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a b s t r a c t 

To design a recombiner packed with hydrophobic catalyst for passive tritium oxidation, the development 

of manufacturing technology for hydrophobic platinum catalyst and the following analysis on reaction 

rate are essential. This presentation deals with the reaction rate for tritium oxidation over a hydropho- 

bic platinum catalyst at temperature between room temperature and 473 K. Two kinds of hydrophobic 

platinum catalysts; supported with styrene-divinylbenzene and with silica were used for this test. The 

results indicate that 1) the particle size of platinum affects the reaction rate, 2) the order of reaction is 

0.5 of hydrogen concentration at room temperature in case of a hydrogen content below 100 ppm. The 

rate-determining step approximation method is applied for the discussion on the reaction mechanism of 

tritium oxidation over platinum catalyst. 

© 2016 Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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. Introduction 

Precious metal catalysts are fundamental materials for tritium

rocessing to prevent accidental release of tritium into the envi-

onment [1] . The system of catalytic reactor for the catalytic con-

ersion of airborne tritium to the oxide in combination with fol-

owing oxide absorber has been applied in tritium handling fa-

ilities to control the tritium release to the environment as low

s achievable [2] . Precious metal catalysts are also applied to wa-

er detritiation [3] . In a liquid phase catalytic exchange column

acked with precious metal catalyst and structured packing, tri-

ium molecules are exchanged from hydrogen to water vapor with

ydrogen isotope exchange reacted over precious metal catalyst. In

rder to improve the efficiency of catalytic reactions mentioned

bove, there remains an ever-increasing interest and challenge to

evelop the technology for hydrophobic precious metal catalyst [4] .

t is a well-known fact that hydrophobic precious metal catalysts

anufactured from hydrophobic polymers have been used all over

he world originally for the application of water detritiation [4] . In

apan, a hydrophobic precious metal catalyst manufactured from

tyrene-divinylbenzene copolymers had been applied to heavy wa-

er refinement at Advanced Thermal Reactor “Fugen Nuclear Power
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tation” owing to its outstanding hydrophobic property. Typical

ydrophobic catalysts were manufactured by platinum deposited

n hydrophobic polymer support or made wet-proofed by using

eflon. Compared with conventional hydrophilic catalysts such as

t/Al 2 O 3 , the tritium removal from liquid effluent by means of hy-

rophobic catalyst offers a higher efficiency, lower operation tem-

erature and pressure and energy requirements [4] . The major dis-

dvantage of the existing hydrophobic precious metal catalysts was

he low thermal stability to apply them to the catalytic conver-

ion of airborne tritium. On the other hand, tritium safety for han-

ling a kilogram level of tritium stresses the need for a technolog-

cal countermeasure to consider severe accidents such as complete

oss of power supply, technology of hydrophobic catalyst has been

rawing intense interest recently because of its potential applica-

ion of hydrophobic catalyst to passive recombiner for the catalytic

onversion of airborne tritium at room temperature. Recently, the

apan Atomic Energy Agency and Tanaka Kikinzoku Kogyo K.K de-

eloped a new method of manufacturing catalysts involving hy-

rophobic processing with an inorganic substance base. No perfor-

ance degradation in response to radiation application of 530kGy

nd thermal stability at over 600 °C have been demonstrated [5] .

t was a great challenge to fabricate a hydrophobic precious metal

atalyst with both high thermal stability and high radiation dura-

ility. 

For the tritium safety of nuclear fusion facility, off normal re-

ease of tritium into secondary or final confinement should be con-

idered. In these cases, it is inevitable that the content of tritium
Y-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 
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Table 1 

Characteristics of catalysts. 

Pt Catalyst A Pt Catalyst B Pt Catalyst C 

Catalog name (Trial manufacture) TKK-H1P 

Hydrophilicity hydrophobic hydrophobic hydrophobic ∗

Substance base Styrene-divinylbenzene copolymer (SDBC) Hydrophobic treated SiO 2 
∗

