2.
Dcr-2 Activity Is Impaired in Dnmt2 Mutant Protein
Extracts
Next, adult flies were heat shocked to analyze Dcr-2 activity

in vivo. Expression analysis revealed transient upregulation of

Dcr-2 and Dcr-1 in controls (Figure S3D), suggesting positive

feedback on Dicer transcription in response to heat shock. In

contrast, Dnmt2 mutants displayed constantly increasing Dcr-2

and Dcr-1 transcript levels, which indicated prolonged tran-

scriptional feedback. Western blotting showed increased Dcr-2

protein levels in both genotypes after heat shock of adult flies,

whereas Dcr-1 or Ago-2 expression was not affected (Figure S3E

and S3F). Wild-type ovary extracts showed reduced Dcr-2 activ-

ity after heat shock, which could be restored to baseline levels
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by adding three times more Dcr-2 protein to the reaction (Fig-

ure 3C). Importantly, extracts from Dnmt2 mutant ovaries were

unable to restore Dcr-2 activity (Figure 3C), indicating impaired

Dcr-2 activity in Dnmt2 mutants. Dcr-2 activity in heat-shocked

wild-type ovaries could also be restored by increased cleavage

reaction times (Figure 3D), indicating Dcr-2 processivity on

dsRNA substrates, which was not the case in Dnmt2mutant ex-

tracts (Figure 3D). Lower Dcr-2 activity in Dnmt2 mutant ovaries

did not correlate with lower Dcr-2 protein levels (Figure 3E), sug-

gesting that Dcr-2 activity was present but limited in Dnmt2

mutants. Northern blotting confirmed increased levels of tRNA

fragments in Dnmt2 mutant ovaries after heat shock (Figure 3F),

supporting the notion that increased tRNA fragmentation in

Dnmt2 mutants interfered with Dcr-2 activity, especially after

heat shock.

dsRNAsAccumulate inDnmt2Mutants After Heat Shock
To test whether Dnmt2 mutant conditions affected Dcr-2 sub-

strate levels globally, antibodies against dsRNAs (Schönborn

et al., 1991) and RNA dot blotting were used. Antibody speci-

ficity was confirmed using Dcr-2 mutant RNA, which revealed

high levels of dsRNA (Figure 4A). RNA from heat-shocked

Dnmt2 mutants contained increasing dsRNA concentrations

(Figure 4B), indicating that dsRNAs, which were efficiently

processed by Dcr-2 in wild-type tissues, accumulated in

Dnmt2 mutants. These results confirm that Dcr-2 activity was

globally impaired in Dnmt2 mutant tissues, especially after

heat shock.

sRNA Production Is Affected in Dnmt2 Mutants
Dcr-2 processes long dsRNAs into sRNAs. To analyze the pro-

duction of sRNAs, northern blotting for a highly expressed

endo-siRNA (esi-2.1) and a miRNA (miR-bantam) was per-

formed. As previously shown, Dcr-2 or Ago-2 mutants did not

produce mature esi-2.1, and only Ago-2 mutants affected miR-

bantam production (Figure 4C). Of note, Dnmt2 mutant flies

showed reduced esi-2.1 production and also miR-bantam levels

were lower than in controls (Figure 4C), which indicated a role for

Dnmt2 in endo-siRNA and miRNA maturation. Heat shock

caused a decrease of esi-2.1 in controls, whereasDnmt2mutant

flies showed lower esi-2.1 levels during all time points of the

experiment (Figure 4D). These results are consistent with the

notion that Dcr-2 activity in Dnmt2 mutant flies was impaired,

causing inefficient processing of long dsRNAs and consequen-

tially reduced production of Dcr-2-dependent siRNAs. In addi-

tion, changes in miR-bantam levels in Dnmt2 mutants after

heat shock (Figure 4D) also suggest Dnmt2-mediated effects

on Dcr-1-dependent miRNA production.