Grain diameter 3 mm 

Packed density 220 g/L 490 g/L ∗

Specific surface area 364 m 

2/ g 211 m 

2 /g ∗

Accumulated pore volume of the catalyst 1.790 cm 

3 /g 0.648 cm 

3 /g ∗

Peak top of pore diameter 61 nm 12.3 nm 

∗

Deposited platinum weight per catalyst volume 4.0 g/L 5.0 g/L ∗

Platinum particle size 2 to 20 nm fine 2 nm 2 to 20 nm 

∗

Supplier Tanaka Kikinzoku Kokyo K.K., Japan 

∗ Ref [6] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Experimental flow-through system designed for the evaluation of kinetics of 

hydrogen oxidation reaction 

H: Hygrometer, P: Pressure gauge, T: thermocouple with a PID temperature con- 

troller. 
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taken into account for the design of detritiation system is very

small, even though the activity of tritium is evaluated to be quite

large. The content of tritium would be smaller than that of hy-

drogen naturally contained in air. Hence the understanding of the

reaction mechanism on oxidation of a very small hydrogen content

is quite important. In addition, if we consider the severe accidental

scenario such as loss of electric power to heat the catalytic reactor,

the passive oxidation of tritium at temperature around room tem-

perature is an engineering option. In order to apply a hydrophobic

precious metal catalyst to passive tritium recombiner, the improve-

ment of catalytic activity as much as possible is required from the

recombiner design point of view. This is because the activation of

catalyst by any heat such as external heat and heat of reaction can-

not be taken into account [6] . In order to improve the catalytic ac-

tivity much more, kinetics data and understanding of the reaction

mechanism are essential. It has been demonstrated that the over-

all reaction rate constant for hydrogen oxidation depends strongly

on hydrogen content in feed gas, especially when temperature of

catalyst layer is around room temperature [6] . The literature con-

cerning kinetics for tritium oxidation at temperature around room

temperature was limited [7] . J.C. Bixel and C.J. Kershner concluded

that surface reaction is the rate controlling step for oxidation of

hydrogen at 0.5 ppm hydrogen concentration and 296 K with En-

gelhard #50,088 hydrophilic catalyst [8] . They indicated the first

order dependency on hydrogen concentration. However, their sys-

tem had time delay in response of tritium monitors. In addition,

conversion efficiency was quite higher than expected due mainly to

absorption of tritiated vapor on the surface of hydrophilic catalyst.

The understanding of kinetics with development of hydrophobic

precious metal catalysts still remained as an open research issue.

The purpose of this study was to examine the oxidation reaction

of tritium over hydrophobic precious metal catalyst by kinetics and

mass transfer approach, then the main factors for enhance in ac-

tivity are suggested for better fabrication of hydrophobic precious

metal catalyst. 

2. Experimental 

2.1. Catalysts 

In order to evaluate the reaction order for hydrogen oxida-

tion under the wide range of temperature, tritium was mixed

in feed gas as tracer due to the analytical difficulties in detect-

ing hydrogen concentrations below 10 ppm. By using tritium, the

reaction order for hydrogen oxidation was evaluated even with

feed gas accompanied with a low content hydrogen. The adsorp-

tion of tritiated water vapor produced by the oxidation reaction

causes the error in evaluation of reaction rate. Hence the hy-

drophobic catalysts were manufactured and applied to the tests.

Characteristics of catalysts applied for this research are shown in
Please cite this article as: Y. Iwai et al., Development of hydrophobic pl

and Energy (2016), http://dx.doi.org/10.1016/j.nme.2016.08.018 
able 1 . The hydrophobic precious metal catalysts manufactured

rom styrene-divinylbenzene copolymer (SDBC) were used [7] . The

ranular SDBC of 3 mm grain diameter was purchased from Shoko

o. Ltd. Japan. Two types of hydrophobic precious catalyst, Catalyst

 and Catalyst B, were manufactured from the purchased granular

DBC by Tanaka Kikinzoku Kokyo, Japan. The catalysts manufac-

ured from SDBC showed the excellent hydrophobic property. How-

ver the catalysts were not available under temperature larger than

73 K due to their low thermal stability. Hence another hydropho-

ic catalyst called Catalyst C manufactured from a hydrophobic

rocessed inorganic substance base was applied especially to check

he reaction order for hydrogen oxidation under temperature larger

han 473 K [6] . 