The esi-2.1 Target mus308 Is Upregulated in Dcr-2

and Dnmt2 Mutants
esi-2.1 matches the coding sequence of the DNA repair enzyme

mus308 (Czech et al., 2008; Okamura et al., 2008b), suggesting

endo-siRNA-mediated repression of Mus308-mediated DNA

repair. Mus308 RNA levels were slightly elevated in adult Dcr-2

and Dnmt2 mutant flies during a heat-shock experiment (Fig-

ure 4E), indicating that Dnmt2 function affects mus308 expres-

sion. Separation of male somatic and germline tissues followed
l Reports 4, 931–937, September 12, 2013 ª2013 The Authors 933



Figure 3. Dnmt2 Mutants Show Reduced

Dcr-2 Activity on Long dsRNA

(A) Dcr-2 cleavage assay on 32P-labeled egfp-

derived dsRNA (5 ng) using protein extracts (15 mg)

from wild-type (WT) and Dcr-2 catalytic mutant

(Dcr-2catD) ovaries. Arrowheads indicate long

dsRNAs (black) and sRNA duplexes (sRNA, gray).

(B) Dcr-2 cleavage assay on egfp-derived dsRNAs

using protein extracts (15 mg) fromWT ovaries and

increasing amounts of tRNAAsp
GTC oligonucleo-

tides (3, 6, 10 mM). Arrowheads indicate RNAs as

in (A).

(C) Dcr-2 cleavage assay on egfp-derived dsRNA

using protein extracts from WT, Dnmt2 mutant

(D2�/�), and Dcr-2 catalytic mutant (Dcr-2catD)

ovaries before and after a heat shock (37�C, 1 hr).

Increasing amounts of protein extract (7.5, 15, and

30 mg) fromWT andDnmt2mutants were added to

the reaction to recover the heat-shock-induced

decrease of Dcr-2 activity on dsRNA (see Fig-

ure S3B). Arrowheads indicate RNAs as in (A). HS,

heat shock; PE, protein extract.

(D) Dcr-2 cleavage assay on egfp-derived dsRNA

using protein extracts (15 mg) from WT and Dnmt2

mutant (D2�/�) ovaries after a heat shock (37�C,
1 hr) and increasing incubation times (1, 2, and 3

hr). Arrowheads indicate RNAs as in (A).

(E) Western blot of protein extracts (25, 50, 80 mg),

whichwere used in Dcr-2 cleavage assays as in (C)

and probed for Dcr-2, Dnmt2, Hsp70, and Tubulin

levels.

(F) Northern blot of RNA (5, 10, and 15 mg) ex-

tracted from protein extracts used in Dcr-2

cleavage assays (C) with 50 probes against

tRNAAsp
GTC. Arrowheads indicate full-length tRNA

(black) and tRNA halves (gray).

See also Figure S3.
by expression analysis showed transiently increased mus308

expression in controls after heat shock, supporting the notion

that temporary inhibition of Dcr-2 activity caused reduced esi-

2.1 production and concomitantly the derepression of mus308

transcription. In contrast, constantly elevated mus308 levels

were observed in Dnmt2 mutants (Figure 4F). These results are

consistent with the notion that molecular inhibition of Dcr-2 ac-

tivities in Dnmt2 mutant tissues resulted in inefficient endo-

siRNA production, leading to long-term derepression ofmus308.

Dnmt2-Dependent RNA Fragments Affect siRNA
Pathway-Regulated Gene Expression
Dcr-2 and Ago-2mutant animals are viable and fertile (Lee et al.,

2004; Okamura et al., 2004), suggesting a predominant function

for siRNA pathways under nonstandard conditions. Previous

expression analyses showed that Dcr-2- and Ago-2-regulated

genes include various stress-induced factors and DNA repair en-

zymes (Lim et al., 2013; Rehwinkel et al., 2006). Gene-expression

analysis of a representative number of these genes using quan-

titative PCR (qPCR) confirmed that Dcr-2 or Ago-2 depletion

from S2 cells did not significantly affect transcript levels (Figures
934 Cell Reports 4, 931–937, September 12, 2013 ª2013 The Author
S4A and S4B). In contrast, heat shock caused gene-expression

changes in Dcr-2- and Ago-2-depleted cells during stress recov-

ery, supporting the notion that loss-of-function phenotypes

caused by Dcr-2 and Ago-2 depletion become detectable under

stress conditions (Figure S4B). To test whether heat-shock-

induced sRNAs (including tRNA fragments) caused these

gene-expression changes, we extracted sRNAs (10–60 nt)

from heat-shocked adult flies (Figures S4C) and incubated

them with S2 cells. The results showed the induction of Dcr-2-

and Ago-2-regulated genes by sRNAs that were derived from

heat-shocked Dnmt2 mutants but not from control flies (Figures

S4D). Finally, incubation of S2 cells with specific tRNAAsp
GTC

fragments also induced the expression of Dcr-2- and Ago-2-

regulated genes (Figure S4E), indicating that ectopic tRNA frag-

ments were able to mimic heat-shock-induced effects on siRNA

pathway components.