.2. Test apparatus and experimental procedure 

Fig. 1 illustrates the experimental flow-through system de-

igned for the evaluation of kinetics of hydrogen oxidation reaction

6] . A large stainless steel tank which volume is 12 m 

3 was pre-

ared in order to keep a constant content of tritium in the feed

as. The experimental flow-through system was connected with

he tank. To release tritium intentionally in the tank, tritium bal-

nced in air which concentration was approximately 3.1 GBq/m 

3 -

TP was prepared in the tank. The unit of m 

3 -STP indicates the

quivalent volume under 101.3 kPa and 273 K. The pump started

or gas circulation through the experimental flow-through system.

hen the hydrogen gas was added from a gas cylinder into the feed

as for hydrogen to be a specified content. The flow rate of a gas

as controlled with a gas flow controller (8300MC, KOFLOC, Japan)
atinum catalyst for oxidation of tritium in JAEA, Nuclear Materials 

http://dx.doi.org/10.1016/j.nme.2016.08.018


Y. Iwai et al. / Nuclear Materials and Energy 0 0 0 (2016) 1–6 3 

ARTICLE IN PRESS 

JID: NME [m5G; September 6, 2016;11:16 ] 

o  

t  

B  

o  

w  

c  

t  

2  

5  

o  

l  

F  

g  

c

i  

w  

c  

t  

a  

d  

i  

a  

t  

a  

a  

w  

T  

J  

d  

r  

w  

c  

t  

b  

s  

w  

a  

t  

c  

t  

o  

o  

c  

f

2

o

 

s  

t  

o  

l

k

w  

t

3

3

 

s  

t  

g  

Fig. 2. Reaction route of hydrogen oxidation over catalyst. 
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ver the flow range from 0.018 to 0.144 m 

3 -STP/h. The pressure at

he inlet and at the outlet of the tritium tank was monitored with

aratron pressure gauges (Type 626, MKS, Japan). Taking the effect

f moisture in feed gas on activity of catalyst into consideration,

e kept moisture in feed gas to be a constant content. For the dry

ondition, dry feed gas was achieved by passing the gas through

he prepared two dehumidifiers connected in series. Approximately

00 cm 

3 of dehydrated silica gel and dehydrated molecular sieve

A were packed in each dehumidifier, respectively. The dew point

f dry feed gas following two dehumidifiers was monitored to be

ess than 253 K using a capacitance-type dew point hygrometer.

or the wet condition, wet feed gas was achieved by passing the

as through the prepared two humidifiers connected in series. The

atalytic reactor was packed with hydrophobic catalyst of 20 cm 

3 

n volume. The inner diameter and length of the catalytic reactor

ere 25.0 mm and 97.2 mm, respectively. The temperature of the

atalyst layer was monitored with a thermocouple. The tempera-

ure of the layer was controlled by a heater with a PID temper-

ture controller. The tritiated moisture (HTO) in the effluent pro-

uced by oxidation reaction in the catalytic reactor was trapped

n a water bubbler of HTO Trap 1. The post-catalytic reactor was

pplied for the purpose to oxidize the unreacted hydrogen and

ritium in the effluent from the catalytic reactor. The inner di-

meter and length of the second catalytic reactor were 56.5 mm

nd 150 mm, respectively. The post-catalytic reactor was packed

ith a commercial 0.5 wt% Pt/Al 2 O 3 catalyst of 100 cm 

3 in volume.

he Pt/Al 2 O 3 catalyst was AP1001 manufactured by N.E. Chemcat,

apan. The volume of the catalyst in the post-catalytic reactor was

etermined for unreacted hydrogen and tritium from the catalytic

eactor to be oxidized completely. The form of a Pt/Al 2 O 3 pellet

as ϕ3 mm x 3 mm. The temperature of Pt/Al 2 O 3 catalyst layer was

ontrolled to be 473 K. The HTO in the effluent produced by oxida-

ion reaction in the post-catalytic reactor was trapped in a water

ubbler of HTO Trap 2. Both catalytic reactors were thermally in-

ulated. The tritiated water vapor produced in each catalyst reactor

as collected with a HTO trap and water in each trap was sampled

fter termination of each run by suspending pump operation, and

hen the tritium amount was determined with a liquid scintillation

ounter (Aloka LSC6100, Aloka Ltd., Japan). The gas lines of the sys-

em were made of a 316 stainless-steel tube with inner diameter

f 6.35 mm and partly of a vinyl chloride tube with inner diameter

f 7.0 mm. We confirmed the adsorption of tritiated water on the

atalyst and piping was negligibly small by wet purge with tritium

ree air accompanied with moisture after tritium tests. 

.3. Assessment of overall reaction rate constant for hydrogen 

xidation 

The conversion rate of tritium by the catalytic reactor is as-

essed by X A = H 1 /(H 1 + H 2 ), wherein H 1 and H 2 represent the tri-

ium amount in the first and second trap, respectively. Then, the

verall mass transfer coefficient (k overall ) for the hydrophobic cata-

yst is theoretically computed from the equation; 

 ov erall = 

Q 

V cat 
LN ( 1 − X A ) (1) 

herein the Q and V cat represent the volumetric gas flow rate and

he volume of catalyst, respectively [9] . 

. Theory 

.1. Chemical kinetics analysis 

Chemical kinetics with an integral reactor is evaluated by mea-

urement of reaction rate at the outlet of the reactor as a func-

ion of flow rate of feed gas under the constant content of hydro-

en in the feed gas. Then the reaction order can be determined by
Please cite this article as: Y. Iwai et al., Development of hydrophobic pla

and Energy (2016), http://dx.doi.org/10.1016/j.nme.2016.08.018 
he plot of reaction rate vs space time. Space time is defined by

 cat /F, where V cat and F are the volume of catalyst and feed gas

ow rate, respectively. Generally the oxidation of hydrogen over

recious metal catalyst is regarded as pseudo-first-order reaction

f hydrogen. In this case, the linear increase of LN(1/(1 −X A )) as a

unction of τ is obtained, where τ is space time [10] . In the case

hat the oxidation of hydrogen over precious metal catalyst is 1/2

rder of hydrogen, the linear increase of (1 − �(1 −X A )) as a func-

ion of τ is obtained [10] . 

.2. Rate controlling step 

Previous research has indicated that the rate controlling step for

he oxidation of hydrogen is pore diffusion at temperature larger

han 473 K, where the reaction at active site on the catalyst sur-

ace is fast [11] . When the temperature decreases, the rate control-

ing step will move from pore diffusion to reaction at active site.

e would like to focus on the reaction order for the oxidation of

ydrogen when the rate controlling step is reaction at active site.

ig. 2 shows a reaction route of hydrogen oxidation over catalyst.

ince OH formation by the addition of H to O is highly activated,

nother mechanism has to account for its formation. 

Adsorption of hydrogen on active site 

 2 + 2 σ ↔ 2 H σ ( → k 1 , ← k 2 ) . (2)

Adsorption of oxygen on active site 

 2 + 2 σ ↔ 2 O σ ( → k 3 , ← k 4 ) . (3)

Formation of OH on active site 

 2 O σ + O σ ↔ 2 OH σ ( → k 5 , ← k 6 ) . (4)

Formation of water vapor on active site 

H σ + H σ ↔ H 2 O σ + σ ( → k 7 , ← k 8 ) . (5)

Desorption of water vapor from active site 

 2 O σ ↔ H 2 O + σ ( → k 9 , ← k 10 ) . (6)

Balance of coverage 

Pt + θPt−H + θPt−O + θPt−OH + θPt−H 2 O = 1 . (7)

Reaction rates for formation of Pt-H, Pt-O, Pt-OH, Pt-H 2 O and

esorption of H 2 O, 

 1 = k 1 P H2 θPt 
2 − k 2 θPt−H 

2 
, (8) 

 2 = k 3 P O 2 θPt 
2 − k 4 θ(Pt−O ) 

2 
, (9) 
tinum catalyst for oxidation of tritium in JAEA, Nuclear Materials 
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Fig. 3. Reaction rate vs space time for tritium oxidation at 473 K with Catalyst C. 

Fig. 4. Reaction rate vs space time for tritium oxidation at room temperature with 

Catalyst A. 