DISCUSSION

siRNA pathways function to silence mobile elements and regu-

late mRNA expression (Carthew and Sontheimer, 2009).
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Figure 4. Dnmt2 Mutants Accumulate

DsRNAs and Show Reduced sRNA Produc-

tion

(A) Dot-blot analysis of decreasing amounts of

total RNA (1 mg to 125 ng) from WT and Dcr-2

catalytic mutant (Dcr-2catD) flies. Blots were

stained with methylene blue for loading control,

followed by probing with antibodies against

dsRNA.

(B) Dot-blot analysis of total RNA (2 mg) from a

heat-shock experiment with WT and Dnmt2

mutant (D2�/�) flies. Blots were stained with

methylene blue to control loading, followed by

probing with antibodies against dsRNA.

(C) Northern blot of RNA (15 mg) from adult WT

(w1118, yw), Dcr-2, Ago-2, and Dnmt2 mutant flies

using probes for esi-2.1 RNA, miR-bantam, and

2S rRNA.

(D) Northern blot of RNA (15 mg) from WT and

Dnmt2 mutant (D2�/�) flies during a heat-shock

experiment probed for esi-2.1, miR-bantam and

2S rRNA.

(E) qPCR analysis for mus308 mRNA in adult WT,

Dcr-2 (Dcr-2catD) and Dnmt2 mutant (D2�/�) flies
during a heat-shock experiment (hs = 37�C, R =

recovery in days). Three independent experi-

ments were performed for quantification

(mean ± SD).

(F) qPCR analysis for mus308 mRNA in WT and Dnmt2 mutant (D2�/�) male soma (left) and germline tissue (right) during a heat-shock experiment as

in (E). Three independent experiments were performed for quantification (mean ± SD).

See also Figure S4.
Predicted mRNA targets encode proteins with roles in cell-cycle

control, DNA repair, and stress response (Czech et al., 2008;

Okamura et al., 2008a), and profiling of both RNA and protein

expression indicated that Ago-2 and Dcr-2 function impacts

stress and metabolic processes (Rehwinkel et al., 2006; Lim

et al., 2011, 2013). These observations suggest that siRNA path-

ways downregulate stress-related gene products under non-

stress conditions. However, how such siRNA-mediated mRNA

suppression is relieved during stress conditions to accommo-

date efficient stress responses has remained unclear.

Our results define a mechanism for the regulation siRNA path-

ways during the heat-shock response. Our findings show that

heat shock causes a transient reduction in Dcr-2 protein levels

that leads to reduced Dcr-2 activities on long dsRNA substrates,

resulting in lower levels of mature sRNAs and the derepression of

siRNA pathway-controlled genes. Concomitantly with the reduc-

tion of Dcr-2 activity, we observe an increase in tRNA fragmen-

tation, which is known to contribute to stress-response

mechanisms (Thompson and Parker, 2009). Dcr-2 binding to

tRNA-derived sequences and Dcr-2-dependent processing of

tRNA fragments into sRNAs confirms that the competition of

small dsRNAs with long dsRNA substrates contributes to the

transient reduction of siRNA pathway function during stress con-

ditions. In contrast to the stress recovery in wild-type flies,

Dnmt2 mutant flies show signs of constant or prolonged siRNA

pathway inhibition, and thereby resembleDcr-2 or Ago-2mutant

animals, especially after heat shock. Because Dnmt2 mutants

produce more tRNA fragments during the heat-shock response,

these findings strongly indicate a connection between Dnmt2-

mediated tRNA stability and correct siRNA pathway function.
Cel
tRNA fragments have also been found in Ago-2 complexes un-

der normal conditions (Czech et al., 2008; Ghildiyal et al., 2008;

Okamura et al., 2008b; Cole et al., 2009). Specific tRNA frag-

ments affected siRNA pathways in human cells (Haussecker

et al., 2010), implicating tRNA fragments in the fine-tuning of

sRNA-mediated gene regulation.Whether tRNA fragments could

also function as bona fide miRNAs or siRNAs has been debated

(Pederson, 2010), and in vivo tRNA fragment targets remain to be

defined. However, matching of various tRNA fragments to

human endogenous virus sequences (Li et al., 2012) suggests

a putative biological role for constitutive tRNA fragmentation to

target siRNA pathway activities after leaky virus expression.

Taken together, our findings suggest that tRNA fragmentation

is not only required to inhibit protein synthesis but also contrib-

utes to safeguard the transient downregulation of siRNA path-

ways during the heat-shock response. tRNA-based interference

with siRNA pathway activities might rapidly block the inhibitory

effects of sRNAs on various stress-relevant mRNAs, which

would facilitate the restarting of important cellular processes

during the stress recovery (Durdevic and Schaefer, 2013). We

conclude that an important biological role for Dnmt2 enzymes

is the suppression of aberrant tRNA fragmentation to ensure

the correct regulation of sRNA pathways.
EXPERIMENTAL PROCEDURES

RNA Extraction, Reverse Transcription, and qPCR

Total RNA was extracted from S2 cells, whole flies, or germline tissues

(ovaries) using Trizol (Invitrogen). For first-strand cDNA synthesis, RNA was

either reverse transcribed using the QuantiTect Reverse Transcription Kit
l Reports 4, 931–937, September 12, 2013 ª2013 The Authors 935



(QIAGEN) or treated with TurboDNase (Ambion) before reverse transcription

using SuperScript III (Invitrogen). qPCR analyses were performed on a Light-

Cycler 480 Real Time PCR System (Roche) using the ABsolute qPCR SYBR

Green Mix (Thermo Scientific).

Northern Blotting

RNAwas extracted using Trizol (Invitrogen) and separated on denaturing urea-

PAGE, transferred to nylon membranes (Roche), and hybridized overnight at

30–40�C with 32P-end-labeled oligonucleotides in hybridization solution (53

saline sodium citrate [SSC], 20 mMNa2HPO4 pH 7.4, 1% SDS, 13 Denhardt’s

reagent). After washing at 40�Cwith 13SSC, 0.1%SDS (33 15min), themem-

branes were exposed to film at �80�C.

sRNA Sequencing

RNA extraction, library preparation, and deep sequencing are described in

detail in the Extended Experimental Procedures.

tRNA and tRNA Fragment Cleavage Assay

We heated 2 ml of a 50-end phosphorylated RNA oligonucleotide (20 mM;

Sigma; see Extended Experimental Procedures) or 300 ng of gel-purified

tRNA from Dnmt2 mutant flies in water (total volume of 10 ml) to 75�C for

2 min. An equal volume of 23 reaction buffer S2 (200 mM potassium acetate

[KOAc]; 10 mM dithiothreitol [DTT]; 1 mM ATP, 0.1 U/ml RNase inhibitor;

Promega) was added for cleavage reactions in S2 cell extracts; an equal vol-

ume of 23 reaction buffer (200 mMKOAc; 30 mMHEPES-KOH, pH 7.4; 6 mM

Mg(OAc)2; 10mMDTT; 0.5%glycerol, 60 mg/ml creatine kinase, 2mMcreatine

phosphate, 2 mM ATP, 0.1 U/ml RNase inhibitor; Promega) was added for

cleavage reactions in ovary extracts, followed by incubation for 10 min at

37�C. Reactions were assembled by adding hypotonic protein extracts

(15 mg total protein) in the respective reaction buffer (final reaction volume

30–50 ml). Reactionswere incubated for 1 hr at 25�C. RNAwas recovered using

phenol/chloroform extraction and analyzed by denaturing urea-PAGE (15%)

and northern blotting.

dsRNA Cleavage Assay

For cleavage reactions, 5–10 ng of a 32P-end-labeled egfp-derived dsRNAwas

incubated in 13 reaction buffer (100 mM KOAc; 15 mM HEPES-KOH, pH 7.4;

3 mM Mg(OAc)2; 5 mM DTT; 0.25% glycerol, 30 mg/ml creatine phosphate

kinase, 1 mM creatine phosphate, 1 mM ATP, 0.1 U/ml RNase inhibitor; Prom-

ega), and 7.5–30 mg ovary protein extract at 29�C for the indicated times.

Reactions were stopped by adding 1 vol of 23 RNA loading dye (Thermo

Scientific). Samples were heated to 80�C and subjected to denaturing urea-

PAGE (15%). Gels were blotted onto nylon membranes (Roche) and mem-

branes were exposed to film at �80�C.
ACCESSION NUMBERS

The sRNA sequencing data have been deposited in the GEO database under

the accession number GSE35981.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, four

figures, and four tables and can be found with this article online at http://dx.
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