Fig. 5. Change in order of reaction as a function of hydrogen content and tempera- 

ture of catalyst layer. 
v 3 = k 5 θPt−H2 O θPt−O − k 6 θPt−OH 
2 
, (10)

v 4 = k 7 θPt−OH θPt−H − k 8 θPt−H2 O θPt , (11)

v 5 = k 9 θPt−H2 O − k 10 P H2 O θPt , (12)

where θ , σ , υ , k and P mean the coverage, platinum active site,

reaction rate, rate constant and partial pressure, respectively. Gen-

erally the coverage of oxygen is larger than that of hydrogen since

the content of oxygen in the feed air is larger than that of hydro-

gen. This leads the adsorption of oxygen is not the rate control-

ling step. In the case, it is reasonable to consider that adsorption

of hydrogen is the rate controlling step. The following steady state

approximation is established. 

v 2 = v 3 = v 4 = v 5 = 0 (13)

The numerical analysis with this approximation leads the sim-

ple pseudo-first-order reaction of hydrogen in the end. In contrast,

it is inferred from the previous result that the reaction for oxida-

tion of a very small hydrogen content at room temperature is not

the pseudo-first-order reaction of hydrogen. In this case, desorp-

tion of water vapor is likely to be the rate controlling step. 

v 1 = v 2 = v 3 = v 4 = 0 (14)

v ov erall = v 5 = 

A P H2 + B 

C P H2 + D 

√ 

P H2 + E 
(15)

A = 

k 1 k 5 k 7 
2 
k 9 

k 2 k 6 k 8 
2 

√ 

k 3 P O 2 
k 4 

(16)

B = − k 10 P H2 O (17)

C = 

k 1 k 5 k 7 
2 

k 2 k 6 k 8 
2 

√ 

k 3 P O 2 
k 4 

(18)

D = 

√ 

k 1 
k 2 

( 1 + 

k 5 k 7 
k 6 k 8 

√ 

k 3 P O 2 
k 4 

) (19)

E = 1 + 

√ 

k 3 P O 2 
k 4 

(20)

The equation estimates the apparent order of reaction is be-

tween zero to first order of hydrogen, where the order depends

strongly on hydrogen content and water vapor content. 

4. Results and discussion 

4.1. Analysis on rate-controlling step 

Fig. 3 illustrates the reaction rate vs space time for tritium oxi-

dation at 473 K with Catalyst C. The oxidation reaction of hydrogen

is generally regarded as the pseudo-first-order reaction of hydro-

gen. In this result, the linear increase of LN(1/(1 −X A )) as a func-

tion of retention time “t” is clearly obtained, where X H2 means

the conversion rate of hydrogen. This result supports the conven-

tional understanding that the hydrogen oxidation is evaluated as

the pseudo-first-order reaction of hydrogen. However, our another

result indicates an exception of this understanding especially when

the hydrogen content is very small and temperature of catalyst

layer decreased to temperature around room temperature. For the

tritium safety of nuclear fusion facility, off normal release of tri-

tium into secondary or final confinement should be considered. In

these cases, it is inevitable that the content of tritium taken into
Please cite this article as: Y. Iwai et al., Development of hydrophobic platinum catalyst for oxidation of tritium in JAEA, Nuclear Materials 
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Fig. 6. Variation in natural logarithm of overall reaction rate constant for tritium oxidation as a function of reciprocal temperature 10 0 0/T at different hydrogen content 

under the dry condition (a) for Catalyst A and (b) for Catalyst B. 

Fig. 7. Variation in natural logarithm of overall reaction rate constant for tritium oxidation as a function of reciprocal temperature 10 0 0/T at different hydrogen content 

under the moisture concentration of 22,0 0 0 ppm (a) for Catalyst A and (b) for Catalyst B. 
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ccount for the design of detritiation system is very small, even

hough the activity of tritium is evaluated to be quite large. The

ontent of tritium would be smaller than that of hydrogen nat-

rally contained in air. Hence the understanding of the reaction

echanism on oxidation of a very small hydrogen content is quite

mportant. In addition, if we consider the severe accidental sce-

ario such as loss of electric power to heat the catalytic reactor,

he passive oxidation of tritium at temperature around room tem-

erature is an engineering option. Hence, the understanding of the

eaction mechanism on hydrogen oxidation at temperature around

oom temperature is also quite important. Fig. 4 reveals the re-

ction rate vs space time for tritium oxidation at room tempera-

ure with Catalyst A. Concerning on hydrogen oxidation at room

emperature, the linear increase of LN(1/(1 −X A )) as a function of

etention time is not obtained. This indicates the hydrogen oxida-

ion under a very small hydrogen concentration and room temper-

ture never assessed as the pseudo-first-order reaction of hydro-

en. Instead the linear increase of (1 − �(1 −X A )) as a function of

etention time is obtained. This indicates the oxidation of hydro-

en is 1/2 order of hydrogen in this case. Similar results are eval-

ated with the following combined condition which is a hydrogen

ontent below 10 ppm and catalytic temperature lower than 313 K.

ig. 5 shows our understanding; the change in order of reaction as
Please cite this article as: Y. Iwai et al., Development of hydrophobic pla

and Energy (2016), http://dx.doi.org/10.1016/j.nme.2016.08.018 
 function of hydrogen content and temperature of catalyst layer.

n case of a hydrogen content below 10 ppm, the order of reaction

t catalytic temperature between 313 and 373 K shows the transi-

ion state where the apparent order of reaction increases from 1/2

o 1 with an increase in temperature of catalyst layer. In case of a

ydrogen content above 10 ppm, the hydrogen oxidation reaction is

valuated as the pseudo-first-order reaction of hydrogen over the

ntire temperature range. This is because the pseudo-first-order re-

ction of hydrogen is applied in both rate-controlling cases of pore

iffusion at a high temperature and adsorption of hydrogen on ac-

ive site at a low temperature. 

.2. Effect of platinum particle size 

Fig. 6 (a) and (b) show the variation in natural logarithm of

verall reaction rate constant for tritium oxidation as a function

f reciprocal temperature 10 0 0/T under the dry condition for Cata-

yst A and Catalyst B, respectively. Both hydrophobic catalysts show

he dependence of overall reaction rate constant on hydrogen con-

ent. With an increase in hydrogen content from tracer level, the

verall reaction rate constant decreases over the whole temper-

tures. Then the overall reaction rate constant reaches the bot-

om value with the hydrogen content of 100 ppm. The decrease in
tinum catalyst for oxidation of tritium in JAEA, Nuclear Materials 

http://dx.doi.org/10.1016/j.nme.2016.08.018


6 Y. Iwai et al. / Nuclear Materials and Energy 0 0 0 (2016) 1–6 

ARTICLE IN PRESS 

JID: NME [m5G; September 6, 2016;11:16 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

r  

d  

v  

i  

h

A

 

f  

w

R

 

 

 

 

 

 

 

 

 

[  

 

overall reaction rate constant with an increase in hydrogen con-

tent is mainly attributed to the increase in content of water vapor

produced by oxidation reaction. With a hydrogen content above

100 ppm, the overall reaction rate constant increases reversely with

an increase in hydrogen content. This reverse suggests the change

in rate controlling step. It is also clear the platinum particle size

deposited on the catalyst surface affects the catalytic activity. With

a decrease in platinum particle size, water vapor can considerably

cover the active sites. Compared with the catalyst A, the catalyst

B significantly decreases the catalytic activity due mainly to the

contribution of covered water vapor. Since the adsorption of wa-

ter vapor is a key factor for the oxidation of tritium especially

at temperature around room temperature, adsorption of water va-

por affects considerably in case of the wet oxidation. Fig. 7 (a) and

(b) show the variation in natural logarithm of overall reaction rate

constant for tritium oxidation as a function of reciprocal tempera-

ture 10 0 0/T under the wet condition for Catalyst A and Catalyst B,

respectively. Under the moisture concentration of 22,0 0 0 ppm, the

catalyst B which has a fine platinum size shows the considerable

decrease in overall reaction rate constant due to the effect of wa-

ter vapor. When a hydrophobic platinum catalyst is designed for a

passive recombiner, platinum particle size is a dominant factor. 

5. Conclusions 

To design a passive recombiner packed with hydrophobic cata-

lyst for tritium oxidation, the development of manufacturing tech-

nology for hydrophobic platinum catalyst and the following data

on reaction rate are essential. This presentation deals with the re-

action rate for tritium oxidation over hydrophobic platinum cata-

lyst at temperature between room temperature and 473 K. The re-
Please cite this article as: Y. Iwai et al., Development of hydrophobic pl

and Energy (2016), http://dx.doi.org/10.1016/j.nme.2016.08.018 
ult indicated that the particle size of platinum affects the reaction

ate. Catalyst with a fine platinum size showed the considerable

ecrease in overall reaction rate constant due to the effect of water

apor. Concerning the order of reaction for hydrogen combustion,

t is 0.5 of hydrogen concentration at room temperature when the

ydrogen concentration is below 10 ppm. 
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